搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光前置放大器的量子密钥分发融合经典通信方案

钟海 叶炜 吴晓东 郭迎

引用本文:
Citation:

基于光前置放大器的量子密钥分发融合经典通信方案

钟海, 叶炜, 吴晓东, 郭迎

Optical preamplifier based simultaneous quantum key distribution and classical communication scheme

Zhong Hai, Ye Wei, Wu Xiao-Dong, Guo Ying
PDF
HTML
导出引用
  • 量子密钥分发融合经典通信方案将连续变量量子密钥分发和经典通信合并到了一起, 为将来在现有的光网络上同时进行密钥分发和经典通信提供了一个有效的方法. 然而, 在量子信号上叠加一个经典信号将会给连续变量量子密钥分发系统引入过噪声从而大大降低系统的性能. 本文提出基于光前置放大器的量子密钥分发融合经典通信方案, 即在接收端插入光前置放大器来提升系统的性能. 首先, 在相同比特误码率条件下, 光前置放大器对信号的放大能够降低对发送端经典信号调制振幅的要求, 从而降低经典信号对量子信号的噪声影响; 其次, 光前置放大器能够补偿接收端探测器的不完美; 再次, 对于本地本振光的情形, 放大器还能放大弱相位参考脉冲, 从而降低参考脉冲散粒噪声带来的相位过噪声. 在实际可达到的系统参数下, 数值仿真结果表明本文提出的方案相比于原方案在安全密钥率和传输距离上都有很好的提升. 这些结果表明本方案为量子密钥分发融合经典通信方案的进一步发展和实际应用提供了一个十分有效而实用的方法.
    That the simultaneous quantum key distribution and classical communication (SQCC) scheme are combined with the continuous variable quantum key distribution (CVQKD) and the classical communication together, will provide an effective method to implement the simultaneous CVQKD and the classical communication in the existing optical networks in the future. However, superimposing a classical signal on the quantum signal will introduce excess noise into the CVQKD system, thus greatly reducing the performance of the system. In this paper, a novel scheme of SQCC based on optical preamplifier (OPA) is proposed, that is, the OPA is inserted into the receiver to improve the performance of the system. On the one hand, under the condition of the same bit error rate, the amplification of the signal by the OPA can reduce the requirement for the modulation amplitude of the classical signal at the sending end, thereby reducing the noise effect of the classical signal on the quantum signal. On the other hand, the OPA can compensate for the imperfection of the receiver detector. Moreover, in the case of locally generated local oscillator, the amplifier can also amplify the weak phase reference pulse, and thus reducing the phase excess noise caused by the shot noise of the weak phase reference pulse. Numerical simulation results show that the proposed scheme has better performance than the original scheme in the sense of security key rate and transmission distance. These results show that this scheme provides an effective and practical method for the further development and practical application of the SQCC scheme.
      通信作者: 吴晓东, wuxiaodong2018@foxmail.com ; 郭迎, yingguo@csu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 61871407, 61872390, 61801522) 和中南大学研究生自主探索创新项目 (批准号: 2020zzts136) 资助的课题
      Corresponding author: Wu Xiao-Dong, wuxiaodong2018@foxmail.com ; Guo Ying, yingguo@csu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61871407, 61872390, 61801522) and the Postgraduate Independent Exploration and Innovation Project of Central South University, China (Grant No. 2020zzts136)
    [1]

    李剑, 陈彦桦, 潘泽世, 孙风琪, 李娜, 黎蕾蕾 2016 3 030302Google Scholar

    Li J, Chen Y H, Pan Z S, Sun F Q, Li N, Li L L 2016 Acta Phys. Sin. 3 030302Google Scholar

    [2]

    苗二龙, 莫小范, 桂有珍, 韩正甫, 郭光灿 2004 53 2123Google Scholar

    Miao E L, Mo X F, Gui Y Z, Han Z F, Guo G C 2004 Acta Phys. Sin. 53 2123Google Scholar

    [3]

    曹正文, 张爽浩, 冯晓毅, 赵光, 柴庚, 李东伟 2017 66 020301Google Scholar

    Cao Z W, Zhang S H, Peng X Y, Zhao G, Chai G, Li D W 2017 Acta Phys. Sin. 66 020301Google Scholar

    [4]

    Lo H K, Curty M, Tamaki K 2014 Nat. Photonics 8 595Google Scholar

    [5]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513Google Scholar

    [6]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shaari J S, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photon. 12 1012

    [7]

    Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers Systems, and Signal Processing Bangalore, India, December 10–12, 1984 p175

    [8]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar

    [9]

    Leverrier A, Grosshans F, Grangier P 2010 Phys. Rev. A 81 062343Google Scholar

    [10]

    Leverrier A 2015 Phys. Rev. Lett. 114 070501Google Scholar

    [11]

    Qi B, Lougovski P, Pooser R, Grice W, Bobrek M 2015 Phys. Rev. X 5 041009Google Scholar

    [12]

    Huang D, Huang P, Lin D K, Wang C, Zeng G H 2015 Opt. Lett. 40 3695Google Scholar

    [13]

    Huang D, Huang P, Lin D, Zeng G 2016 Sci. Rep. 6 19201Google Scholar

    [14]

    Huang D, Lin D K, Wang C, Liu W Q, Fang S H, Peng J Y, Huang P, Zeng G H 2015 Opt. Express 23 17511Google Scholar

    [15]

    Zhang Y C, Chen Z Y, Pirandola S, Wang X Y, Zhou C, Chu B J, Zhao Y J, Xu B J, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar

    [16]

    Fossier S, Diamanti E, Debuisschert T, Villing A, Tuallebrouri R, Grangier P 2009 New J. Phys. 11 045023Google Scholar

    [17]

    Huang D, Huang P, Li H, Wang T, Zhou Y, Zeng G 2016 Opt. Lett. 41 3511Google Scholar

    [18]

    Qi B, Zhu W, Qian L, Lo H K 2010 New J. Phys. 12 103042Google Scholar

    [19]

    Kumar R, Qin H, Alleaume R 2015 New J. Phys. 17 043027Google Scholar

    [20]

    Eriksson T A, Puttnam B J, Rademacher G, Luís R S, Fujiwara M, Takeoka M, Awaji Y, Sasaki M, Wada N 2019 IEEE Photonics Technol. Lett. 31 467Google Scholar

    [21]

    Qi B 2016 Phys. Rev. A 94 042340Google Scholar

    [22]

    Qi B, Lim C C W 2018 Phys. Rev. Appl. 9 054008Google Scholar

    [23]

    Yang C, Ma C, Hu L, He G 2018 Int. J. Theor. Phys. 57 2775Google Scholar

    [24]

    Wu X, Wang Y, Liao Q, Zhong H, Guo Y 2019 Entropy 21 333Google Scholar

    [25]

    Wu X D, Wang Y J, Huang D, Guo Y 2020 Front. Phys. 15 31601Google Scholar

    [26]

    Pan D, Ng S X, Ruan D, Yin L, Long G, Hanzo L 2020 Phys. Rev. A 101 012343Google Scholar

    [27]

    Guo Y, Liao Q, Wang Y, Huang D, Huang P, Zeng G 2017 Phys. Rev. A 95 032304Google Scholar

    [28]

    Zhong H, Wang Y J, Wang X D, Liao Q, Wu X D, Guo Y 2018 Entropy 20 578Google Scholar

    [29]

    Wu X D, Wang Y J, Zhong H, Liao Q, Guo Y 2019 Front. Phys. 14 41501Google Scholar

    [30]

    Guo Y, Ye W, Zhong H, Liao Q 2019 Phys. Rev. A 99 032327Google Scholar

    [31]

    Ye W, Zhong H, Liao Q, Huang D, Hu L, Guo Y 2019 Opt. Express 27 17186Google Scholar

    [32]

    叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云 2020 69 060301Google Scholar

    Ye W, Guo Y, Xia Y, Zhong H, Zhang H, Ding J Z, Hu L Y 2020 Acta Phys. Sin. 69 060301Google Scholar

    [33]

    Fossier S, Diamanti E, Debuisschert T, Tualle-Brouri R, Grangier P 2009 J. Phys. B: At. Mol. Opt. Phys. 42 114014Google Scholar

    [34]

    Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W, Grangier P 2007 Phys. Rev. A 76 042305Google Scholar

  • 图 1  基于前置光放大器的SQCC方案示意图. GM, 高斯调制; VOA, 可调光衰减器; SMF, 单模光纤; PC, 偏振控制器; OPA, 光前置放大器; Hom, 零差探测; Het, 外差探测

    Fig. 1.  Schematic of the OPA-based SQCC scheme. GM, Gaussian modulation; VOA, variable optical attenuator; SMF, single-mode fiber; PC, polarization controller; OPA, optical preamplifier; Hom, homodyne detection; Het, heterodyne detection.

    图 2  BER达到$10^{-9}$所需要的相空间位移$\alpha$与距离的函数关系 (a) 基于PSA的零差探测情况下的结果; (b) 基于PIA的外差探测情况下的结果. 仿真参数设定如下: $V_{\rm A}= 4$, $\gamma$ = 0.2 dB/km, $\eta$ = 0.5, $\xi_{\rm {ele}} = 0.1$, $\Delta t = 10^{-9}$ s, $\tau_{\rm c} = 1$ µs, $\xi_0 = 0.01$, $N = 1.5$; 对于TLO方案, $\eta_{\rm A} = 65$ dB, $\eta_{\rm P} = 35$ dB, $n_{\rm {ref}}^{\rm B} = 10^6$, $\sigma_{\varphi} = 10^{-4}$ rad2; 对于LLO方案, $\eta_{\rm A} = 30$ dB, $\eta_{\rm P} = 30$ dB, $n_{\rm {ref}}^{\rm B} = 10^3$, $\sigma_{\rm I} = 10^{-4}$ rad2, $\sigma_{{\rm B}_0} = 2\times10^{-3}$ rad2

    Fig. 2.  The needed phase space displacement $\alpha'$ as a function of transmission distance while BER = $10^{-9}$: (a) The results under the case of homodyne detection based on PSA; (b) the results under the case of heterodyne detection based on PIA. Simulation parameters are set as follows:$V_{\rm A}=4$, $\gamma$ = 0.2 dB/km, $\eta$ = 0.5, $\xi_{\rm {ele}} = 0.1$, $\Delta t = 10^{-9}$ s, $\tau_{\rm c} = 1$ µs, $\xi_0 = 0.01$, $N = 1.5$; for the scheme of TLO, $\eta_{\rm A} = 65$ dB, $\eta_{\rm P} = 35$ dB, $n_{\rm {ref}}^{\rm B} = 10^6$, $\sigma_{\varphi} = 10^{-4}$ rad2; for the scheme of LLO, $\eta_{\rm A} = 30$ dB, $\eta_{\rm P} = 30$ dB, $n_{\rm {ref}}^{\rm B} = 10^3$, $\sigma_{\rm I} = 10^{-4}$ rad2, $\sigma_{{\rm B}_0} = 2\times10^{-3}$ rad2.

    图 3  基于OPA的SQCC方案安全密钥率与传输距离的关系 (a), (b) 当$\sigma_{\varphi} = 10^{-4}$ rad2$\sigma_{\rm I} = 10^{-4}$ rad2时, 基于PSA的零差探测和基于PIA的外差探测情形下的安全密钥率与传输距离的关系; (c), (d) 当$\sigma_{\varphi} = 10^{-5}$ rad2$\sigma_{\rm I} = 10^{-5}$ rad2时, 与(a)和(b)同样情形下的仿真结果

    Fig. 3.  The secure key rate as a function of transmission distance for the proposed OPA-based SQCC scheme: (a), (b) The secure key rate as a function of transmission distance for the PSA-based case with homodyne detection and the PIA-based case with heterodyne detection, while $\sigma_{\varphi} = 10^{-4}$ rad2 and $\sigma_{\rm I} = 10^{-4}$ rad2; (c), (d) the simulation results for the same cases with (a) and (b), while $\sigma_{\varphi} = 10^{-5}$ rad2 and $\sigma_{\rm I} = 10^{-5}$ rad2.

    Baidu
  • [1]

    李剑, 陈彦桦, 潘泽世, 孙风琪, 李娜, 黎蕾蕾 2016 3 030302Google Scholar

    Li J, Chen Y H, Pan Z S, Sun F Q, Li N, Li L L 2016 Acta Phys. Sin. 3 030302Google Scholar

    [2]

    苗二龙, 莫小范, 桂有珍, 韩正甫, 郭光灿 2004 53 2123Google Scholar

    Miao E L, Mo X F, Gui Y Z, Han Z F, Guo G C 2004 Acta Phys. Sin. 53 2123Google Scholar

    [3]

    曹正文, 张爽浩, 冯晓毅, 赵光, 柴庚, 李东伟 2017 66 020301Google Scholar

    Cao Z W, Zhang S H, Peng X Y, Zhao G, Chai G, Li D W 2017 Acta Phys. Sin. 66 020301Google Scholar

    [4]

    Lo H K, Curty M, Tamaki K 2014 Nat. Photonics 8 595Google Scholar

    [5]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513Google Scholar

    [6]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shaari J S, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photon. 12 1012

    [7]

    Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers Systems, and Signal Processing Bangalore, India, December 10–12, 1984 p175

    [8]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar

    [9]

    Leverrier A, Grosshans F, Grangier P 2010 Phys. Rev. A 81 062343Google Scholar

    [10]

    Leverrier A 2015 Phys. Rev. Lett. 114 070501Google Scholar

    [11]

    Qi B, Lougovski P, Pooser R, Grice W, Bobrek M 2015 Phys. Rev. X 5 041009Google Scholar

    [12]

    Huang D, Huang P, Lin D K, Wang C, Zeng G H 2015 Opt. Lett. 40 3695Google Scholar

    [13]

    Huang D, Huang P, Lin D, Zeng G 2016 Sci. Rep. 6 19201Google Scholar

    [14]

    Huang D, Lin D K, Wang C, Liu W Q, Fang S H, Peng J Y, Huang P, Zeng G H 2015 Opt. Express 23 17511Google Scholar

    [15]

    Zhang Y C, Chen Z Y, Pirandola S, Wang X Y, Zhou C, Chu B J, Zhao Y J, Xu B J, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar

    [16]

    Fossier S, Diamanti E, Debuisschert T, Villing A, Tuallebrouri R, Grangier P 2009 New J. Phys. 11 045023Google Scholar

    [17]

    Huang D, Huang P, Li H, Wang T, Zhou Y, Zeng G 2016 Opt. Lett. 41 3511Google Scholar

    [18]

    Qi B, Zhu W, Qian L, Lo H K 2010 New J. Phys. 12 103042Google Scholar

    [19]

    Kumar R, Qin H, Alleaume R 2015 New J. Phys. 17 043027Google Scholar

    [20]

    Eriksson T A, Puttnam B J, Rademacher G, Luís R S, Fujiwara M, Takeoka M, Awaji Y, Sasaki M, Wada N 2019 IEEE Photonics Technol. Lett. 31 467Google Scholar

    [21]

    Qi B 2016 Phys. Rev. A 94 042340Google Scholar

    [22]

    Qi B, Lim C C W 2018 Phys. Rev. Appl. 9 054008Google Scholar

    [23]

    Yang C, Ma C, Hu L, He G 2018 Int. J. Theor. Phys. 57 2775Google Scholar

    [24]

    Wu X, Wang Y, Liao Q, Zhong H, Guo Y 2019 Entropy 21 333Google Scholar

    [25]

    Wu X D, Wang Y J, Huang D, Guo Y 2020 Front. Phys. 15 31601Google Scholar

    [26]

    Pan D, Ng S X, Ruan D, Yin L, Long G, Hanzo L 2020 Phys. Rev. A 101 012343Google Scholar

    [27]

    Guo Y, Liao Q, Wang Y, Huang D, Huang P, Zeng G 2017 Phys. Rev. A 95 032304Google Scholar

    [28]

    Zhong H, Wang Y J, Wang X D, Liao Q, Wu X D, Guo Y 2018 Entropy 20 578Google Scholar

    [29]

    Wu X D, Wang Y J, Zhong H, Liao Q, Guo Y 2019 Front. Phys. 14 41501Google Scholar

    [30]

    Guo Y, Ye W, Zhong H, Liao Q 2019 Phys. Rev. A 99 032327Google Scholar

    [31]

    Ye W, Zhong H, Liao Q, Huang D, Hu L, Guo Y 2019 Opt. Express 27 17186Google Scholar

    [32]

    叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云 2020 69 060301Google Scholar

    Ye W, Guo Y, Xia Y, Zhong H, Zhang H, Ding J Z, Hu L Y 2020 Acta Phys. Sin. 69 060301Google Scholar

    [33]

    Fossier S, Diamanti E, Debuisschert T, Tualle-Brouri R, Grangier P 2009 J. Phys. B: At. Mol. Opt. Phys. 42 114014Google Scholar

    [34]

    Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W, Grangier P 2007 Phys. Rev. A 76 042305Google Scholar

  • [1] 张云杰, 王旭阳, 张瑜, 王宁, 贾雁翔, 史玉琪, 卢振国, 邹俊, 李永民. 基于硬件同步的四态离散调制连续变量量子密钥分发.  , 2024, 73(6): 060302. doi: 10.7498/aps.73.20231769
    [2] 吴晓东, 黄端. 基于非理想量子态制备的实际连续变量量子秘密共享方案.  , 2024, 73(2): 020304. doi: 10.7498/aps.73.20230138
    [3] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析.  , 2024, 73(23): . doi: 10.7498/aps.20241094
    [4] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析.  , 2024, 73(23): 230303. doi: 10.7498/aps.73.20241094
    [5] 廖骎, 柳海杰, 王铮, 朱凌瑾. 基于不可信纠缠源的高斯调制连续变量量子密钥分发.  , 2023, 72(4): 040301. doi: 10.7498/aps.72.20221902
    [6] 吴晓东, 黄端, 黄鹏, 郭迎. 基于实际探测器补偿的离散调制连续变量测量设备无关量子密钥分发方案.  , 2022, 71(24): 240304. doi: 10.7498/aps.71.20221072
    [7] 王美红, 郝树宏, 秦忠忠, 苏晓龙. 连续变量量子计算和量子纠错研究进展.  , 2022, 71(16): 160305. doi: 10.7498/aps.71.20220635
    [8] 文镇南, 易有根, 徐效文, 郭迎. 无噪线性放大的连续变量量子隐形传态.  , 2022, 71(13): 130307. doi: 10.7498/aps.71.20212341
    [9] 刘兆斌, 李凯, 曾天海, 王锋, 宋新兵, 邵彬, 邹健. 类氢原子核质量对电子状态的影响.  , 2021, 70(7): 070301. doi: 10.7498/aps.70.20201754
    [10] 毛宜钰, 王一军, 郭迎, 毛堉昊, 黄文体. 基于峰值补偿的连续变量量子密钥分发方案.  , 2021, 70(11): 110302. doi: 10.7498/aps.70.20202073
    [11] 叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云. 基于量子催化的离散调制连续变量量子密钥分发.  , 2020, 69(6): 060301. doi: 10.7498/aps.69.20191689
    [12] 罗均文, 吴德伟, 李响, 朱浩男, 魏天丽. 微波连续变量极化纠缠.  , 2019, 68(6): 064204. doi: 10.7498/aps.68.20181911
    [13] 马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收. 连续变量1.34 m量子纠缠态光场的实验制备.  , 2017, 66(24): 244205. doi: 10.7498/aps.66.244205
    [14] 徐兵杰, 唐春明, 陈晖, 张文政, 朱甫臣. 利用无噪线性光放大器增加连续变量量子密钥分发最远传输距离.  , 2013, 62(7): 070301. doi: 10.7498/aps.62.070301
    [15] 闫智辉, 贾晓军, 谢常德, 彭堃墀. 利用非简并光学参量振荡腔产生连续变量三色三组分纠缠态.  , 2012, 61(1): 014206. doi: 10.7498/aps.61.014206
    [16] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议.  , 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [17] 沈咏, 邹宏新. 离散调制连续变量量子密钥分发的安全边界.  , 2010, 59(3): 1473-1480. doi: 10.7498/aps.59.1473
    [18] 朱畅华, 陈南, 裴昌幸, 权东晓, 易运晖. 基于信道估计的自适应连续变量量子密钥分发方法.  , 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [19] 邓文武, 郑 俊, 谭华堂, 李高翔. 非简并四波混频体系中双模光场的纠缠特性.  , 2007, 56(12): 6970-6975. doi: 10.7498/aps.56.6970
    [20] 陈进建, 韩正甫, 赵义博, 桂有珍, 郭光灿. 平衡零拍测量对连续变量量子密钥分配的影响.  , 2007, 56(1): 5-9. doi: 10.7498/aps.56.5
计量
  • 文章访问数:  5519
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-05
  • 修回日期:  2020-08-07
  • 上网日期:  2021-01-12
  • 刊出日期:  2021-01-20

/

返回文章
返回
Baidu
map