搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维线性非共轭石墨烯基(CH2)n分子链的电子输运

贺艳斌 白熙

引用本文:
Citation:

一维线性非共轭石墨烯基(CH2)n分子链的电子输运

贺艳斌, 白熙

Electron transport of one-dimensional non-conjugated (CH2)n molecule chain coupling to graphene electrode

He Yan-Bin, Bai Xi
PDF
HTML
导出引用
  • 一维非共轭烷烃链虽不具富电子或少电子特征, 但常存在于单分子器件或多肽、蛋白质等生物分子中, 对电子传输产生重要影响. 为理解这类物质的电子输运特征, 本研究设计了一维线性非共轭(CH2)n分子结模型, 并利用密度泛函理论结合非平衡态格林函数的方法, 对(CH2)n(n = 1—12)线性分子链与两个石墨烯电极耦合而成的分子结进行了第一性原理计算. 结果表明, CH2分子链随着n值的变化, 其电导值表现出明显的奇偶振荡现象, 并且随着链长的增加呈指数级的衰减, 这一结果与实验研究取得了很好的一致性, 为理解和设计性能更加优良的单分子器件提供了重要理论依据.
    Although the one-dimensional non-conjugated alkane chain, which has an important influence on the electron transport process, does not possess the characteristics of electron-rich and electron-deficient, it often exists in single-molecule devices and biological molecules such as peptides and proteins. In order to understand the electron transport characteristics of alkane chain, a one-dimensional linear non-conjugate (CH2)n molecular junction model is designed in this study. Subsequently, we conduct the systematic study of the electronic transport behavior of (CH2)n (n = 1–12) molecular linear chain coupling to two graphene electrodes, based on the density functional theory and nonequilibrium Green’s function formalism. The results reveal that the structure and conductance of CH2 chain are highly sensitive to the odevity of CH2 unit. When the value of n is odd, the groups of CH2 extend in a zigzag way from the left electrode to the right electrode in the plane of graphene, while the value of n is even, what is different is that the groups of CH2 are arranged above and below the electrode plane. For this reason, the odd-even behavior of conductance occurs in the (CH2)n (n = 1–12) molecular chain. Furthermore, n is also an important factor to affect their transport properties (odd or even behavior of conductance). The longer the (CH2)n chain, the deeper the suppression in transmission spectrum and the lower the equilibrium conductance. What is more, the conductance decreases exponentially with the increase of molecular length, with a decay constant β of 0.67 and 0.60 for odd and even, respectively, which is in good agreement with the experimental research. Additionally, by analyzing their eigenchannels of odd and even (CH2)n molecular chain, we find that the coplanar σ electron with graphene electrode makes a major contribution to the electronic transport channel. The current-voltage curve of (CH2)n molecular chain exhibits nonlinearity, implying their semiconductor characteristics. The interesting mechanical and electronic transport properties are expected to conduce to further experimental synthesis, design and operation of the single molecular nanodevices.
      通信作者: 贺艳斌, heyb@czmc.edu.cn
    • 基金项目: 山西省高等学校科技创新项目(批准号: 2020L0371)、长治医学院科技创新团队项目(批准号: CX201904)、山西省“1331工程”重点创新团队建设计划和山西省“服务产业创新学科群建设计划”项目(201809)资助的课题
      Corresponding author: He Yan-Bin, heyb@czmc.edu.cn
    • Funds: Project supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China, STIP (Grant No. 2020L0371), the Scientific and Technological Innovation Team Programs of Changzhi Medical College, China (Grant No. CX201904), the Fund for Shanxi “1331Project” Key Innovative Research Team, China, “1331KIRT”, and the Shanxi Province Service Industry Innovation Discipline Group Construction Plan, China (201809)
    [1]

    Xin N, Guan J, Zhou C, Chen X, Gu C, Li Y, Ratner M A, Nitzan A, Stoddart J F, Guo X 2019 Nat. Rev. Phy. 1 211Google Scholar

    [2]

    Wen B, Cao M, Lu M, Cao W, Shi H, Liu J, Wang X, Jin H, Fang X, Wang W, Yuan J 2014 Adv. Mater. 26 3484Google Scholar

    [3]

    Cao M-S, Wang X X, Zhang M, Cao W Q, Fang X Y, Yuan J 2020 Adv. Mater. 32 1907156Google Scholar

    [4]

    Balci O, Polat E O, Kakenov N, Kocabas C 2015 Nat. Commun. 6 6628Google Scholar

    [5]

    Meng L, Xin N, Hu C, Wang J, Gui B, Shi J, Wang C, Shen C, Zhang G, Guo H, Meng S, Guo X 2019 Nat. Commun. 10 1450Google Scholar

    [6]

    Li Y, Zhao L, Yao Y, Guo X 2019 ACS Appl Bio Mater 3 68Google Scholar

    [7]

    Zhou C, Li X, Gong Z, Jia C, Lin Y, Gu C, He G, Zhong Y, Yang J, Guo X 2018 Nat. Commun. 9 807Google Scholar

    [8]

    Li Y, Yang C, Guo X 2020 Acc. Chem. Res. 53 159Google Scholar

    [9]

    Jia C, Migliore A, Xin N, Huang S, Wang J, Yang Q, Wang S, Chen H, Wang D, Feng B, Liu Z, Zhang G, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X 2016 Science 352 1443Google Scholar

    [10]

    Zotti L A, Cuevas J C 2018 ACS Omega 3 3778Google Scholar

    [11]

    Guo C, Yu X, Refaely-Abramson S, Sepunaru L, Bendikov T, Pecht I, Kronik L, Vilan A, Sheves M, Cahen D 2016 Proc. Natl. Acad. Sci. U. S. A. 113 10785Google Scholar

    [12]

    Schosser W M, Zotti L A, Cuevas J C, Pauly F 2019 J. Chem. Phys. 150 174705Google Scholar

    [13]

    Mu Y, Zhou Y, Zhang T, Zeng Z-Y, Cheng Y 2017 J. Chem. Eng. Data 62 3889Google Scholar

    [14]

    Liu F T, Cheng Y, Yang F-B, Chen X R 2014 Physica E 56 96Google Scholar

    [15]

    贺园园, 程娜, 赵健伟 2017 化学学报 75 893Google Scholar

    He Y Y, Cheng N, Zhao J W 2017 Acta Chim. Sin. 75 893Google Scholar

    [16]

    左敏, 廖文虎, 吴丹, 林丽娥 2019 68 237302Google Scholar

    Zuo M, Liao W H, Wu D, Lin L E 2019 Acta Phys. Sin. 68 237302Google Scholar

    [17]

    刘南舒, 周思, 赵纪军 2019 物理化学学报 35 1142Google Scholar

    Liu N S, Zhou S, Zhao J J 2019 Acta Phys.Chem. Sin. 35 1142Google Scholar

    [18]

    Fang X Y, Yu X X, Zheng H M, Jin H B, Wang L, Cao M-S 2015 Phys. Lett. A 379 2245Google Scholar

    [19]

    Malen J A, Doak P, Baheti K, Tilley T D, Segalman R A, Majumdar A 2009 Nano Lett. 9 1164Google Scholar

    [20]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745Google Scholar

    [21]

    Artacho E, Anglada E, Diéguez O, Gale J D, García A, Junquera J, Martin R M, Ordejón P, Pruneda J M, Sánchez-Portal D, Soler J M 2008 J. Phys.: Condens. Matter 20 064208Google Scholar

    [22]

    García A, Papior N, Akhtar A, Artacho E, Blum V, Bosoni E, Brandimarte P, Brandbyge M, Cerdá J I, Corsetti F, Cuadrado R, Dikan V, Ferrer J, Gale J, García-Fernández P, García-Suárez V M, García S, Huhs G, Illera S, Korytár R, Koval P, Lebedeva I, Lin L, López-Tarifa P, Mayo S G, Mohr S, Ordejón P, Postnikov A, Pouillon Y, Pruneda M, Robles R, Sánchez-Portal D, Soler J M, Ullah R, Yu V W-z, Junquera J 2020 J. Chem. Phys. 152 204108Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993Google Scholar

    [25]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [26]

    Frederiksen T, Paulsson M, Brandbyge M, Jauho A P 2007 Phys. Rev. B 75 205413Google Scholar

    [27]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272Google Scholar

    [28]

    Lang N D, Avouris P 1998 Phys. Rev. Lett. 81 3515Google Scholar

    [29]

    Li Y J, Li S L, Gong P, Li Y L, Fang X Y, Jia Y H, Cao M-S 2018 Physica E 104 247Google Scholar

    [30]

    陈熙, 张胜利 2018 物理化学学报 34 1061Google Scholar

    Chen X, Zhang S L 2018 Acta Phys.Chem. Sin. 34 1061Google Scholar

    [31]

    柳福提, 张淑华, 程艳, 陈向荣, 程晓洪 2016 65 106201Google Scholar

    Liu F T, Zhang S H, Cheng Y, Chen X R, Cheng X H 2016 Acta Phys. Sin. 65 106201Google Scholar

  • 图 1  (CH2)n分子结(n = 1−12)计算模型示意图(金色球: 碳原子C, 红色球: 氧原子O, 灰色球: 氮原子N, 淡粉色球: 氢原子H)

    Fig. 1.  Schematic illustration of (CH2)n (n = 1−12) molecule junction (golden ball: carbon atom, red ball, oxygen atom, grey ball: nitrogen atom, light pink ball: hydrogen atom).

    图 2  (CH2)n分子结(n = 1−12)稳定结构图(每个图中下方为沿y轴方向的俯视图, 上方和右方插图分别为沿xz轴方向的侧视图, 坐标方向和小球颜色说明见图1)

    Fig. 2.  The stable structure of (CH2)n (n = 1−12) molecule junction (on each diagram, the bottom figure is a top view along y axis, the upper and right side inset is a side view along x and z axis, respectively. Coordinate direction and color description of the ball are shown in Fig. 1).

    图 3  奇数 (a)和偶数(b) (CH2)n分子结在零偏压下的透射谱图

    Fig. 3.  Transmission coefficient as a function of energy for odd (a) and even (b) (CH2)n molecule junction under zero external bias.

    图 4  奇数 (a)和偶数(b) (CH2)n分子结零偏压电导与分子链长度关系图

    Fig. 4.  The plot of conductance versus chain length for odd (a) and even (b) molecular junction of (CH2)n at the bias of 0 V.

    图 5  奇数 (a)和偶数(b) (CH2)n分子结导电通道图(上方插图为沿x轴的侧视图, 蓝色和黄色区域分别代表得失电荷密度)

    Fig. 5.  The eigenchannels of odd (a) and even (b) molecular junction of (CH2)n (The upper inset is a side view along x axis, blue and yellow areas denote the gain and loss of electron density)

    图 6  奇数 (a)和偶数(b) (CH2)n分子结在不同电压下的电流图

    Fig. 6.  The current of odd (a) and even (b) (CH2)n molecular junction under different external bias.

    表 1  (CH2)n分子结(n = 1—12)的平均键长、键角和结合能(d1, d2, d3, α图2所示)

    Table 1.  The average bond length, bond angle and binding energy in (CH2)n (n = 1–12) molecule junction (the bond length of d1, d2, d3 and the bond angle α are shown in Fig. 2).

    nd1N—Nd2C—Cd3C—Cα/(°)ΔE/eV
    12.44–10.90
    23.671.55–11.04
    35.101.552.542.25–11.12
    46.221.532.5518.81–11.45
    57.711.552.630.91–11.52
    68.911.542.5915.12–11.55
    710.301.552.620.41–11.66
    811.511.542.6014.61–11.57
    912.901.552.620.80–11.69
    1014.111.542.6114.93–11.60
    1115.511.552.621.85–11.72
    1216.711.542.6114.19–11.60
    下载: 导出CSV
    Baidu
  • [1]

    Xin N, Guan J, Zhou C, Chen X, Gu C, Li Y, Ratner M A, Nitzan A, Stoddart J F, Guo X 2019 Nat. Rev. Phy. 1 211Google Scholar

    [2]

    Wen B, Cao M, Lu M, Cao W, Shi H, Liu J, Wang X, Jin H, Fang X, Wang W, Yuan J 2014 Adv. Mater. 26 3484Google Scholar

    [3]

    Cao M-S, Wang X X, Zhang M, Cao W Q, Fang X Y, Yuan J 2020 Adv. Mater. 32 1907156Google Scholar

    [4]

    Balci O, Polat E O, Kakenov N, Kocabas C 2015 Nat. Commun. 6 6628Google Scholar

    [5]

    Meng L, Xin N, Hu C, Wang J, Gui B, Shi J, Wang C, Shen C, Zhang G, Guo H, Meng S, Guo X 2019 Nat. Commun. 10 1450Google Scholar

    [6]

    Li Y, Zhao L, Yao Y, Guo X 2019 ACS Appl Bio Mater 3 68Google Scholar

    [7]

    Zhou C, Li X, Gong Z, Jia C, Lin Y, Gu C, He G, Zhong Y, Yang J, Guo X 2018 Nat. Commun. 9 807Google Scholar

    [8]

    Li Y, Yang C, Guo X 2020 Acc. Chem. Res. 53 159Google Scholar

    [9]

    Jia C, Migliore A, Xin N, Huang S, Wang J, Yang Q, Wang S, Chen H, Wang D, Feng B, Liu Z, Zhang G, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X 2016 Science 352 1443Google Scholar

    [10]

    Zotti L A, Cuevas J C 2018 ACS Omega 3 3778Google Scholar

    [11]

    Guo C, Yu X, Refaely-Abramson S, Sepunaru L, Bendikov T, Pecht I, Kronik L, Vilan A, Sheves M, Cahen D 2016 Proc. Natl. Acad. Sci. U. S. A. 113 10785Google Scholar

    [12]

    Schosser W M, Zotti L A, Cuevas J C, Pauly F 2019 J. Chem. Phys. 150 174705Google Scholar

    [13]

    Mu Y, Zhou Y, Zhang T, Zeng Z-Y, Cheng Y 2017 J. Chem. Eng. Data 62 3889Google Scholar

    [14]

    Liu F T, Cheng Y, Yang F-B, Chen X R 2014 Physica E 56 96Google Scholar

    [15]

    贺园园, 程娜, 赵健伟 2017 化学学报 75 893Google Scholar

    He Y Y, Cheng N, Zhao J W 2017 Acta Chim. Sin. 75 893Google Scholar

    [16]

    左敏, 廖文虎, 吴丹, 林丽娥 2019 68 237302Google Scholar

    Zuo M, Liao W H, Wu D, Lin L E 2019 Acta Phys. Sin. 68 237302Google Scholar

    [17]

    刘南舒, 周思, 赵纪军 2019 物理化学学报 35 1142Google Scholar

    Liu N S, Zhou S, Zhao J J 2019 Acta Phys.Chem. Sin. 35 1142Google Scholar

    [18]

    Fang X Y, Yu X X, Zheng H M, Jin H B, Wang L, Cao M-S 2015 Phys. Lett. A 379 2245Google Scholar

    [19]

    Malen J A, Doak P, Baheti K, Tilley T D, Segalman R A, Majumdar A 2009 Nano Lett. 9 1164Google Scholar

    [20]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745Google Scholar

    [21]

    Artacho E, Anglada E, Diéguez O, Gale J D, García A, Junquera J, Martin R M, Ordejón P, Pruneda J M, Sánchez-Portal D, Soler J M 2008 J. Phys.: Condens. Matter 20 064208Google Scholar

    [22]

    García A, Papior N, Akhtar A, Artacho E, Blum V, Bosoni E, Brandimarte P, Brandbyge M, Cerdá J I, Corsetti F, Cuadrado R, Dikan V, Ferrer J, Gale J, García-Fernández P, García-Suárez V M, García S, Huhs G, Illera S, Korytár R, Koval P, Lebedeva I, Lin L, López-Tarifa P, Mayo S G, Mohr S, Ordejón P, Postnikov A, Pouillon Y, Pruneda M, Robles R, Sánchez-Portal D, Soler J M, Ullah R, Yu V W-z, Junquera J 2020 J. Chem. Phys. 152 204108Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993Google Scholar

    [25]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [26]

    Frederiksen T, Paulsson M, Brandbyge M, Jauho A P 2007 Phys. Rev. B 75 205413Google Scholar

    [27]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272Google Scholar

    [28]

    Lang N D, Avouris P 1998 Phys. Rev. Lett. 81 3515Google Scholar

    [29]

    Li Y J, Li S L, Gong P, Li Y L, Fang X Y, Jia Y H, Cao M-S 2018 Physica E 104 247Google Scholar

    [30]

    陈熙, 张胜利 2018 物理化学学报 34 1061Google Scholar

    Chen X, Zhang S L 2018 Acta Phys.Chem. Sin. 34 1061Google Scholar

    [31]

    柳福提, 张淑华, 程艳, 陈向荣, 程晓洪 2016 65 106201Google Scholar

    Liu F T, Zhang S H, Cheng Y, Chen X R, Cheng X H 2016 Acta Phys. Sin. 65 106201Google Scholar

  • [1] 黄盛星, 陈健, 王文菲, 王旭东, 姚曼. 新型双过渡金属MXene热电输运性能第一性原理计算.  , 2024, 73(14): 146301. doi: 10.7498/aps.73.20240432
    [2] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质.  , 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [3] 吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江. 聚噻吩单链量子热输运的第一性原理研究.  , 2018, 67(2): 026501. doi: 10.7498/aps.67.20171198
    [4] 柳福提, 张淑华, 程艳, 陈向荣, 程晓洪. (GaAs)n(n=1-4)原子链电子输运性质的理论计算.  , 2016, 65(10): 106201. doi: 10.7498/aps.65.106201
    [5] 陈晓彬, 段文晖. 低维纳米材料量子热输运与自旋热电性质 ——非平衡格林函数方法的应用.  , 2015, 64(18): 186302. doi: 10.7498/aps.64.186302
    [6] 柳福提, 程艳, 陈向荣, 程晓洪. GaAs纳米结点电子输运性质的第一性原理计算.  , 2014, 63(13): 137303. doi: 10.7498/aps.63.137303
    [7] 柳福提, 程艳, 陈向荣, 程晓洪, 曾志强. Au-Si60-Au分子结电子输运性质的理论计算.  , 2014, 63(17): 177304. doi: 10.7498/aps.63.177304
    [8] 柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣. Si4团簇电子输运性质的第一性原理计算.  , 2013, 62(14): 140504. doi: 10.7498/aps.62.140504
    [9] 柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣. Au-Si-Au结点电子输运性质的第一性原理计算.  , 2013, 62(10): 107401. doi: 10.7498/aps.62.107401
    [10] 管东波, 毛健. Magnli相亚氧化钛Ti8O15的电子结构和光学性能的第一性原理研究.  , 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [11] 范志强, 谢芳. 硼氮原子取代掺杂对分子器件负微分电阻效应的影响.  , 2012, 61(7): 077303. doi: 10.7498/aps.61.077303
    [12] 段玲, 胡飞, 丁建文. 准一维纳米线电子输运的梯度无序效应.  , 2011, 60(11): 117201. doi: 10.7498/aps.60.117201
    [13] 安义鹏, 杨传路, 王美山, 马晓光, 王德华. C20F20分子电子输运性质的第一性原理研究.  , 2010, 59(3): 2010-2015. doi: 10.7498/aps.59.2010
    [14] 宋久旭, 杨银堂, 刘红霞, 张志勇. 掺氮碳化硅纳米管电子结构的第一性原理研究.  , 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [15] 张计划, 丁建文, 卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究.  , 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [16] 郑小宏, 戴振翔, 王贤龙, 曾雉. B与N掺杂对单层石墨纳米带自旋极化输运的影响.  , 2009, 58(13): 259-S265. doi: 10.7498/aps.58.259
    [17] 郑新亮, 郑继明, 任兆玉, 郭平, 田进寿, 白晋涛. 钽硅团簇电子输运性质的第一性原理研究.  , 2009, 58(8): 5709-5715. doi: 10.7498/aps.58.5709
    [18] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构.  , 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [19] 张金奎, 邓胜华, 金 慧, 刘悦林. ZnO电子结构和p型传导特性的第一性原理研究.  , 2007, 56(9): 5371-5375. doi: 10.7498/aps.56.5371
    [20] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究.  , 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
计量
  • 文章访问数:  5110
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-21
  • 修回日期:  2020-09-28
  • 上网日期:  2021-02-01
  • 刊出日期:  2021-02-20

/

返回文章
返回
Baidu
map