搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子结拉伸与界面识别: 破解4, 4′-二吡啶分子结拉伸过程中高低电导之谜

索雨晴 刘然 孙峰 牛乐乐 王双双 刘琳 李宗良

引用本文:
Citation:

分子结拉伸与界面识别: 破解4, 4′-二吡啶分子结拉伸过程中高低电导之谜

索雨晴, 刘然, 孙峰, 牛乐乐, 王双双, 刘琳, 李宗良

Molecular junction stretching and interface recognition: Decode the mystery of high/low conductance switching in stretching process of 4, 4′-bipyridine molecular junction

Suo Yu-Qing, Liu Ran, Sun Feng, Niu Le-Le, Wang Shuang-Shuang, Liu Lin, Li Zong-Liang
PDF
HTML
导出引用
  • 4,4′-二吡啶分子结在拉伸过程中呈现出独特的高低电导现象, 是分子电子学近十几年研究中的未解之谜. 根据实验测量过程以及所采用的技术手段, 发展了基于第一性原理计算的分子结绝热拉伸模拟方法, 对4,4′-二吡啶分子结的拉伸过程进行了模拟计算. 并利用一维透射结合三维修正近似(OTCTCA)方法计算了拉伸过程中体系电导的变化, 成功破解了4,4′-二吡啶分子结在拉伸过程中的高低电导之谜. 结果显示, 在4,4′-二吡啶分子结的拉伸过程中, 分子末端的氮原子很容易吸附到探针电极的第二层金原子上, 并且导致分子对尖端金原子产生特有的侧向推动作用, 将探针尖端金原子推向一侧, 从而在拉伸过程中出现高电导平台. 进一步拉伸分子结, 分子上端氮原子移动并吸附到探针尖端金原子上, 同时尖端金原子重新回到原来的晶格位置上. 体系电导也因此降低大约5—8倍, 形成低电导平台. 根据计算结果, 4,4′-二吡啶分子结双电导平台的出现同时表明基底电极很容易存在表面金原子, 且只有分子吸附到表面金原子上才会出现高低电导现象. 可见, 利用分子结拉伸过程中测量到的电导曲线并借助理论计算可以有效识别分子结界面结构. 另外, 对4,4′-二吡啶分子结高低电导现象物理过程和内在物理机制的破译, 为更好利用含吡啶末端分子构建分子开关、分子存储器、分子传感器等功能分子器件提供了重要技术信息与依据.
    The high/low conductance switching in stretching process of 4,4′-bipyridine molecular junction is a distinctive phenomenon in molecular electronics, which is still a mystery and has been unsolved for more than one decade. Based on the techniques and processes of experimental measurement, the ab initio-based adiabatic molecule-junction-stretch simulation (AMJSS) method is developed, by which the stretching processes of 4,4′-bipyridine molecular junctions are calculated. The conductance traces of the molecular systems in the stretching processes are studied and the mystery of high/low conductance switching in the stretching processes of 4,4′-bipyridine molecular junction is decoded by using the one-dimensional transmission combined with the three-dimensional correction approximation (OTCTCA) method. The numerical results show that, in the stretching process of 4,4′-bipyridine molecular junction, the upper terminal nitrogen atom in the pyridine ring is easy to vertically adsorb on the second gold layer of the probe electrode. At the same time, the molecule produces unique lateral-pushing force to push the tip atoms of the probe electrode aside. Thus, the high conductance plateau arises. With the molecular junction further stretched, the upper terminal nitrogen atom of the molecule shifts from the second gold layer to the tip gold atom of the probe electrode with the tip gold atom moving back to the original lattice position. Consequently, the conductance value decreases by about 5–8 times, and the low conductance plateau is presented. According to our calculations, the phenomenon of high/low conductance switching in the stretching process of 4,4′-bipyridine molecular junction also indicates that, single surface gold atom often lies on the surface of substrate electrode. Moreover, the phenomenon of high/low conductance switching can only be found when the molecule is adsorbed on the surface gold atom of the substrate electrode. Thus, using conductance traces measured in the stretching processes of molecular junction and with the help of theoretical calculations, the interface structures of molecular junctions can be recognized efficiently. Our study not only decodes the physical process and intrinsic mechanism of the high/low conductance switching phenomenon of 4,4′-bipyridine molecular junction, but also provides significant technique information for using pyridine-based molecule to construct functional molecular devices, such as molecular switch, molecule memory, molecular sensor, etc.
      通信作者: 李宗良, lizongliang@sdnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974217, 11874242)和山东省自然科学基金(批准号: ZR2018MA037)资助的课题
      Corresponding author: Li Zong-Liang, lizongliang@sdnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grants Nos. 11974217, 11874242) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2018MA037)
    [1]

    Binning G, Rohrer H, Gerber C, Weibel E 1982 Phys. Rev. Lett. 49 57Google Scholar

    [2]

    Schneider N L, Johansson P, Berndt R 2013 Phys. Rev. B 87 045049Google Scholar

    [3]

    Frei M, Aradhya S V, Koentopp M, Hybertsen M S, Venkataraman L 2011 Nano Lett. 11 1518Google Scholar

    [4]

    Pobelov I V, Meszaros G, Yoshida K, Mishchenko A, Gulcur M, Bryce M R, Wandlowski T 2012 J. Phys.: Condens. Matter 24 164210Google Scholar

    [5]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252Google Scholar

    [6]

    Zhao Z K, Liu R, Mayer D, Coppola M, Sun L, Kim Y, Wang C K, Ni L F, Chen X, Wang M N, Li Z L, Lee T, Xiang D 2018 Small 14 1703815Google Scholar

    [7]

    Xu B, Tao N J 2003 Science 301 1221Google Scholar

    [8]

    Liu R, Bi J J, Xie Z X, Yin K K, Wang D Y, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Appl. 9 054023Google Scholar

    [9]

    Sun D D, Su W Y, Wang F, Feng W X, Heng C L 2018 Chin. Phys. Lett. 35 017201Google Scholar

    [10]

    Liu Y, Xia C J, Zhang B Q, Zhang T T, Cui Y, Hu Z Y 2018 Chin. Phys. Lett. 35 067101Google Scholar

    [11]

    Li Z L 2011 Chin. J. Chem. Phys. 24 194Google Scholar

    [12]

    Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F 2016 Science 352 1433Google Scholar

    [13]

    Zhang Y P, Chen L C, Zhang Z Q, Cao J J, Tang C, Liu J, Duan L L, Huo Y, Shao X, Hong W, Zhang H L 2018 J. Am. Chem. Soc. 140 6531Google Scholar

    [14]

    Meng L, Xin N, Hu C, Wang J, Gui B, Shi J, Wang C, Shen C, Zhang G, Guo H, Meng S, Guo X 2019 Nat. Commun. 10 1450Google Scholar

    [15]

    Li Y Q, Kan H J, Miao Y Y, Yang L, Qiu S, Zhang G P, Ren J F, Wang C K, Hu G C 2020 Chin. Phys. B 29 017303Google Scholar

    [16]

    Zhang G P, Mu Y Q, Zhao J M, Huang H, Hu G C, Li Z L, Wang C K 2019 Physica E 109 1Google Scholar

    [17]

    Guo C, Wang K, Zerah-Harush E, Hamill J, Wang B, Dubi Y, Xu B 2016 Nat. Chem. 8 484Google Scholar

    [18]

    Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509Google Scholar

    [19]

    Hu G C, Zhang Z, Li Y, Ren J F, Wang C K 2016 Chin. Phys. B 25 057308Google Scholar

    [20]

    Wei M Z, Wang Z Q, Fu X X, Hu G C, Li Z L, Wang C K, Zhang G P 2018 Physica E 103 397Google Scholar

    [21]

    Fu H Y, Sun F, Liu R, Suo Y Q, Bi J J, Wang C K, Li Z L 2019 Phys. Lett. A 383 867Google Scholar

    [22]

    Wang Q, Liu R, Xiang D, Sun M, Zhao Z, Sun L, Mei T, Wu P, Liu H, Guo X, Li Z L, Lee T 2016 ACS Nano 10 9695Google Scholar

    [23]

    Jiang Z L, Wang H, Wang Y F, Sanvito S, Hou S 2017 J. Phys. Chem. C 121 27344Google Scholar

    [24]

    Jiang J, Kula M, Lu W, Luo Y 2005 Nano Lett. 5 1551Google Scholar

    [25]

    Xiang D, Jeong H, Kim D, Lee T, Cheng Y, Wang Q, Mayer D 2013 Nano Lett. 13 2809Google Scholar

    [26]

    Li Z L, Fu X X, Zhang G P, Wang C K 2013 Chin. J. Chem. Phys. 26 185Google Scholar

    [27]

    Guo C, Chen X, Ding S Y, Mayer D, Wang Q, Zhao Z, Ni L, Liu H, Lee T, Xu B, Xiang D 2018 ACS Nano 12 11229Google Scholar

    [28]

    Song H, Kim Y, Jang Y H, Jeong H, Reed M A, Lee T 2009 Nature 462 1039Google Scholar

    [29]

    Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar

    [30]

    刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎 2014 63 068501Google Scholar

    Liu R, Bao D L, Jiao Y, Wan L W, Li Z L, Wang C K 2014 Acta Phys. Sin. 63 068501Google Scholar

    [31]

    Yi X H, Liu R, Bi J J, Jiao Y, Wang C K, Li Z L 2016 Chin. Phys. B 25 128503Google Scholar

    [32]

    Ward D R, Halas N J, Ciszek J W, Tour J M, Wu Y, Nordlander P, Natelson D 2008 Nano Lett. 8 919Google Scholar

    [33]

    Konishi T, Kiguchi M, Takase M, Nagasawa F, Nabika H, Ikeda K, Uosaki K, Ueno K, Misawa H, Murakoshi K 2013 J. Am. Chem. Soc. 135 1009Google Scholar

    [34]

    Liu Z, Ding S Y, Chen Z B, Wang X, Tian J H, Anema J R, Zhou X S, Wu D Y, Mao B W, Xu X, Ren B, Tian Z Q 2011 Nat. Commun. 2 305Google Scholar

    [35]

    Zhou C, Li X, Gong Z, Jia C, Lin Y, Gu C, He G, Zhong Y, Yang J, Guo X 2018 Nat. Commun. 9 807Google Scholar

    [36]

    Huang J R, Huang H, Tao C P, Zheng J F, Yuan Y, Hong Z W, Shao Y, Niu Z J, Chen J Z, Zhou X S 2019 Nanoscale Res. Lett. 14 253Google Scholar

    [37]

    Li Z L, Zhang G P, Wang C K 2011 J. Phys. Chem. C 115 15586Google Scholar

    [38]

    Bao D L, Liu R, Leng J C, Zuo X, Jiao Y, Li Z L, Wang C K 2014 Phys. Lett. A 378 1290Google Scholar

    [39]

    孙峰, 刘然, 索雨晴, 牛乐乐, 傅焕俨, 季文芳, 李宗良 2019 68 178502Google Scholar

    Sun F, Liu R, Suo Y Q, Niu L L, Fu H Y, Ji W F, Li Z L 2019 Acta Phys. Sin. 68 178502Google Scholar

    [40]

    Dadosh T, Gordin Y, Krahne R, Khivrich I, Mahalu D, Frydman V, Sperling J, Yacoby A, Bar-Joseph I 2005 Nature 436 677Google Scholar

    [41]

    Zhang Y, Ye G, Soni S, Qiu X, Krijger T L, Jonkman H T, Carlotti M, Sauter E, Zharnikov M, Chiechi R C 2018 Chem. Sci. 9 4414Google Scholar

    [42]

    Li Z L, Yi X H, Liu R, Bi J J, Fu H Y, Zhang G P, Song Y Z, Wang C K 2017 Sci. Rep. 7 4195Google Scholar

    [43]

    Li Z L, Sun F, Bi J J, Liu R, Suo Y Q, Fu H Y, Zhang G P, Song Y Z, Wang D Y, Wang C K 2019 Physica E 106 270Google Scholar

    [44]

    Ferri N, Algethami N, Vezzoli A, Sangtarash S, McLaughlin M, Sadeghi H, Lambert C J, Nichols R J, Higgins S J 2019 Angew. Chem. Int. Ed. 58 16583Google Scholar

    [45]

    Kim Y, Hellmuth T J, Bürkle M, Pauly F, Scheer E 2011 ACS Nano 5 4104Google Scholar

    [46]

    Martin C A, Ding D, Sørensen J K, Bjørnholm T, Van. Ruitenbeek J M, Van Der Zant H S J 2008 J. Am. Chem. Soc. 130 13198Google Scholar

    [47]

    Zhan C, Wang G, Zhang X G, Li Z H, Wei J Y, Si Y, Yang Y, Hong W, Tian Z Q 2019 Angew. Chem. Int. Ed. 58 14534Google Scholar

    [48]

    Venkataraman L, Klare J E, Nuckolls C, Hybertsen M S, Steigerwald M L 2006 Nature 442 904Google Scholar

    [49]

    Pan Z C, Li J, Chen L J, Tang Y X, Shi J, Liu J Y, Liao L J, Hong W J 2019 Sci. China Chem. 62 1245Google Scholar

    [50]

    Kamenetska M, Quek S Y, Whalley A C, Steigerwald M L, Choi H J, Louie S G, Nuckolls C, Hybertsen M S, Neaton J B, Venkataraman L 2010 J. Am. Chem. Soc. 132 6817Google Scholar

    [51]

    Kim T, Darancet P, Widawsky J R, Kotiuga M, Quek S Y, Neaton J B, Venkataraman L 2014 Nano Lett. 14 794Google Scholar

    [52]

    Ismael A K, Wang K, Vezzoli A, Al-Khaykanee M K, Gallagher H E, Grace I M, Lambert C J, Xu B, Nichols R J, Higgins S J 2017 Angew. Chem. Int. Ed. 56 15378Google Scholar

    [53]

    Quek S Y, Kamenetska M, Steigerwald M L, Choi H J, Louie S G, Hybertsen M S, Neaton J B, Venkataraman L 2009 Nat. Nanotechnol 4 230Google Scholar

    [54]

    Aradhya S V, Frei M, Hybertsen M S, Venkataraman L 2012 Nat. Mater. 11 872Google Scholar

    [55]

    Qiu S, Miao Y Y, Zhang G P, Ren J F, Wang C K, Hu G C 2019 J. Magn. Magn. Mater. 479 247Google Scholar

    [56]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2013 Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT

    [57]

    Liu R, Wang C K, Li Z L 2016 Sci. Rep. 6 21946Google Scholar

    [58]

    Soler J M, Artacho E, Gale J D, García A, Unquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745Google Scholar

    [59]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar

    [60]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

  • 图 1  STM-BJ技术中分子结形成原理示意图

    Fig. 1.  The schematic structure of the forming principle of molecular junction in STM-BJ technique.

    图 2  分子体系在拉伸过程中的结构演化 (a)−(d) 吸附在基底电极表面金原子上的4, 4′-二吡啶分子结(体系I)的拉伸与结构演化过程; (e)−(g) 吸附在基底电极表面上的4, 4′-二吡啶分子结(体系II)的拉伸与结构演化过程; (h)−(k) 吸附在基底电极表面金原子上的4, 4′-二氨基联苯分子结(体系III)的拉伸与结构演化过程

    Fig. 2.  Configuration evolutions in the stretching processes of molecular junctions: (a)−(d) Stretching and configuration evolution process of 4, 4′-bipyridine molecular junction, in which the 4, 4′-bipyridine molecule is adsorbed on the surface Au atom of substrate electrode (denoted as System I); (e)−(g) stretching and configuration evolution process of 4, 4′-bipyridine molecular junction, in which the 4, 4′-bipyridine molecule is adsorbed on the surface of substrate electrode (denoted as System II); (h)−(k) stretching and configuration evolution process of 4, 4′-diaminobiphenyl molecular junction, in which the 4, 4′-diaminobiphenyl molecule is adsorbed on the surface Au atom of substrate electrode (denoted as System III).

    图 3  分子体系拉伸过程中的能量、作用力和电导变化曲线 (a) 体系I拉伸过程中的能量、作用力随电极距离的变化曲线及其(b) 电导变化曲线, 其中左下插图为文献[53]中实验测量结果, 右上插图为非平衡格林函数(NEGF)方法计算结果; (c) 体系II 和 (d) 体系III的能量、作用力随电极距离的变化曲线, (c)中插图为体系II拉伸过程中电导变化曲线

    Fig. 3.  Energy, force, and conductance traces of the molecular junctions in the stretching processes: (a) Energy, force and (b) conductance traces as functions of electrode distances for the stretching process of system I. The bottom-left inset in (b) is the experimental conductance traces that are reported in Ref. [53], and the top-right inset in (b) is the results calculated by applying NEGF method. (c) Energy and force traces as functions of electrode distances for the stretching process of system II and (d) system III. The inset in (c) is the conductance traces of system II.

    图 4  图2体系I (b)和体系I (c)中同时扩展到分子与探针电极上的所有占据分子轨道空间分布图, 图中数字为各轨道相对于费米能级的能量(单位: eV)

    Fig. 4.  Spatial distributions of occupied molecular orbitals of System I (b) and System I (c) in Fig. 2 that are delocalized on the molecule and probe electrode simultaneously. The numbers in the figures are the orbital energy relative to the Fermi level (the unit is eV)

    图 5  (a) 分子吸附到探针电极第二层金原子上(图2中体系I (b))和 (b) 分子吸附到探针电极尖端金原子上(图2中体系I (c))体系所在的空间的电势分布图

    Fig. 5.  (a) Spatial distributions of potential of the system that the molecule adsorbs on the second gold layer of prob electrode (system I (b) in Fig. 2) and (b) the system that the molecule adsorbs on the top gold of prob electrode (system I (c) in Fig. 2).

    Baidu
  • [1]

    Binning G, Rohrer H, Gerber C, Weibel E 1982 Phys. Rev. Lett. 49 57Google Scholar

    [2]

    Schneider N L, Johansson P, Berndt R 2013 Phys. Rev. B 87 045049Google Scholar

    [3]

    Frei M, Aradhya S V, Koentopp M, Hybertsen M S, Venkataraman L 2011 Nano Lett. 11 1518Google Scholar

    [4]

    Pobelov I V, Meszaros G, Yoshida K, Mishchenko A, Gulcur M, Bryce M R, Wandlowski T 2012 J. Phys.: Condens. Matter 24 164210Google Scholar

    [5]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252Google Scholar

    [6]

    Zhao Z K, Liu R, Mayer D, Coppola M, Sun L, Kim Y, Wang C K, Ni L F, Chen X, Wang M N, Li Z L, Lee T, Xiang D 2018 Small 14 1703815Google Scholar

    [7]

    Xu B, Tao N J 2003 Science 301 1221Google Scholar

    [8]

    Liu R, Bi J J, Xie Z X, Yin K K, Wang D Y, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Appl. 9 054023Google Scholar

    [9]

    Sun D D, Su W Y, Wang F, Feng W X, Heng C L 2018 Chin. Phys. Lett. 35 017201Google Scholar

    [10]

    Liu Y, Xia C J, Zhang B Q, Zhang T T, Cui Y, Hu Z Y 2018 Chin. Phys. Lett. 35 067101Google Scholar

    [11]

    Li Z L 2011 Chin. J. Chem. Phys. 24 194Google Scholar

    [12]

    Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F 2016 Science 352 1433Google Scholar

    [13]

    Zhang Y P, Chen L C, Zhang Z Q, Cao J J, Tang C, Liu J, Duan L L, Huo Y, Shao X, Hong W, Zhang H L 2018 J. Am. Chem. Soc. 140 6531Google Scholar

    [14]

    Meng L, Xin N, Hu C, Wang J, Gui B, Shi J, Wang C, Shen C, Zhang G, Guo H, Meng S, Guo X 2019 Nat. Commun. 10 1450Google Scholar

    [15]

    Li Y Q, Kan H J, Miao Y Y, Yang L, Qiu S, Zhang G P, Ren J F, Wang C K, Hu G C 2020 Chin. Phys. B 29 017303Google Scholar

    [16]

    Zhang G P, Mu Y Q, Zhao J M, Huang H, Hu G C, Li Z L, Wang C K 2019 Physica E 109 1Google Scholar

    [17]

    Guo C, Wang K, Zerah-Harush E, Hamill J, Wang B, Dubi Y, Xu B 2016 Nat. Chem. 8 484Google Scholar

    [18]

    Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509Google Scholar

    [19]

    Hu G C, Zhang Z, Li Y, Ren J F, Wang C K 2016 Chin. Phys. B 25 057308Google Scholar

    [20]

    Wei M Z, Wang Z Q, Fu X X, Hu G C, Li Z L, Wang C K, Zhang G P 2018 Physica E 103 397Google Scholar

    [21]

    Fu H Y, Sun F, Liu R, Suo Y Q, Bi J J, Wang C K, Li Z L 2019 Phys. Lett. A 383 867Google Scholar

    [22]

    Wang Q, Liu R, Xiang D, Sun M, Zhao Z, Sun L, Mei T, Wu P, Liu H, Guo X, Li Z L, Lee T 2016 ACS Nano 10 9695Google Scholar

    [23]

    Jiang Z L, Wang H, Wang Y F, Sanvito S, Hou S 2017 J. Phys. Chem. C 121 27344Google Scholar

    [24]

    Jiang J, Kula M, Lu W, Luo Y 2005 Nano Lett. 5 1551Google Scholar

    [25]

    Xiang D, Jeong H, Kim D, Lee T, Cheng Y, Wang Q, Mayer D 2013 Nano Lett. 13 2809Google Scholar

    [26]

    Li Z L, Fu X X, Zhang G P, Wang C K 2013 Chin. J. Chem. Phys. 26 185Google Scholar

    [27]

    Guo C, Chen X, Ding S Y, Mayer D, Wang Q, Zhao Z, Ni L, Liu H, Lee T, Xu B, Xiang D 2018 ACS Nano 12 11229Google Scholar

    [28]

    Song H, Kim Y, Jang Y H, Jeong H, Reed M A, Lee T 2009 Nature 462 1039Google Scholar

    [29]

    Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar

    [30]

    刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎 2014 63 068501Google Scholar

    Liu R, Bao D L, Jiao Y, Wan L W, Li Z L, Wang C K 2014 Acta Phys. Sin. 63 068501Google Scholar

    [31]

    Yi X H, Liu R, Bi J J, Jiao Y, Wang C K, Li Z L 2016 Chin. Phys. B 25 128503Google Scholar

    [32]

    Ward D R, Halas N J, Ciszek J W, Tour J M, Wu Y, Nordlander P, Natelson D 2008 Nano Lett. 8 919Google Scholar

    [33]

    Konishi T, Kiguchi M, Takase M, Nagasawa F, Nabika H, Ikeda K, Uosaki K, Ueno K, Misawa H, Murakoshi K 2013 J. Am. Chem. Soc. 135 1009Google Scholar

    [34]

    Liu Z, Ding S Y, Chen Z B, Wang X, Tian J H, Anema J R, Zhou X S, Wu D Y, Mao B W, Xu X, Ren B, Tian Z Q 2011 Nat. Commun. 2 305Google Scholar

    [35]

    Zhou C, Li X, Gong Z, Jia C, Lin Y, Gu C, He G, Zhong Y, Yang J, Guo X 2018 Nat. Commun. 9 807Google Scholar

    [36]

    Huang J R, Huang H, Tao C P, Zheng J F, Yuan Y, Hong Z W, Shao Y, Niu Z J, Chen J Z, Zhou X S 2019 Nanoscale Res. Lett. 14 253Google Scholar

    [37]

    Li Z L, Zhang G P, Wang C K 2011 J. Phys. Chem. C 115 15586Google Scholar

    [38]

    Bao D L, Liu R, Leng J C, Zuo X, Jiao Y, Li Z L, Wang C K 2014 Phys. Lett. A 378 1290Google Scholar

    [39]

    孙峰, 刘然, 索雨晴, 牛乐乐, 傅焕俨, 季文芳, 李宗良 2019 68 178502Google Scholar

    Sun F, Liu R, Suo Y Q, Niu L L, Fu H Y, Ji W F, Li Z L 2019 Acta Phys. Sin. 68 178502Google Scholar

    [40]

    Dadosh T, Gordin Y, Krahne R, Khivrich I, Mahalu D, Frydman V, Sperling J, Yacoby A, Bar-Joseph I 2005 Nature 436 677Google Scholar

    [41]

    Zhang Y, Ye G, Soni S, Qiu X, Krijger T L, Jonkman H T, Carlotti M, Sauter E, Zharnikov M, Chiechi R C 2018 Chem. Sci. 9 4414Google Scholar

    [42]

    Li Z L, Yi X H, Liu R, Bi J J, Fu H Y, Zhang G P, Song Y Z, Wang C K 2017 Sci. Rep. 7 4195Google Scholar

    [43]

    Li Z L, Sun F, Bi J J, Liu R, Suo Y Q, Fu H Y, Zhang G P, Song Y Z, Wang D Y, Wang C K 2019 Physica E 106 270Google Scholar

    [44]

    Ferri N, Algethami N, Vezzoli A, Sangtarash S, McLaughlin M, Sadeghi H, Lambert C J, Nichols R J, Higgins S J 2019 Angew. Chem. Int. Ed. 58 16583Google Scholar

    [45]

    Kim Y, Hellmuth T J, Bürkle M, Pauly F, Scheer E 2011 ACS Nano 5 4104Google Scholar

    [46]

    Martin C A, Ding D, Sørensen J K, Bjørnholm T, Van. Ruitenbeek J M, Van Der Zant H S J 2008 J. Am. Chem. Soc. 130 13198Google Scholar

    [47]

    Zhan C, Wang G, Zhang X G, Li Z H, Wei J Y, Si Y, Yang Y, Hong W, Tian Z Q 2019 Angew. Chem. Int. Ed. 58 14534Google Scholar

    [48]

    Venkataraman L, Klare J E, Nuckolls C, Hybertsen M S, Steigerwald M L 2006 Nature 442 904Google Scholar

    [49]

    Pan Z C, Li J, Chen L J, Tang Y X, Shi J, Liu J Y, Liao L J, Hong W J 2019 Sci. China Chem. 62 1245Google Scholar

    [50]

    Kamenetska M, Quek S Y, Whalley A C, Steigerwald M L, Choi H J, Louie S G, Nuckolls C, Hybertsen M S, Neaton J B, Venkataraman L 2010 J. Am. Chem. Soc. 132 6817Google Scholar

    [51]

    Kim T, Darancet P, Widawsky J R, Kotiuga M, Quek S Y, Neaton J B, Venkataraman L 2014 Nano Lett. 14 794Google Scholar

    [52]

    Ismael A K, Wang K, Vezzoli A, Al-Khaykanee M K, Gallagher H E, Grace I M, Lambert C J, Xu B, Nichols R J, Higgins S J 2017 Angew. Chem. Int. Ed. 56 15378Google Scholar

    [53]

    Quek S Y, Kamenetska M, Steigerwald M L, Choi H J, Louie S G, Hybertsen M S, Neaton J B, Venkataraman L 2009 Nat. Nanotechnol 4 230Google Scholar

    [54]

    Aradhya S V, Frei M, Hybertsen M S, Venkataraman L 2012 Nat. Mater. 11 872Google Scholar

    [55]

    Qiu S, Miao Y Y, Zhang G P, Ren J F, Wang C K, Hu G C 2019 J. Magn. Magn. Mater. 479 247Google Scholar

    [56]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2013 Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT

    [57]

    Liu R, Wang C K, Li Z L 2016 Sci. Rep. 6 21946Google Scholar

    [58]

    Soler J M, Artacho E, Gale J D, García A, Unquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745Google Scholar

    [59]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar

    [60]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

  • [1] 邢海英, 张子涵, 吴文静, 郭志英, 茹金豆. 石墨烯电极弯折对2-苯基吡啶分子器件负微分电阻特性的调控和机理.  , 2023, 72(3): 038502. doi: 10.7498/aps.72.20221212
    [2] 谢忠祥, 喻霞, 贾聘真, 陈学坤, 邓元祥, 张勇, 周五星. 并苯分子结的热电性质.  , 2023, 72(12): 124401. doi: 10.7498/aps.72.20230354
    [3] 李瑞豪, 刘俊扬, 洪文晶. 单分子器件电输运中基于量子干涉效应的调控策略.  , 2022, 71(6): 067303. doi: 10.7498/aps.71.20211819
    [4] 李瑞豪, 刘俊扬, 洪文晶. 单分子器件电输运中基于量子干涉效应的调控策略.  , 2021, (): . doi: 10.7498/aps.70.20211819
    [5] 崔兴倩, 刘乾, 范志强, 张振华. 氧气分子吸附对单蒽分子器件自旋输运性质调控.  , 2020, 69(24): 248501. doi: 10.7498/aps.69.20201028
    [6] 邵宇飞, 孟凡顺, 李久会, 赵星. 分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响.  , 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [7] 孙峰, 刘然, 索雨晴, 牛乐乐, 傅焕俨, 季文芳, 李宗良. 单分子器件的拉伸与断裂过程第一性原理研究: 末端基团效应.  , 2019, 68(17): 178502. doi: 10.7498/aps.68.20190693
    [8] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. AlC分子 X4∑-和B4∑-电子态的光谱性质.  , 2013, 62(11): 113101. doi: 10.7498/aps.62.113101
    [9] 彭德锋, 江五贵, 彭川. 碳纳米管从硅基板上剥离的拉伸分子动力学模拟研究.  , 2012, 61(14): 146102. doi: 10.7498/aps.61.146102
    [10] 邓伦华, 李传亮, 朱圆月, 何文艳, 陈扬骎. NO分子b4Σ--a4Πi(4,0)带的吸收光谱.  , 2012, 61(19): 194208. doi: 10.7498/aps.61.194208
    [11] 胡伟, 李宗良, 马勇, 李英德, 王传奎. 单硫醇分子结的几何结构和电输运性质:压力效应与末端基团效应.  , 2011, 60(1): 017304. doi: 10.7498/aps.60.017304
    [12] 王 禹, 章林溪. 外力诱导吸附高分子单链的拉伸分子动力学研究.  , 2008, 57(5): 3281-3286. doi: 10.7498/aps.57.3281
    [13] 刘 浩, 柯孚久, 潘 晖, 周 敏. 铜-铝扩散焊及拉伸的分子动力学模拟.  , 2007, 56(1): 407-412. doi: 10.7498/aps.56.407
    [14] 夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰. 分子的位置取向对分子器件电输运特性的影响.  , 2007, 56(8): 4884-4890. doi: 10.7498/aps.56.4884
    [15] 王利光, 陈 蕾, 郁鼎文, 李 勇, Terence K. S. W.. 单分子器件与电极间耦合界面对电子传输的影响.  , 2007, 56(11): 6526-6530. doi: 10.7498/aps.56.6526
    [16] 李英德. 分子结电学特性的理论研究.  , 2006, 55(6): 2997-3002. doi: 10.7498/aps.55.2997
    [17] 张书锋, 苏国林, 任雪光, 宁传刚, 周 晖, 李 彬, 李桂琴, 邓景康. 二乙酰分子内价轨道4ag+4bu的电子动量谱学研究.  , 2005, 54(4): 1552-1556. doi: 10.7498/aps.54.1552
    [18] 李宗良, 王传奎, 罗毅, 薛其坤. 电极维度对单分子器件伏-安特性的影响.  , 2004, 53(5): 1490-1495. doi: 10.7498/aps.53.1490
    [19] 王伟, 黄岚, 张宇, 李昌敏, 张海黔, 顾宁, 沈浩瀛, 陈堂生, 郝丽萍, 彭力, 赵丽新. 用分子自组装技术制备的单电子器件的Monte Carlo模拟.  , 2002, 51(1): 63-67. doi: 10.7498/aps.51.63
    [20] 李乐, 俞公达, 董抒雁, 王恭明, 章志鸣. 光学二次谐波法研究银表面吸附吡啶分子的特性.  , 1989, 38(2): 301-306. doi: 10.7498/aps.38.301
计量
  • 文章访问数:  6209
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-10
  • 修回日期:  2020-08-30
  • 上网日期:  2020-09-25
  • 刊出日期:  2020-10-20

/

返回文章
返回
Baidu
map