-
基于密度泛函理论, 研究了含S以及含N末端基团的分子结的拉伸与断裂过程. 计算结果显示, 对于尖端为锥形的金电极, 当末端基团为—S时, 拉断分子结的作用力大小为0.59 nN, 大于H原子未解离的—SH从金电极上断裂所需的0.25 nN作用力, 但明显小于—S末端从平面金电极上断裂下来的约1.5 nN的作用力. 当末端基团是—NH2或—NO2时, 分子结断裂所需拉力分别为0.45和0.33 nN. 体系轨道分布表明, 分子与电极通过前线占据轨道耦合后形成的扩展体系分子轨道离域性越好, 拉断分子结所需的作用力越大. 自然键轨道(natural bond orbital, NBO)分析显示, 若分子末端与电极间未形成成键轨道, 末端原子上更多的NBO净电荷可以提高分子与电极间结合的稳定性. 结合我们以前的研究可以发现, —S末端和—NH2末端对金电极界面的微观构型具有明显的识别功能, 这为精确操控并理解分子与金电极间的相互作用及界面结构提供了有用信息.The stretching and breaking processes of stilbene-based molecular junctions, which contain S or N atoms in the terminal groups, are studied by using density functional theory. The numerical results show that for pyramid-shaped gold electrodes, a stretching force of about 0.59 nN is needed to break the molecular junction with —S terminals, which is larger than the force of 0.25 nN that is required by the molecule to stretch —SH terminals away from pyramid-shaped gold electrode. However, it is obviously smaller than the force of about 1.5 nN that is needed by the molecule to break —S terminals from planar-shaped gold electrode. If the terminal group is —NH2 or —NO2, the force for breaking the molecular junction is about 0.45 nN or 0.33 nN, respectively. More delocalized molecular orbitals formed by the coupling between the frontier occupied orbitals of molecule and electrodes, higher stretching force for breaking molecular junction is required. The natural bond orbital (NBO) analysis shows that more NBO net charges that the terminal atom possesses can enhance the stability of the molecule-electrode contact if there is no bonding orbital formed between end group of molecule and electrode. Based on the numerical results and the combination with previous studies, it can be found that —S terminal and —NH2 terminal show evident properties in distinguishing tip structures of gold electrodes, which provides useful information for precisely controlling the interactions and interface structures between molecule and electrodes.
-
Keywords:
- single-molecule device /
- molecular junction stretching /
- molecular junction breaking /
- natural bond orbital /
- interface distinguishing
[1] Xu B, Tao N J 2003 Science 301 1221
Google Scholar
[2] Schneider N L, Johansson P, Berndt R 2013 Phys. Rev. B 87 045409
Google Scholar
[3] Rubio G, Agraït N, Vieira S 1996 Phys. Rev. Lett. 76 2302
Google Scholar
[4] Frei M, Aradhya S V, Koentopp M, Hybertsen M S, Venkataraman L 2011 Nano Lett. 11 1518
Google Scholar
[5] Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252
Google Scholar
[6] Zhao Z K, Liu R, Mayer D, Coppola M, Sun L, Kim Y S, Wang C K, Ni L F, Chen X, Wang M N, Li Z L, Lee T, Xiang D 2018 Small 14 1703815
Google Scholar
[7] Liu R, Bi J J, Xie Z, Yin K K, Wang D Y, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Applied 9 054023
Google Scholar
[8] Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401
Google Scholar
[9] Li Z L, Zou B, Wang C K 2006 Phys. Rev. B 73 075326
Google Scholar
[10] Kang L S, Zhang Y H, Xu X L, Tang X 2017 Phys. Rev. B 96 235417
Google Scholar
[11] Miao Y Y, Qiu S, Zhang G P, Ren J F, Wang C K, Hu G C 2018 Phys. Rev. B 98 235415
Google Scholar
[12] 闫瑞, 吴泽文, 谢稳泽, 李丹, 王音 2018 67 097301
Google Scholar
Yan R, Wu Z W, Xie W Z, Li D, Wang Y 2018 Acta Phys. Sin. 67 097301
Google Scholar
[13] Ji W F, Li Z L, Shen L, Kong D X, Zhang H Y 2007 J. Phys. Chem. B 111 485
Google Scholar
[14] Chen L J, Feng A, Wang M N, Liu J Y, Hong W J, Guo X F, Xiang D 2018 Sci. China Chem. 61 1368
Google Scholar
[15] Yi X H, Liu R, Bi J J, Jiao Y, Wang C K, Li Z L 2016 Chin. Phys. B 25 128503
Google Scholar
[16] Xie F, Fan Z Q, Chen K Q, Zhang X J, Long M Q 2017 Org. Electron. 50 198
Google Scholar
[17] Li Z L, Sun F, Bi J J, Liu R, Suo Y Q, Fu H Y, Zhang G P, Song Y Z, Wang D Y, Wang C K 2019 Physica E 106 270
Google Scholar
[18] Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F 2016 Science 352 1443
Google Scholar
[19] Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18
Google Scholar
[20] Zhang Y P, Chen L C, Zhang Z Q, Cao J J, Tang C, Liu J Y, Duan L L, Huo Y, Shao X F, Hong W J, Zhang H L 2018 J. Am. Chem. Soc. 140 6531
Google Scholar
[21] Meng L N, Xin N, Hu C, Wang J Y, Gui B, Shi J J, Wang C, Shen C, Zhang G Y, Guo H, Meng S, Guo X F 2019 Nat. Commun. 10 1450
Google Scholar
[22] Zhang G P, Mu Y Q, Zhao J M, Huang H, Hu G C, Li Z L, Wang C K 2019 Physica E 109 1
Google Scholar
[23] Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277
Google Scholar
[24] Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509
Google Scholar
[25] Hu G C, Zhang Z, Li Y, Ren J F, Wang C K 2016 Chin. Phys. B 25 057308
Google Scholar
[26] Li D D, Wu D, Zhang X J, Zeng B W, Li M J, Duan H M, Yang B C, Long M Q 2018 Phys. Lett. A 382 1401
Google Scholar
[27] Wei M Z, Wang Z Q, Fu X X, Hu G C, Li Z L, Wang C K, Zhang G P 2018 Physica E 103 397
Google Scholar
[28] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营 2017 66 098501
Google Scholar
Zu F X, Zhang P P, Xiong L, Yin Y, Liu M M, Gao G Y 2017 Acta Phys. Sin. 66 098501
Google Scholar
[29] Guo C L, Wang K, Zerah-Harush E, Hamill J, Wang B, Dubi Y, Xu B Q 2016 Nat. Chem. 8 484
Google Scholar
[30] Hu G C, Zhang Z, Zhang G P, Ren J F, Wang C K 2016 Org. Electron. 37 485
Google Scholar
[31] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋 2018 67 118501
Google Scholar
Cui Y, Xia C J, Su Y H, Zhang B Q, Chen A M, Yang A Y, Zhang T T, Liu Y 2018 Acta Phys. Sin. 67 118501
Google Scholar
[32] An Y P, Zhang M J, Wu D P, Wang T X, Jiao Z Y, Xia C X, Fu Z M, Wang K 2016 Phys. Chem. Chem. Phys. 18 27976
Google Scholar
[33] Fu H Y, Sun F, Liu R, Suo Y Q, Bi J J, Wang C K, Li Z L 2019 Phys. Lett. A 383 867
Google Scholar
[34] Zeng J, Xie F, Chen K Q 2016 Carbon 98 607
Google Scholar
[35] Yu C J, Miao Y Y, Qiu S, Cui Y J, He G M, Zhang G P, Wang C K, Hu G C 2018 J. Phys. D: Appl. Phys. 51 345302
Google Scholar
[36] Wang M, Li X T, Li Y, Zuo X, Li D M, Cui B, Liu D S 2018 Org. Electron. 58 63
Google Scholar
[37] Zhao W K, Zou D Q, Sun Z P, Xu Y Q, Yu Y J, Yang C L 2018 Chem. Electro. Chem. 5 1
[38] Zuo X, Han L, Li H M, Li X T, Zhao J F, Cui B, Liu D S 2019 Phys. Lett. A 383 640
Google Scholar
[39] Qiu S, Miao Y Y, Zhang G P, Ren J F, Wang C K, Hu G C 2019 J. Magn. Magn. Mater. 479 247
Google Scholar
[40] Wang Z Q, Li Y F, Niu X, Wei M Z, Dong M M, Hu G C, Li Z L, Wang D Y, Wang C K, Zhang G P 2019 Org. Electron. 64 7
Google Scholar
[41] Song H W, Kim Y S, Jang Y H, Jeong H J, Reed M A, Lee T 2009 Nature 462 1039
Google Scholar
[42] Jiang J, Kula M, Lu W, Luo Y 2005 Nano Lett. 5 1551
Google Scholar
[43] Xiang D, Jeong H, Kim D K, Lee T, Cheng Y J, Wang Q L, Mayer D 2013 Nano Lett. 13 2809
Google Scholar
[44] Li Z L, Fu X X, Zhang G P, Wang C K 2013 Chin. J. Chem. Phys. 26 185
Google Scholar
[45] Guo C Y, Chen X, Ding S Y, Mayer D, Wang Q L, Zhao Z K, Ni L F, Liu H T, Lee T, Xu B Q, Xiang D 2018 ACS Nano 12 11229
Google Scholar
[46] Motta S D, Donato E D, Negri F, Orlandi G, Fazzi D, Castiglioni C 2009 J. Am. Chem. Soc. 131 6591
Google Scholar
[47] Wang Q L, Liu R, Xiang D, Sun M Y, Zhao Z K, Sun L, Mei T T, Wu P F, Liu H T, Guo X F, Li Z L, Lee T 2016 ACS Nano 10 9695
Google Scholar
[48] Jiang Z L, Wang H, Wang Y F, Sanvito S F, Hou S M 2017 J. Phys. Chem. C 121 27344
Google Scholar
[49] Liu R, Wang C K, Li Z L 2016 Sci. Rep. 6 21946
Google Scholar
[50] Li Z H, Smeu M, Afsari S, Xing Y J, Ratner M A, Borguet E 2014 Angew. Chem. 126 1116
Google Scholar
[51] Zou D Q, Zhao W K, Cui B, Li D M, Liu D S 2018 Phys. Chem. Chem. Phys. 20 2048
Google Scholar
[52] Xu B Q, Xiao X Y, Yang X M, Zang L, Tao N J 2005 J. Am. Chem. Soc. 127 2386
Google Scholar
[53] Li X T, Li H M, Zuo X, Kang L, Li D M, Cui B, Liu D S 2018 J. Phys. Chem. C 122 21763
Google Scholar
[54] Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508
Google Scholar
[55] 樊帅伟, 王日高 2018 67 213101
Google Scholar
Fan S W, Wang R G 2018 Acta Phys. Sin. 67 213101
Google Scholar
[56] Batra A, Darancet P, Chen Q, Meisner J S, Widawsky J R, Neaton J B, Nuckolls C, Venkataraman L 2013 Nano Lett. 13 6233
Google Scholar
[57] Bao D L, Liu R, Leng J C, Zuo X, Jiao Y, Li Z L, Wang C K 2014 Phys. Lett. A 378 1290
Google Scholar
[58] Li Z L, Zhang G P, Wang C K 2011 J. Phys. Chem. C 115 15586
Google Scholar
[59] Xu B Q, Li X L, Xiao X Y, Sakaguchi H, Tao N J 2005 Nano Lett. 5 1491
Google Scholar
[60] Chen I W P, Tseng W H, Gu M W, Su L C, Hsu C H, Chang W H, Chen C H 2013 Angew. Chem. Int. Ed. 52 2449
Google Scholar
[61] Frei M, Aradhya S V, Hybertsen M S, Venkataraman L 2012 J. Am. Chem. Soc. 134 4003
Google Scholar
[62] 刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎 2014 63 068501
Google Scholar
Liu R, Bao D L, Jiao Y, Wan L W, Li Z L, Wang C K 2014 Acta Phys. Sin. 63 068501
Google Scholar
-
表 1 M-S, M-SH, M-NH2和M-NO2体系分子与电极间的结合能、末端原子与电极间的成键轨道数、末端原子的孤对电子数以及末端原子的NBO净电荷数
Table 1. Binding energies between the molecules and the electrodes, the numbers of bonding orbitals between the terminal atoms and the electrodes, the numbers of lone electrons on the terminal atoms and the NBO net charges on the terminal atoms for M-S, M-SH, M-NH2 and M-NO2 molecular junctions.
体系 M-S M-SH M-NH2 M-NO2 结合能E/eV 0.505 0.229 0.277 0.186 成键轨道数 1 0 0 0 孤对电子数 2 2 1 3 NBO净电荷 S (–0.056) S (0.020) N (–0.910) O (–0.412) -
[1] Xu B, Tao N J 2003 Science 301 1221
Google Scholar
[2] Schneider N L, Johansson P, Berndt R 2013 Phys. Rev. B 87 045409
Google Scholar
[3] Rubio G, Agraït N, Vieira S 1996 Phys. Rev. Lett. 76 2302
Google Scholar
[4] Frei M, Aradhya S V, Koentopp M, Hybertsen M S, Venkataraman L 2011 Nano Lett. 11 1518
Google Scholar
[5] Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252
Google Scholar
[6] Zhao Z K, Liu R, Mayer D, Coppola M, Sun L, Kim Y S, Wang C K, Ni L F, Chen X, Wang M N, Li Z L, Lee T, Xiang D 2018 Small 14 1703815
Google Scholar
[7] Liu R, Bi J J, Xie Z, Yin K K, Wang D Y, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Applied 9 054023
Google Scholar
[8] Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401
Google Scholar
[9] Li Z L, Zou B, Wang C K 2006 Phys. Rev. B 73 075326
Google Scholar
[10] Kang L S, Zhang Y H, Xu X L, Tang X 2017 Phys. Rev. B 96 235417
Google Scholar
[11] Miao Y Y, Qiu S, Zhang G P, Ren J F, Wang C K, Hu G C 2018 Phys. Rev. B 98 235415
Google Scholar
[12] 闫瑞, 吴泽文, 谢稳泽, 李丹, 王音 2018 67 097301
Google Scholar
Yan R, Wu Z W, Xie W Z, Li D, Wang Y 2018 Acta Phys. Sin. 67 097301
Google Scholar
[13] Ji W F, Li Z L, Shen L, Kong D X, Zhang H Y 2007 J. Phys. Chem. B 111 485
Google Scholar
[14] Chen L J, Feng A, Wang M N, Liu J Y, Hong W J, Guo X F, Xiang D 2018 Sci. China Chem. 61 1368
Google Scholar
[15] Yi X H, Liu R, Bi J J, Jiao Y, Wang C K, Li Z L 2016 Chin. Phys. B 25 128503
Google Scholar
[16] Xie F, Fan Z Q, Chen K Q, Zhang X J, Long M Q 2017 Org. Electron. 50 198
Google Scholar
[17] Li Z L, Sun F, Bi J J, Liu R, Suo Y Q, Fu H Y, Zhang G P, Song Y Z, Wang D Y, Wang C K 2019 Physica E 106 270
Google Scholar
[18] Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F 2016 Science 352 1443
Google Scholar
[19] Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18
Google Scholar
[20] Zhang Y P, Chen L C, Zhang Z Q, Cao J J, Tang C, Liu J Y, Duan L L, Huo Y, Shao X F, Hong W J, Zhang H L 2018 J. Am. Chem. Soc. 140 6531
Google Scholar
[21] Meng L N, Xin N, Hu C, Wang J Y, Gui B, Shi J J, Wang C, Shen C, Zhang G Y, Guo H, Meng S, Guo X F 2019 Nat. Commun. 10 1450
Google Scholar
[22] Zhang G P, Mu Y Q, Zhao J M, Huang H, Hu G C, Li Z L, Wang C K 2019 Physica E 109 1
Google Scholar
[23] Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277
Google Scholar
[24] Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509
Google Scholar
[25] Hu G C, Zhang Z, Li Y, Ren J F, Wang C K 2016 Chin. Phys. B 25 057308
Google Scholar
[26] Li D D, Wu D, Zhang X J, Zeng B W, Li M J, Duan H M, Yang B C, Long M Q 2018 Phys. Lett. A 382 1401
Google Scholar
[27] Wei M Z, Wang Z Q, Fu X X, Hu G C, Li Z L, Wang C K, Zhang G P 2018 Physica E 103 397
Google Scholar
[28] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营 2017 66 098501
Google Scholar
Zu F X, Zhang P P, Xiong L, Yin Y, Liu M M, Gao G Y 2017 Acta Phys. Sin. 66 098501
Google Scholar
[29] Guo C L, Wang K, Zerah-Harush E, Hamill J, Wang B, Dubi Y, Xu B Q 2016 Nat. Chem. 8 484
Google Scholar
[30] Hu G C, Zhang Z, Zhang G P, Ren J F, Wang C K 2016 Org. Electron. 37 485
Google Scholar
[31] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋 2018 67 118501
Google Scholar
Cui Y, Xia C J, Su Y H, Zhang B Q, Chen A M, Yang A Y, Zhang T T, Liu Y 2018 Acta Phys. Sin. 67 118501
Google Scholar
[32] An Y P, Zhang M J, Wu D P, Wang T X, Jiao Z Y, Xia C X, Fu Z M, Wang K 2016 Phys. Chem. Chem. Phys. 18 27976
Google Scholar
[33] Fu H Y, Sun F, Liu R, Suo Y Q, Bi J J, Wang C K, Li Z L 2019 Phys. Lett. A 383 867
Google Scholar
[34] Zeng J, Xie F, Chen K Q 2016 Carbon 98 607
Google Scholar
[35] Yu C J, Miao Y Y, Qiu S, Cui Y J, He G M, Zhang G P, Wang C K, Hu G C 2018 J. Phys. D: Appl. Phys. 51 345302
Google Scholar
[36] Wang M, Li X T, Li Y, Zuo X, Li D M, Cui B, Liu D S 2018 Org. Electron. 58 63
Google Scholar
[37] Zhao W K, Zou D Q, Sun Z P, Xu Y Q, Yu Y J, Yang C L 2018 Chem. Electro. Chem. 5 1
[38] Zuo X, Han L, Li H M, Li X T, Zhao J F, Cui B, Liu D S 2019 Phys. Lett. A 383 640
Google Scholar
[39] Qiu S, Miao Y Y, Zhang G P, Ren J F, Wang C K, Hu G C 2019 J. Magn. Magn. Mater. 479 247
Google Scholar
[40] Wang Z Q, Li Y F, Niu X, Wei M Z, Dong M M, Hu G C, Li Z L, Wang D Y, Wang C K, Zhang G P 2019 Org. Electron. 64 7
Google Scholar
[41] Song H W, Kim Y S, Jang Y H, Jeong H J, Reed M A, Lee T 2009 Nature 462 1039
Google Scholar
[42] Jiang J, Kula M, Lu W, Luo Y 2005 Nano Lett. 5 1551
Google Scholar
[43] Xiang D, Jeong H, Kim D K, Lee T, Cheng Y J, Wang Q L, Mayer D 2013 Nano Lett. 13 2809
Google Scholar
[44] Li Z L, Fu X X, Zhang G P, Wang C K 2013 Chin. J. Chem. Phys. 26 185
Google Scholar
[45] Guo C Y, Chen X, Ding S Y, Mayer D, Wang Q L, Zhao Z K, Ni L F, Liu H T, Lee T, Xu B Q, Xiang D 2018 ACS Nano 12 11229
Google Scholar
[46] Motta S D, Donato E D, Negri F, Orlandi G, Fazzi D, Castiglioni C 2009 J. Am. Chem. Soc. 131 6591
Google Scholar
[47] Wang Q L, Liu R, Xiang D, Sun M Y, Zhao Z K, Sun L, Mei T T, Wu P F, Liu H T, Guo X F, Li Z L, Lee T 2016 ACS Nano 10 9695
Google Scholar
[48] Jiang Z L, Wang H, Wang Y F, Sanvito S F, Hou S M 2017 J. Phys. Chem. C 121 27344
Google Scholar
[49] Liu R, Wang C K, Li Z L 2016 Sci. Rep. 6 21946
Google Scholar
[50] Li Z H, Smeu M, Afsari S, Xing Y J, Ratner M A, Borguet E 2014 Angew. Chem. 126 1116
Google Scholar
[51] Zou D Q, Zhao W K, Cui B, Li D M, Liu D S 2018 Phys. Chem. Chem. Phys. 20 2048
Google Scholar
[52] Xu B Q, Xiao X Y, Yang X M, Zang L, Tao N J 2005 J. Am. Chem. Soc. 127 2386
Google Scholar
[53] Li X T, Li H M, Zuo X, Kang L, Li D M, Cui B, Liu D S 2018 J. Phys. Chem. C 122 21763
Google Scholar
[54] Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508
Google Scholar
[55] 樊帅伟, 王日高 2018 67 213101
Google Scholar
Fan S W, Wang R G 2018 Acta Phys. Sin. 67 213101
Google Scholar
[56] Batra A, Darancet P, Chen Q, Meisner J S, Widawsky J R, Neaton J B, Nuckolls C, Venkataraman L 2013 Nano Lett. 13 6233
Google Scholar
[57] Bao D L, Liu R, Leng J C, Zuo X, Jiao Y, Li Z L, Wang C K 2014 Phys. Lett. A 378 1290
Google Scholar
[58] Li Z L, Zhang G P, Wang C K 2011 J. Phys. Chem. C 115 15586
Google Scholar
[59] Xu B Q, Li X L, Xiao X Y, Sakaguchi H, Tao N J 2005 Nano Lett. 5 1491
Google Scholar
[60] Chen I W P, Tseng W H, Gu M W, Su L C, Hsu C H, Chang W H, Chen C H 2013 Angew. Chem. Int. Ed. 52 2449
Google Scholar
[61] Frei M, Aradhya S V, Hybertsen M S, Venkataraman L 2012 J. Am. Chem. Soc. 134 4003
Google Scholar
[62] 刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎 2014 63 068501
Google Scholar
Liu R, Bao D L, Jiao Y, Wan L W, Li Z L, Wang C K 2014 Acta Phys. Sin. 63 068501
Google Scholar
计量
- 文章访问数: 8601
- PDF下载量: 95
- 被引次数: 0