搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁电纳米结构中奇异极化拓扑畴的研究新进展

杨文达 陈洪英 陈䶮 田国 高兴森

引用本文:
Citation:

铁电纳米结构中奇异极化拓扑畴的研究新进展

杨文达, 陈洪英, 陈䶮, 田国, 高兴森

Recent progress in exotic polar topological states in ferroelectric nanostructures

Yang Wen-Da, Chen Hong-Ying, Chen Yan, Tian Guo, Gao Xing-Sen
PDF
HTML
导出引用
  • 铁电体中极化拓扑畴(如涡旋畴)有望带来一系列新颖物理现象、新性能和新应用前景(如存储器件应用), 从而引起了广泛兴趣. 尤其是近年来在铁电纳米结构中发现了一系列有趣的新奇极化拓扑畴态, 例如涡旋、中心畴、斯格明子、麦韧(Meron, 也有称半子)等, 引发了新一轮探索热潮. 这些发现为进一步探索其中蕴含的丰富多彩的物理现象创造了条件, 也为调控和设计高性能材料和器件提供了新的基元和序构, 从而形成拓扑电子学的概念. 过去十年, 这一领域经历了快速发展, 成长为铁电物理领域的前沿热点. 本文将回顾近年来在铁电纳米结构中奇异极化拓扑畴的研究新进展, 并简要讨论了该领域所存在的问题和潜在发展方向.
    Exotic ferroelectric topological states (such as vortex state) have received intensive attention in the past decade, creating a new area for exploring the emerging physical phenomena and functionalities, as well as new applications (such as memory). In recent years, a series of discoveries in novel topological states, such as vortex, central domain, skyrmion and meron states, has inspired an upsurge of research interests. Moreover, the effort to manipulate such a topological domain structure hints the possibilities for the local, deterministic control of order parameters so that the static interface conductivity can be successfully controlled at topologically protected domain walls. These encouraging discoveries create a new avenue to the fertile emerging physic phenomena, and offer new possibilities for developing potential high-performance materials and new nano-electronic devices based on these exotic states. In the past decade, this field has developed rapidly and become a hot research topic in ferroelectrics. In this paper, we review the recent progress in the field of exotic topological state in nanoferroelectrics, and discuss some existing problems and potential directions.
      通信作者: 田国, guotian@m.scnu.edu.cn ; 高兴森, xingsengao@scnu.edu.cn
    • 基金项目: 国家重点研发计划 (批准号: 2016YFA0201002, 2016YFA0300101)、国家自然科学基金 (批准号: 11674108, 51272078)、广东省科技计划 (批准号: 2015B090927006, 2019KQNCX028)、广东省自然科学基金 (批准号: 2016A030308019, 2019A1515110707)、华南师范大学青年教师科研培育基金 (批准号: 19KJ01)资助的课题
      Corresponding author: Tian Guo, guotian@m.scnu.edu.cn ; Gao Xing-Sen, xingsengao@scnu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2016YFA0201002, 2016YFA0300101), the National Natural Science Foundation of China (Grant Nos. 11674108, 51272078), the Science and Technology Planning Project of Guangdong Province, China (Grant Nos. 2015B090927006, 2019KQNCX028), the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2016A030308019, 2019A1515110707), and the Natural Science Foundation of South China Normal University, China (Grant No. 19KJ01)
    [1]

    Rabe K M, Ahn C H, Triscone J M 2007 Physics of Ferroelectrics, a Modern Perspective (Berlin: Springer) pp1−390

    [2]

    Scott J F 2000 Ferroelectric Memories (Berlin: Springer) pp1−223

    [3]

    Scott J F 1989 Science 246 1400Google Scholar

    [4]

    Scott J F 2007 Science 315 954Google Scholar

    [5]

    Dawber M, Rabe K M, Scott J F 2005 Rev. Mod. Phys. 77 1083Google Scholar

    [6]

    Gruverman A, Kholkin A 2006 Rep. Prog. Phys. 69 2443Google Scholar

    [7]

    Han H, Kim Y, Alexe M, Hesse D, Lee W 2011 Adv. Mater. 23 4599Google Scholar

    [8]

    Varghese J, Whatmore R W, Holmes J D 2013 J. Mater. Chem. C 1 2618Google Scholar

    [9]

    Bibes M 2012 Nat. Mater. 11 354Google Scholar

    [10]

    Gregg J M 2009 Phys. Status Solidi A 206 577Google Scholar

    [11]

    Mermin N D 1979 Rev. Mod. Phys. 51 591Google Scholar

    [12]

    Seidel J, Martin L W, He Q, et al. 2009 Nat. Mater. 8 229Google Scholar

    [13]

    Catalan G, Seidel J, Ramesh R, Scott J F 2012 Rev. Mod. Phys. 84 119Google Scholar

    [14]

    Seidel J, Fu D, Yang S Y, Alarcon-Llado E, Wu J, Ramesh R, Ager J W 2011 Phys. Rev. Lett. 107 126805Google Scholar

    [15]

    Bednyakov P S, Sturman B I, Sluka T, Tagantsev A K, Yudin P V 2018 NPJ Comput. Mater. 4 65Google Scholar

    [16]

    Jiang A Q, Zhang Y 2019 NPG ASIA Mater. 11 2Google Scholar

    [17]

    Huyan H X, Li L Z, Addiego C, Gao W P, Pan X Q 2019 Natl. Sci. Rev. 6 669Google Scholar

    [18]

    Kornev I, Fu H, Bellaiche L 2004 Phys. Rev. Lett. 93 196104Google Scholar

    [19]

    Tang Y L, Zhu Y L, Ma X L, Borisevich A Y, Morozovska A N, Eliseev E A, Wang W Y, Xu Y B, Zhang Z D, Pennycook S J 2015 Science 348 547Google Scholar

    [20]

    Yadav A K, Nelson C T, Hsu S L, et al. 2016 Nature 530 198Google Scholar

    [21]

    Ma J, Ma J, Zhang Q, Peng R, Wang J, Liu C, Wang M, Li N, Chen M, Cheng X, Gao P, Gu L, Chen L Q, Yu P, Zhang J, Nan C W 2018 Nat. Nanotechnol. 13 947Google Scholar

    [22]

    Kim K E, Jeong S, Chu K, Lee J H, Kim G Y, Xue F, Koo T Y, Chen L Q, Choi S Y, Ramesh R, Yang C H 2018 Nat. Commun. 9 403Google Scholar

    [23]

    Han M J, Wang Y J, Tang Y L, Zhu Y L, Ma J Y, Geng W R, Zou M J, Feng Y P, Zhang N B, Ma X L 2019 J. Phys. Chem. C 123 2557Google Scholar

    [24]

    Li Z, Wang Y, Tian G, Li P, Zhao L, Zhang F, Yao J, Fan H, Song X, Chen D, Fan Z, Qin M, Zeng M, Zhang Z, Lu X, Hu S, Lei C, Zhu Q, Li J, Gao X, Liu J M 2017 Sci. Adv. 3 e1700919Google Scholar

    [25]

    Das S, Tang Y L, Hong Z, et al. 2019 Nature 568 368Google Scholar

    [26]

    Wang Y J, Feng Y P, Zhu Y L, Tang Y L, Yang L X, Zou M J, Geng W R, Han M J, Guo X W, Wu B, Ma X L 2020 Nat. Mater. 19 881Google Scholar

    [27]

    Nelson C T, Winchester B, Zhang Y, Kim S J, Melville A, Adamo C, Folkman C M, Baek S H, Eom C B, Schlom D G, Chen L Q, Pan X 2011 Nano Lett. 11 828Google Scholar

    [28]

    Jia C L, Urban K W, Alexe M, Hesse D, Vrejoiu I 2011 Science 331 1420Google Scholar

    [29]

    Rodriguez B J, Gao X S, Liu L F, Lee W, Naumov, Ⅱ, Bratkovsky A M, Hesse D, Alexe M 2009 Nano Lett. 9 1127Google Scholar

    [30]

    Schilling A, Byrne D, Catalan G, Webber K G, Genenko Y A, Wu G S, Scott J F, Gregg J M 2009 Nano Lett. 9 3359Google Scholar

    [31]

    McQuaid R G, McGilly L J, Sharma P, Gruverman A, Gregg J M 2011 Nat. Commun. 2 404Google Scholar

    [32]

    McGilly L J, Gregg J M 2011 Nano Lett. 11 4490Google Scholar

    [33]

    Balke N, Winchester B, Ren W, et al. 2011 Nat. Phys. 8 81Google Scholar

    [34]

    Lin S Z, Wang X, Kamiya Y, Chern G W, Fan F, Fan D, Casas B, Liu Y, Kiryukhin V, Zurek W H, Batista C D, Cheong S W 2014 Nat. Phys. 10 970Google Scholar

    [35]

    Pang H, Zhang F, Zeng M, Gao X, Qin M, Lu X, Gao J, Dai J, Li Q 2016 NPJ Quantum Mater. 1 16015Google Scholar

    [36]

    Du K, Gao B, Wang Y, Xu X, Kim J, Hu R, Huang F T, Cheong S W 2018 NPJ Quantum Mater. 3 33Google Scholar

    [37]

    Zhang H Y, Song X J, Chen X G, Zhang Z X, You Y M, Tang Y Y, Xiong R G 2020 J. Am. Chem. Soc. 142 4925Google Scholar

    [38]

    Yadav A K, Nguyen K X, Hong Z, et al. 2019 Nature 565 468Google Scholar

    [39]

    Tian G, Yang W D, Chen D Y, Fan Z, Hou Z P, Marin A, Gao X S 2019 Natl. Sci. Rev. 6 626Google Scholar

    [40]

    Seidel J, Vasudevan R K, Valanoor N 2016 Adv. Electron. Mater. 2 1500292Google Scholar

    [41]

    Landau L, Lifshitz E 1935 Phys. Z. Sowjetunion 8 179

    [42]

    Naumov I I, Bellaiche L, Fu H 2004 Nature 432 737Google Scholar

    [43]

    Peters J J P, Apachitei G, Beanland R, Alexe M, Sanchez A M 2016 Nat. Commun. 7 13484Google Scholar

    [44]

    Hong Z, Damodaran A R, Xue F, Hsu S L, Britson J, Yadav A K, Nelson C T, Wang J J, Scott J F, Martin L W, Ramesh R, Chen L Q 2017 Nano Lett. 17 2246Google Scholar

    [45]

    Tian G, Chen D, Fan H, Li P, Fan Z, Qin M, Zeng M, Dai J, Gao X, Liu J M 2017 ACS Appl. Mater. Interfaces 9 37219Google Scholar

    [46]

    Li L, Cheng X, Jokisaari J R, Gao P, Britson J, Adamo C, Heikes C, Schlom D G, Chen L Q, Pan X 2018 Phys. Rev. Lett. 120 137602Google Scholar

    [47]

    Zhang Q, Xie L, Liu G, Prokhorenko S, Nahas Y, Pan X, Bellaiche L, Gruverman A, Valanoor N 2017 Adv. Mater. 29 1702375Google Scholar

    [48]

    Zhang Q, Prokhorenko S, Nahas Y, Xie L, Bellaiche L, Gruverman A, Valanoor N 2019 Adv. Funct. Mater. 29 1808573Google Scholar

    [49]

    Balke N, Choudhury S, Jesse S, Huijben M, Chu Y H, Baddorf A P, Chen L Q, Ramesh R, Kalinin S V 2009 Nat. Nanotechnol. 4 868Google Scholar

    [50]

    Vasudevan R K, Chen Y C, Tai H H, Balke N, Wu P, Bhattacharya S, Chen L Q, Chu Y H, Lin I N, Kalinin S V, Nagarajan V 2011 ACS Nano 5 879Google Scholar

    [51]

    Li Y, Jin Y M, Lu X M, Yang J C, Chu Y H, Huang F Z, Zhu J S, Cheong S W 2017 NPJ Quantum Mater. 2 43Google Scholar

    [52]

    Damodaran A R, Clarkson J D, Hong Z, Liu H, Yadav A K, Nelson C T, Hsu S L, McCarter M R, Park K D, Kravtsov V, Farhan A, Dong Y, Cai Z, Zhou H, Aguado-Puente P, García-Fernández P, Íñiguez J, Junquera J, Scholl A, Raschke M B, Chen L Q, Fong D D, Ramesh R and Martin L W 2017 Nat. Mater. 16 1003Google Scholar

    [53]

    Kim K E, Kim Y J, Zhang Y, Xue F, Kim G Y, Song K, Choi S Y, Liu J M, Chen L Q, Yang C H 2018 Phys. Rev. Mater. 2 084412Google Scholar

    [54]

    Stoica V A, Laanait N, Dai C, Hong Z, Yuan Y, Zhang Z, Lei S, McCarter M R, Yadav A, Damodaran A R, Das S, Stone G A, Karapetrova J, Walko D A, Zhang X, Martin L W, Ramesh R, Chen L Q, Wen H, Gopalan V, Freeland J W 2019 Nat. Mater. 18 377Google Scholar

    [55]

    Chen P, Zhong X, Zorn J A, Li M, Sun Y, Abid A Y, Ren C, Li Y, Li X, Ma X, Wang J, Liu K, Xu Z, Tan C, Chen L, Gao P, Bai X 2020 Nat. Commun. 11 1840Google Scholar

    [56]

    Zheng Y, Chen W J 2017 Rep. Prog. Phys. 80 086501Google Scholar

    [57]

    Prosandeev S, Ponomareva I, Kornev I, Naumov I, Bellaiche L 2006 Phys. Rev. Lett. 96 237601Google Scholar

    [58]

    Lich L V, Shimada T, Wang J, Dinh V H, Bui T Q, Kitamura T 2017 Phys. Rev. B 96 134119Google Scholar

    [59]

    Crassous A, Sluka T, Tagantsev A K, Setter N 2015 Nat. Nanotechol. 20 614Google Scholar

    [60]

    He Q, Yeh C H, Yang J C, Singh-Bhalla G, Liang C W, Chiu P W, Catalan G, Martin L W, Chu Y H, Scott J F, Ramesh R 2012 Phys. Rev. Lett. 108 067203Google Scholar

    [61]

    Sanchez-Santolino G, Tornos J, Hernandez-Martin D, Beltran J I, Munuera C, Cabero M, Perez-Munoz A, Ricote J, Mompean F, Garcia-Hernandez M, Sefrioui Z, Leon C, Pennycook S J, Munoz M C, Varela M, Santamaria J 2017 Nat. Nanotechnol. 12 655Google Scholar

    [62]

    Tian G, Yang W D, Song X, Zheng D F, Zhang L Y, Chen C, Li P L, Fan H, Yao J X, Chen D Y, Fan Z, Hou Z P, Zhang Z, Wu S J, Zeng M, Gao X S, Liu J M 2019 Adv. Funct. Mater. 29 1807276Google Scholar

    [63]

    Yang W D, Tian G, Zhang Y, Xue F, Zheng D F, Zhang L Y, Wang Y D, Chen C, Fan Z, Hou Z P, Chen D Y, Gao J W, Zeng M, Qin M H, Chen L Q, Gao X S, Liu J M 2020 https://arxiv.org/abs/2006.02011

  • 图 1  铁电材料中的极化拓扑结构示意图 (a) 涡旋畴; (b) 反涡旋畴; (c) 通量闭合畴; (d) 六重对称结构的涡旋畴; (e) 中心发散型拓扑畴; (f) 中心汇聚型拓扑畴; (g) 斯格明子; (h) 半子或麦韧(Meron)

    Fig. 1.  Polar topological states in ferroelectric materials: (a) Vortex; (b) anti-vortex; (c) flux-closure; (d) six-fold vortex; (e) center-divergent; (f) convergent states; (g) skyrmion; (h) Meron.

    图 2  (SrTiO3)n/(PbTiO3)n多层膜和超晶格中观测到的涡旋畴结构 (a) 左边为多层膜中利用透射电镜数据计算的应力分布图, 右边为基于透射电子显微图像计算出的极化分布局部放大图[19]; (b) 左边为更薄的超晶格中透射电子显微镜的暗场像, 右边为基于透射电子显微图像计算出的单个涡旋极化分布放大图[20]; (c) (SrTiO3)n/(PbTiO3)n 超晶格结构中不同拓扑畴结构变化与原子层数n关系的相图[44]

    Fig. 2.  Vortex domain states in (SrTiO3)n/(PbTiO3)n multilayers and superlattices: (a) The left panel presents the geometric phase analysis (GPA) image, the right panel is a local polarization distribution map for a single closure domain[19]; (b) the left panel is a cross-section dark-field TEM image of (SrTiO3)n/(PbTiO3)n superlattices, and the right panel is the local magnification of polarization distribution of a single vortex structure[20]; (c) a calculated phase diagram for (SrTiO3)n/(PbTiO3)n illustrating the length scales within which different topological states can be stabilized[44].

    图 3  BiFeO3纳米岛中的中心型拓扑畴结构 (a) 在SrTiO3衬底上的BiFeO3纳米岛阵列中四种典型中心型拓扑畴结构的矢量PFM图像[24], 其中A图为中心汇聚型拓扑畴, B图为中心发散型拓扑畴, C图为双中心畴, D图为反双中心畴, E图为相场模拟获得的两种中心畴的极化分布图; (b) 在Nb-SrTiO3衬底上的BiFeO3纳米点中的中心型拓扑畴[23], 其中A图为在单个BiFeO3的面内TEM像, B图为对应区域的原子级分辨率的HAADF-STEM图像, C图为基于TEM图像计算出的极化分布局部放大图, 对应于B图中白色方框区域, D图为中心型拓扑畴的极化矢量分布; E图为BiFeO3纳米点中的中心型拓扑畴结构分布示意图

    Fig. 3.  Topological center-domain structures in BiFeO3 nanoislands: (a) Four types of center-domain states in BiFeO3 nanodots on SrTiO3 substrate observed by vector PFM analysis[24], where panel A illustrates the center-convergent, panel B illustrates the center-divergent, panel C illustrates the double-center domain with convergent, panel D illustrates the divergent center states, and panel E illustrates the cylinder model for phase-field simulation and two type of polar vector contour maps derived from the simulation; (b) topological center-domain states in BiFeO3 nanodots on Nb-SrTiO3 substrate[23], where panel A and B illustrate the plan-view TEM image for a single nanodot and atomically resolved HAADF-STEM images corresponding to the red square area in panel A, panel C is local magnified view of polarization distribution calculated by TEM corresponding to the white square area in panel B, panel D is the polarization vector distributions of the nanoisland, panel E is the schematic of domain configuration in these BFO nanoislands based on the analysis of both PFM and TEM characterization.

    图 4  铁电斯格明子和麦韧拓扑态 (a) SrTiO3衬底上的(SrTiO3)n/(PbTiO3)n超晶格中的极化斯格明子阵列[25], 其中上图为暗场下的截面TEM图像, 中图为暗场下的面内STEM图像, 下图为计算得出的极化斯格明子的结构图像; (b) SmScO3衬底上的PbTiO3薄膜中的麦韧态[26], 其中上图为截面HAADF-STEM图像, 中图为计算出的对应区域应力分布图, 下图为计算得出的极化麦韧的结构

    Fig. 4.  The polar skymion bubble and polar meron states: (a) Polar skyrmion bubbles in a (SrTiO3)n/(PbTiO3)n superlattice on SrTiO3 substrate[25], where the upper panel is a cross-section dark-field TEM image, the middle panel is a planar-view dark-field STEM image, and the bottom panel is chematic skyrmion bubble configuration from calculations; (b) polar merons in a untrathin PbTiO3 film on SmScO3 substrate[26], where the upper panel is the cross-section HAADF-STEM image, the middle panel is the corresponding geometric phase analysis (GPA) image, and the bottom panel is a meron configuration from calculations.

    图 5  外场调控极化拓扑畴 (a) 通过导电针尖施加扫描偏压在BFO薄膜上写出通量闭合畴结构; 沿直线排列的几个通量闭合涡旋畴结构(上), 通过极化翻转获得的几个通量闭合涡旋畴结构的面内PFM图像(下)[33]; (b) 通过导电针尖施加扫描偏压在BFO薄膜上写出的涡旋畴结构的面内PFM图像[49]; (c) 通过导电针尖施加脉冲电压在BFO薄膜上写出的中心型结构的面内PFM图像[50]; (d) 通过导电针尖施加电压调控BFO纳米点中的中心型拓扑畴的可逆翻转[24]; (e) 在(SrTiO3)n/(PbTiO3)n超晶格中利用亚皮秒激光诱导a1/a2畴和极化涡旋畴混合结构转化为单一的三维拓扑畴超晶相(3D supercrysal phase), 并且可通过退火实现可逆转换[54]; (f) 在(SrTiO3)n/(PbTiO3)n超晶格中利用机械应力诱导涡旋畴消失和恢复; 在机械应力作用下涡漩态阵列的消失和恢复的演化TEM图像(上), 根据HRTEM图像计算得到的快速反傅里叶变换图像(下)[55]

    Fig. 5.  External field control of polar topological domains: (a) Creation of closure in-plane domains in BFO film by using scan bias. Domain configuration for several closure domain states arranged along a line (upper panel), in-plane PFM image after switching several closure domains (bottom panel)[33]; (b) in-plane PFM image of a vortex domain structure which was created by using scan bias[49]; (c) in-plane PFM image of a created center-type domain structure[50]; (d) PFM images showing the electric switching of BiFeO3 center domains by scanning electric bias[24]; (e) phase transition from a mixed phase of in-plane a1/a2 domains and polar vortex to a single 3D supercrystal phase triggered by sub-picosecond optical pulses in a (SrTiO3)n/(PbTiO3)n superlattice[54]; (f) Mechanical manipulation of vortices in a (SrTiO3)n/(PbTiO3)n superlattice. A chronological high resolution TEM image series acquired under mechanical loads (upper panel) and the corresponding inverse fast Fourier transform maps (bottom panel)[55].

    图 6  拓扑畴的畴壁电流与涡心导电增强 (a) LaAlO3衬底上BFO纳米岛中心拓扑畴壁导电模式示意图(左), 中心收敛型(右前)和中心发散型(右后)畴壁的CAFM成像图[21]; (b)外电场下畴壁电流切换耐久性测试(左), 具有畴壁电流读取的拓扑畴存储器交叉结构器件原型示意图(右)[21]; (c) 涡旋畴的PFM成像图(左)及对应的CAFM成像图(右), 显示出明显的涡心导电增强效应[33]

    Fig. 6.  Enhanced electric conductivity at domain walls and vortex cores: (a) CAFM images of quadrant center domains in an array of square-shape BiFeO3 nanoislands on LaAlO3 substrate (left panel), different conductive domain wall states for respective convergent (right front panel) and divergent domains (right rear panel) [21]; (b) endurance performance of resistive switching in domain wall conduction (left panel), and a crossbar device architecture of conceptual memory prototype based on domain wall current (right panel)[21]; (c) the PFM image of vortex domains (left panel) and corresponding CAFM image of vortex core (right panel), shows enhanced electric conductivity[33].

    Baidu
  • [1]

    Rabe K M, Ahn C H, Triscone J M 2007 Physics of Ferroelectrics, a Modern Perspective (Berlin: Springer) pp1−390

    [2]

    Scott J F 2000 Ferroelectric Memories (Berlin: Springer) pp1−223

    [3]

    Scott J F 1989 Science 246 1400Google Scholar

    [4]

    Scott J F 2007 Science 315 954Google Scholar

    [5]

    Dawber M, Rabe K M, Scott J F 2005 Rev. Mod. Phys. 77 1083Google Scholar

    [6]

    Gruverman A, Kholkin A 2006 Rep. Prog. Phys. 69 2443Google Scholar

    [7]

    Han H, Kim Y, Alexe M, Hesse D, Lee W 2011 Adv. Mater. 23 4599Google Scholar

    [8]

    Varghese J, Whatmore R W, Holmes J D 2013 J. Mater. Chem. C 1 2618Google Scholar

    [9]

    Bibes M 2012 Nat. Mater. 11 354Google Scholar

    [10]

    Gregg J M 2009 Phys. Status Solidi A 206 577Google Scholar

    [11]

    Mermin N D 1979 Rev. Mod. Phys. 51 591Google Scholar

    [12]

    Seidel J, Martin L W, He Q, et al. 2009 Nat. Mater. 8 229Google Scholar

    [13]

    Catalan G, Seidel J, Ramesh R, Scott J F 2012 Rev. Mod. Phys. 84 119Google Scholar

    [14]

    Seidel J, Fu D, Yang S Y, Alarcon-Llado E, Wu J, Ramesh R, Ager J W 2011 Phys. Rev. Lett. 107 126805Google Scholar

    [15]

    Bednyakov P S, Sturman B I, Sluka T, Tagantsev A K, Yudin P V 2018 NPJ Comput. Mater. 4 65Google Scholar

    [16]

    Jiang A Q, Zhang Y 2019 NPG ASIA Mater. 11 2Google Scholar

    [17]

    Huyan H X, Li L Z, Addiego C, Gao W P, Pan X Q 2019 Natl. Sci. Rev. 6 669Google Scholar

    [18]

    Kornev I, Fu H, Bellaiche L 2004 Phys. Rev. Lett. 93 196104Google Scholar

    [19]

    Tang Y L, Zhu Y L, Ma X L, Borisevich A Y, Morozovska A N, Eliseev E A, Wang W Y, Xu Y B, Zhang Z D, Pennycook S J 2015 Science 348 547Google Scholar

    [20]

    Yadav A K, Nelson C T, Hsu S L, et al. 2016 Nature 530 198Google Scholar

    [21]

    Ma J, Ma J, Zhang Q, Peng R, Wang J, Liu C, Wang M, Li N, Chen M, Cheng X, Gao P, Gu L, Chen L Q, Yu P, Zhang J, Nan C W 2018 Nat. Nanotechnol. 13 947Google Scholar

    [22]

    Kim K E, Jeong S, Chu K, Lee J H, Kim G Y, Xue F, Koo T Y, Chen L Q, Choi S Y, Ramesh R, Yang C H 2018 Nat. Commun. 9 403Google Scholar

    [23]

    Han M J, Wang Y J, Tang Y L, Zhu Y L, Ma J Y, Geng W R, Zou M J, Feng Y P, Zhang N B, Ma X L 2019 J. Phys. Chem. C 123 2557Google Scholar

    [24]

    Li Z, Wang Y, Tian G, Li P, Zhao L, Zhang F, Yao J, Fan H, Song X, Chen D, Fan Z, Qin M, Zeng M, Zhang Z, Lu X, Hu S, Lei C, Zhu Q, Li J, Gao X, Liu J M 2017 Sci. Adv. 3 e1700919Google Scholar

    [25]

    Das S, Tang Y L, Hong Z, et al. 2019 Nature 568 368Google Scholar

    [26]

    Wang Y J, Feng Y P, Zhu Y L, Tang Y L, Yang L X, Zou M J, Geng W R, Han M J, Guo X W, Wu B, Ma X L 2020 Nat. Mater. 19 881Google Scholar

    [27]

    Nelson C T, Winchester B, Zhang Y, Kim S J, Melville A, Adamo C, Folkman C M, Baek S H, Eom C B, Schlom D G, Chen L Q, Pan X 2011 Nano Lett. 11 828Google Scholar

    [28]

    Jia C L, Urban K W, Alexe M, Hesse D, Vrejoiu I 2011 Science 331 1420Google Scholar

    [29]

    Rodriguez B J, Gao X S, Liu L F, Lee W, Naumov, Ⅱ, Bratkovsky A M, Hesse D, Alexe M 2009 Nano Lett. 9 1127Google Scholar

    [30]

    Schilling A, Byrne D, Catalan G, Webber K G, Genenko Y A, Wu G S, Scott J F, Gregg J M 2009 Nano Lett. 9 3359Google Scholar

    [31]

    McQuaid R G, McGilly L J, Sharma P, Gruverman A, Gregg J M 2011 Nat. Commun. 2 404Google Scholar

    [32]

    McGilly L J, Gregg J M 2011 Nano Lett. 11 4490Google Scholar

    [33]

    Balke N, Winchester B, Ren W, et al. 2011 Nat. Phys. 8 81Google Scholar

    [34]

    Lin S Z, Wang X, Kamiya Y, Chern G W, Fan F, Fan D, Casas B, Liu Y, Kiryukhin V, Zurek W H, Batista C D, Cheong S W 2014 Nat. Phys. 10 970Google Scholar

    [35]

    Pang H, Zhang F, Zeng M, Gao X, Qin M, Lu X, Gao J, Dai J, Li Q 2016 NPJ Quantum Mater. 1 16015Google Scholar

    [36]

    Du K, Gao B, Wang Y, Xu X, Kim J, Hu R, Huang F T, Cheong S W 2018 NPJ Quantum Mater. 3 33Google Scholar

    [37]

    Zhang H Y, Song X J, Chen X G, Zhang Z X, You Y M, Tang Y Y, Xiong R G 2020 J. Am. Chem. Soc. 142 4925Google Scholar

    [38]

    Yadav A K, Nguyen K X, Hong Z, et al. 2019 Nature 565 468Google Scholar

    [39]

    Tian G, Yang W D, Chen D Y, Fan Z, Hou Z P, Marin A, Gao X S 2019 Natl. Sci. Rev. 6 626Google Scholar

    [40]

    Seidel J, Vasudevan R K, Valanoor N 2016 Adv. Electron. Mater. 2 1500292Google Scholar

    [41]

    Landau L, Lifshitz E 1935 Phys. Z. Sowjetunion 8 179

    [42]

    Naumov I I, Bellaiche L, Fu H 2004 Nature 432 737Google Scholar

    [43]

    Peters J J P, Apachitei G, Beanland R, Alexe M, Sanchez A M 2016 Nat. Commun. 7 13484Google Scholar

    [44]

    Hong Z, Damodaran A R, Xue F, Hsu S L, Britson J, Yadav A K, Nelson C T, Wang J J, Scott J F, Martin L W, Ramesh R, Chen L Q 2017 Nano Lett. 17 2246Google Scholar

    [45]

    Tian G, Chen D, Fan H, Li P, Fan Z, Qin M, Zeng M, Dai J, Gao X, Liu J M 2017 ACS Appl. Mater. Interfaces 9 37219Google Scholar

    [46]

    Li L, Cheng X, Jokisaari J R, Gao P, Britson J, Adamo C, Heikes C, Schlom D G, Chen L Q, Pan X 2018 Phys. Rev. Lett. 120 137602Google Scholar

    [47]

    Zhang Q, Xie L, Liu G, Prokhorenko S, Nahas Y, Pan X, Bellaiche L, Gruverman A, Valanoor N 2017 Adv. Mater. 29 1702375Google Scholar

    [48]

    Zhang Q, Prokhorenko S, Nahas Y, Xie L, Bellaiche L, Gruverman A, Valanoor N 2019 Adv. Funct. Mater. 29 1808573Google Scholar

    [49]

    Balke N, Choudhury S, Jesse S, Huijben M, Chu Y H, Baddorf A P, Chen L Q, Ramesh R, Kalinin S V 2009 Nat. Nanotechnol. 4 868Google Scholar

    [50]

    Vasudevan R K, Chen Y C, Tai H H, Balke N, Wu P, Bhattacharya S, Chen L Q, Chu Y H, Lin I N, Kalinin S V, Nagarajan V 2011 ACS Nano 5 879Google Scholar

    [51]

    Li Y, Jin Y M, Lu X M, Yang J C, Chu Y H, Huang F Z, Zhu J S, Cheong S W 2017 NPJ Quantum Mater. 2 43Google Scholar

    [52]

    Damodaran A R, Clarkson J D, Hong Z, Liu H, Yadav A K, Nelson C T, Hsu S L, McCarter M R, Park K D, Kravtsov V, Farhan A, Dong Y, Cai Z, Zhou H, Aguado-Puente P, García-Fernández P, Íñiguez J, Junquera J, Scholl A, Raschke M B, Chen L Q, Fong D D, Ramesh R and Martin L W 2017 Nat. Mater. 16 1003Google Scholar

    [53]

    Kim K E, Kim Y J, Zhang Y, Xue F, Kim G Y, Song K, Choi S Y, Liu J M, Chen L Q, Yang C H 2018 Phys. Rev. Mater. 2 084412Google Scholar

    [54]

    Stoica V A, Laanait N, Dai C, Hong Z, Yuan Y, Zhang Z, Lei S, McCarter M R, Yadav A, Damodaran A R, Das S, Stone G A, Karapetrova J, Walko D A, Zhang X, Martin L W, Ramesh R, Chen L Q, Wen H, Gopalan V, Freeland J W 2019 Nat. Mater. 18 377Google Scholar

    [55]

    Chen P, Zhong X, Zorn J A, Li M, Sun Y, Abid A Y, Ren C, Li Y, Li X, Ma X, Wang J, Liu K, Xu Z, Tan C, Chen L, Gao P, Bai X 2020 Nat. Commun. 11 1840Google Scholar

    [56]

    Zheng Y, Chen W J 2017 Rep. Prog. Phys. 80 086501Google Scholar

    [57]

    Prosandeev S, Ponomareva I, Kornev I, Naumov I, Bellaiche L 2006 Phys. Rev. Lett. 96 237601Google Scholar

    [58]

    Lich L V, Shimada T, Wang J, Dinh V H, Bui T Q, Kitamura T 2017 Phys. Rev. B 96 134119Google Scholar

    [59]

    Crassous A, Sluka T, Tagantsev A K, Setter N 2015 Nat. Nanotechol. 20 614Google Scholar

    [60]

    He Q, Yeh C H, Yang J C, Singh-Bhalla G, Liang C W, Chiu P W, Catalan G, Martin L W, Chu Y H, Scott J F, Ramesh R 2012 Phys. Rev. Lett. 108 067203Google Scholar

    [61]

    Sanchez-Santolino G, Tornos J, Hernandez-Martin D, Beltran J I, Munuera C, Cabero M, Perez-Munoz A, Ricote J, Mompean F, Garcia-Hernandez M, Sefrioui Z, Leon C, Pennycook S J, Munoz M C, Varela M, Santamaria J 2017 Nat. Nanotechnol. 12 655Google Scholar

    [62]

    Tian G, Yang W D, Song X, Zheng D F, Zhang L Y, Chen C, Li P L, Fan H, Yao J X, Chen D Y, Fan Z, Hou Z P, Zhang Z, Wu S J, Zeng M, Gao X S, Liu J M 2019 Adv. Funct. Mater. 29 1807276Google Scholar

    [63]

    Yang W D, Tian G, Zhang Y, Xue F, Zheng D F, Zhang L Y, Wang Y D, Chen C, Fan Z, Hou Z P, Chen D Y, Gao J W, Zeng M, Qin M H, Chen L Q, Gao X S, Liu J M 2020 https://arxiv.org/abs/2006.02011

  • [1] 张颖, 李卓霖, 沈保根. 磁畴壁拓扑结构研究进展.  , 2024, 73(1): 017504. doi: 10.7498/aps.73.20231612
    [2] 林基艳, 陈诚, 郭林伟, 李耀, 林书玉, 孙姣夏, 徐洁. 声表面和拓扑缺陷结构对换能器耦合振动系统的声波调控.  , 2024, 73(22): 224301. doi: 10.7498/aps.73.20241199
    [3] 田国, 樊贞, 陈德杨, 侯志鹏, 刘俊明, 高兴森. “针尖下的实验室”—扫描探针探测与调控铁电畴及其微观物性.  , 2023, 72(20): 207501. doi: 10.7498/aps.72.20230954
    [4] 刘钟磊, 曹津铭, 王智, 赵宇宏. 相场法探究铁电体涡旋拓扑结构与准同型相界.  , 2023, 72(3): 037702. doi: 10.7498/aps.72.20221898
    [5] 胡军容, 孔鹏, 毕仁贵, 邓科, 赵鹤平. 声学蜂窝结构中的拓扑角态.  , 2022, 71(5): 054301. doi: 10.7498/aps.71.20211848
    [6] 李玲, 潘天择, 马家骏, 张善涛, 汪尧进. PNZST:AlN复合陶瓷局域应力场增强热释电性能机理.  , 2022, 71(21): 217701. doi: 10.7498/aps.71.20221250
    [7] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建.  , 2020, 69(18): 184101. doi: 10.7498/aps.69.20200415
    [8] 吕笑梅, 黄凤珍, 朱劲松. 铁电材料中的电畴: 形成、结构、动性及相关性能.  , 2020, 69(12): 127704. doi: 10.7498/aps.69.20200312
    [9] 王宇佳, 耿皖荣, 唐云龙, 朱银莲, 马秀良. 新型铁电拓扑结构的构筑及其亚埃尺度结构特性.  , 2020, 69(21): 216801. doi: 10.7498/aps.69.20201718
    [10] 刘迪, 王静, 王俊升, 黄厚兵. 相场模拟应变调控PbZr(1–x)TixO3薄膜微观畴结构和宏观铁电性能.  , 2020, 69(12): 127801. doi: 10.7498/aps.69.20200310
    [11] 谭丛兵, 钟向丽, 王金斌. 铁电材料中的极性拓扑结构.  , 2020, 69(12): 127702. doi: 10.7498/aps.69.20200311
    [12] 罗开发, 余睿. 电路中的拓扑态.  , 2019, 68(22): 220305. doi: 10.7498/aps.68.20191398
    [13] 郝宁, 胡江平. 铁基超导中拓扑量子态研究进展.  , 2018, 67(20): 207101. doi: 10.7498/aps.67.20181455
    [14] 蒋招绣, 王永刚, 聂恒昌, 刘雨生. 极化状态与方向对单轴压缩下Pb(Zr0.95Ti0.05)O3铁电陶瓷畴变与相变行为的影响.  , 2017, 66(2): 024601. doi: 10.7498/aps.66.024601
    [15] 张润兰, 邢辉, 陈长乐, 段萌萌, 罗炳成, 金克新. YMnO3薄膜的铁电行为及其纳米尺度铁电畴的研究.  , 2014, 63(18): 187701. doi: 10.7498/aps.63.187701
    [16] 周波, 陈云琳, 刘刚, 詹鹤. 铁电体中新畴成核经典模型的改进.  , 2009, 58(4): 2762-2767. doi: 10.7498/aps.58.2762
    [17] 王龙海, 于 军, 刘 锋, 郑朝丹, 李 佳, 王耘波, 高峻雄, 王志红, 曾慧中, 赵素玲. PT/PZT/PT铁电薄膜的铁电畴和畴壁.  , 2006, 55(5): 2590-2595. doi: 10.7498/aps.55.2590
    [18] 曾华荣, 余寒峰, 初瑞清, 李国荣, 殷庆瑞, 唐新桂. PZT铁电薄膜纳米尺度铁电畴的场致位移特性.  , 2005, 54(3): 1437-1441. doi: 10.7498/aps.54.1437
    [19] 曾华荣, 李国荣, 殷庆瑞, 唐新桂. PZT铁电薄膜纳米尺度畴结构的扫描力显微术研究.  , 2003, 52(7): 1783-1787. doi: 10.7498/aps.52.1783
    [20] 王春雷, 钟维烈, 张沛霖. 有电畴的铁电薄膜中的相变.  , 1993, 42(10): 1703-1706. doi: 10.7498/aps.42.1703
计量
  • 文章访问数:  11225
  • PDF下载量:  790
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-04
  • 修回日期:  2020-09-07
  • 上网日期:  2020-11-02
  • 刊出日期:  2020-11-05

/

返回文章
返回
Baidu
map