搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fokas系统的怪波激发

张解放 金美贞

引用本文:
Citation:

Fokas系统的怪波激发

张解放, 金美贞

Excitation of rogue waves of Fokas system

Zhang Jie-Fang, Jin Mei-Zhen
PDF
HTML
导出引用
  • Fokas系统是最简单的二维空间非线性演化模型. 本文首先研究一种相似变换将该系统转换为长波-短波共振模型形式; 然后基于该相似变换和已知的长波-短波共振模型的有理形式解, 通过选择空间变量y的待定函数为Hermite函数, 得到了Fokas系统的一个有理函数表示的严格解析解; 进而选定合适自由参数给出了Fokas系统丰富的二维怪波激发, 并可对二维怪波的形状和幅度进行有效控制; 最后借助图示展现了二维怪波的传播特征. 本文提出的构造Fokas系统二维怪波的途径可以作为一种激发二维怪波现象的潜在物理机制, 并推广应用于其他(2 + 1)维非线性局域或非局域模型.
    Rogue wave (RW) is one of the most fascinating phenomena in nature and has been observed recently in nonlinear optics and water wave tanks. It is considered as a large and spontaneous nonlinear wave and seems to appear from nowhere and disappear without a trace. The Fokas system is the simplest two-dimensional nonlinear evolution model. In this paper, we firstly study a similarity transformation for transforming the system into a long wave-short wave resonance model. Secondly, based on the similarity transformation and the known rational form solution of the long-wave-short-wave resonance model, we give the explicit expressions of the rational function form solutions by means of an undetermined function of the spatial variable y, which is selected as the Hermite function. Finally, we investigate the rich two-dimensional rogue wave excitation and discuss the control of its amplitude and shape, and reveal the propagation characteristics of two-dimensional rogue wave through graphical representation under choosing appropriate free parameter. The results show that the two-dimensional rogue wave structure is controlled by four parameters: ${\rho _0},\;n,\;k,\;{\rm{and}}\;\omega \left( {{\rm{or}}\;\alpha } \right)$. The parameter $ {\rho _0}$ controls directly the amplitude of the two-dimensional rogue wave, and the larger the value of $ {\rho _0}$, the greater the amplitude of the amplitude of the two-dimensional rogue wave is. The peak number of the two-dimensional rogue wave in the $(x,\;y)$ and $(y,\;t)$ plane depends on merely the parameter n but not on the parameter k. When $n = 0,\;1,\;2, \cdots$, only single peak appears in the $(x,\;t)$ plane, but single peak, two peaks to three peaks appear in the $(x,\;y)$ and $(y,\;t)$ plane, respectively, for the two-dimensional rogue wave of Fokas system. We can find that the two-dimensional rogue wave occurs from the zero background in the $(x,\;t)$ plane, but the two-dimensional rogue wave appears from the line solitons in the $(x,\;y)$ plane and $(y,\;t)$ plane.It is worth pointing out that the rogue wave obtained here can be used to describe the possible physical mechanism of rogue wave phenomenon, and may have potential applications in other (2 + 1)-dimensional nonlinear local or nonlocal models.
      通信作者: 张解放, Zhangjief@cuz.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61877053)资助的课题
      Corresponding author: Zhang Jie-Fang, Zhangjief@cuz.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61877053)
    [1]

    Pelinovsky E and Kharf C 2008 Extreme Ocean Waves (Berlin: Springer)

    [2]

    Solli R, Ropers C, Koonath P, Jalali B 2007 Nature 450 1054Google Scholar

    [3]

    Montina A, Bortolozzo U, Residori S, Arecchi F T 2009 Phys. Rev. Lett. 103 173901Google Scholar

    [4]

    Wabnitz S 2013 J. Opt. 15 064002Google Scholar

    [5]

    Moslem W M 2011 Phys. Plasm. 18 032301Google Scholar

    [6]

    Laveder D, Passot T T, Sulem P, Sánchez Arriaga G 2011 Phys. Lett. A 375 3997Google Scholar

    [7]

    Bludov Yu V, Konotop V V, Akhmediev N 2009 Phys. Rev. A 80 033610Google Scholar

    [8]

    Efimov V B, Ganshin A N, Kolmakov G V, Mcclintock P V E, Mezhov Deglin L P 2010 Eur. Phys. J. Special Topics 185 181Google Scholar

    [9]

    Shats M, Punzmann H, Xia H 2010 Phys. Rev. Lett. 104 104503Google Scholar

    [10]

    Xia H, Maimbourg T, Punzmann H, Shats M 2012 Phys. Rev. Lett. 109 114502Google Scholar

    [11]

    Vergeles S, Turitsyn S K 2011 Phys. Rev. A 83 061801Google Scholar

    [12]

    Stenflo L, Marklund M 2010 J. Plasma Phys. 76 293Google Scholar

    [13]

    Yan Z Y 2010 Commun. Theor. Phys. 54 947Google Scholar

    [14]

    Demircan A, Amiranashvili S, Brée C, Mahnke C, Mitschke F, Steinmeyer G 2012 Sci. Rep. 2 850Google Scholar

    [15]

    Driben R, Babushkin I 2012 Opt. Lett. 37 5157Google Scholar

    [16]

    Marsal N, Caullet V, Wolfersberger D, Sciamanna M 2014 Opt. Lett. 39 3690Google Scholar

    [17]

    Residori S, Bortolozzo U, Montina A, Lenzini F, Arecchi F T 2012 Fluctuation Noise Lett. 11 1240014Google Scholar

    [18]

    Soto Crespo J M, Grelu P, Akhmediev N 2011 Phys. Rev. E 84 016604Google Scholar

    [19]

    Zamora M. J, Garbin B, Barland S, Giudici M, Rios Leite J R, Masoller C, Tredicce J R 2013 Phys. Rev. A 87 035802Google Scholar

    [20]

    Lecaplain C, Grelu P, Soto Crespo J M, Akhmediev N 2012 Phys. Rev. Lett. 108 233901Google Scholar

    [21]

    Buccoliero D, Steffensen H, Ebendorff Heidepriem H, Monro T M, Bang O 2011 Opt. Express 19 17973Google Scholar

    [22]

    Finot C, Hammani K, Fatome J, Dudley J M, Millot G 2010 IEEE J. Quantum Electron. 46 205Google Scholar

    [23]

    Hammani K, Finot C 2012 Opt. Fiber Technol. 18 93Google Scholar

    [24]

    Majus D, Jukna V, Valiulis G, Faccio D, Dubietis A 2011 Phys. Rev. A 83 025802Google Scholar

    [25]

    Hammani K, Finot C, Millot G 2009 Opt. Lett. 34 1138Google Scholar

    [26]

    Antikainen A, Erkintalo M, Dudley J M, Genty G 2012 Nonlinearity 25 73Google Scholar

    [27]

    Akhmediev N, Dudley J M, Solli D R, Turitsyn S K 2013 J. Opt. 15 060201Google Scholar

    [28]

    Chabchoub A, Hoffmann N P, Akhmediev N 2011 Phys. Rev. Lett. 106 204502Google Scholar

    [29]

    Bailung H, Sharma S K, Nakamura Y 2011 Phys. Rev. Lett. 107 255005Google Scholar

    [30]

    Randoux S, Suret P 2012 Opt. Lett. 37 500Google Scholar

    [31]

    潘昌昌, Baronio F, 陈世华 2020 69 010504Google Scholar

    Pan C C, Baronio F, Chen S H 2020 Acta Phys. Sin. 69 010504Google Scholar

    [32]

    李再东, 郭奇奇 2020 69 017501Google Scholar

    Li Z D and Guo Q Q 2020 Acta Phys. Sin. 69 017501Google Scholar

    [33]

    陈智敏, 段文山 2020 69 014701Google Scholar

    Chen Z M, Duan W S 2020 Acta Phys. Sin. 69 014701Google Scholar

    [34]

    李淑青, 杨光晔, 李禄 2014 63 104215Google Scholar

    Li S Q, Yang G Y, Li L 2014 Acta Phys. Sin. 63 104215Google Scholar

    [35]

    张解放, 戴朝卿 2016 65 050501Google Scholar

    Zhang J F, Dai C Q 2016 Acta Phys. Sin. 65 050501Google Scholar

    [36]

    胡文成, 张解放, 赵辟, 楼吉辉 2013 62 024216Google Scholar

    Hu W C, Zhang J F, Zhao B, Lou J H 2013 Acta Phys. Sin. 62 024216Google Scholar

    [37]

    Fokas A S 1994 Inverse Problems 10 19Google Scholar

    [38]

    Chen J C, Chen Y 2014 J. Nonlinear Math. Phys. 21 454Google Scholar

    [39]

    Radha R, Lakshmanan M 1997 Chaos, Solitons and Fractals 8 17Google Scholar

    [40]

    Villarroel J, Prada J, Estévez P G 2009 Stud. Appl. Math. 122 395Google Scholar

    [41]

    Estévez P G 1999 J. Math. Phys. 40 1406Google Scholar

    [42]

    Rao J G, Wang L H, Zhang Y, He J S 2015 Commun. Theor. Phys. 64 605Google Scholar

    [43]

    Chen T T, Hu P Y, He J S 2019 Commun. Theor. Phys. 71 496Google Scholar

    [44]

    Rao J G, Mihalacheb D, Cheng Y, He J S 2019 Phys.Lett. A 383 1138Google Scholar

    [45]

    Yan Z Y 2011 J. Math. Anal. Appl. 380 689

    [46]

    Benney D J 1976 Stud. Appl. Math. 55 93Google Scholar

    [47]

    Kivshar Yu S 1992 Opt. Lett. 17 1322Google Scholar

    [48]

    Chowdhury A, Tataronis J A 2008 Phys. Rev. Lett. 100 153905Google Scholar

    [49]

    Zakharov V E 1972 Sov. Phys. JETP 35 908Google Scholar

    [50]

    Benney D J 1977 Stud. Appl. Math. 56 81Google Scholar

    [51]

    Djordjevic V D, Redekopp L G 1977 J. Fluid Mech. 79 703Google Scholar

    [52]

    Ma Y C, Redekopp L G 1979 Phys. Fluids 22 1872Google Scholar

    [53]

    Chow K W, Chan H N, Kedziora D J, Grimshaw R H J 2013 J. Phys. Soc. Jpn. 82 074001Google Scholar

    [54]

    Chen S H, Grelu P, Soto Crespo J M 2014 Phys. Rev. E 89 011201Google Scholar

    [55]

    Abramowitz M, Stegun I A 1965 Handbook of Mathematical Functions (New York: Dover Publications)

  • 图 1  ${\rho _0} = 1.5,\; \alpha = {\left| \omega \right|^{ - 1}} = 1,\; n = 0$, $k = 0$时, 由(22)式所确定的二维怪波激发 (a), (d) $y = 0$时在$\left( {x, t} \right)$平面上的演化图和相应的等高线图; (b), (e) $t = 0$时在$\left( {x, y} \right)$平面上的演化图和相应的等高线图; (c), (f) $x = 0$时在$\left( {y, t} \right)$平面的演化图和相应的等高线图

    Fig. 1.  Cross-sections of two-dimensional rogue wave propagations (top row) and contour plots (bottom row) for the density distribution ${\left| {u\left( {x, y, t} \right)} \right|^2}$ given in Eq. (22) for ${\rho _0} = 1.5,\; \alpha =$ ${\left| \omega \right|^{ - 1}} = 1,\; n = 0$ with $k = 0$: (a), (d) $\left( {x, t} \right)$-plan with $y = 0$; (b), (e) $\left( {x, y} \right)$-space with $t = 0$; (c), (f) $\left( {y, t} \right)$-plane with $x = 0$.

    图 2  ${\rho _0} = 1.5,\; \alpha = {\left| \omega \right|^{ - 1}} = 1,\; n = 0$, $k = 1$时, 由(22)式所确定的二维怪波激发 (a), (d) $y = 0$时在$\left( {x, t} \right)$平面上的演化图和相应的等高线图; (b), (e) $t = 0$时在$\left( {x, y} \right)$平面上的演化图和相应的等高线图; (c), (f) $x = 0$时在$\left( {y, t} \right)$平面的演化图和相应的等高线图

    Fig. 2.  Cross-sections of two-dimensional rogue wave propagations (top row) and contour plots (bottom row) for the density distribution ${\left| {u\left( {x, y, t} \right)} \right|^2}$ given in Eq. (22) for ${\rho _0} = 1.5,\; \alpha = {\left| \omega \right|^{ - 1}} = 1,\; n = 0$ with $k = 1$: (a), (d) $\left( {x, t} \right)$-plane with $y = 0$; (b), (e) $\left( {x, y} \right)$-space with $t = 0$; (c), (f) $\left( {y, t} \right)$-plane with $x = 0$.

    图 3  ${\rho _0} = 1.5,\; \alpha = {\left| \omega \right|^{ - 1}} = 1,\; n = 1$, $k = 0$时, 由(22)式所确定的二维怪波激发 (a), (d) $y = 1$时在$\left( {x, t} \right)$平面上的演化图和相应的等高线图; (b), (e) $t = 0$时在$\left( {x, y} \right)$平面上的演化图和相应的等高线图; (c), (f) $ x=0 $时在$ (y, t) $平面的演化图和相应的等高线图

    Fig. 3.  Cross-sections of two-dimensional rogue wave propagations (top row) and contour plots (bottom row) for the density distribution ${\left| {u\left( {x, y, t} \right)} \right|^2}$ given in Eq. (22) for ${\rho _0} = 1.5,\; \alpha = {\left| \omega \right|^{ - 1}} = 1,\; n = 1$ with $k = 0$: (a), (d) $\left( {x, t} \right)$-plane with $y = 1$; (b), (e) $\left( {x, y} \right)$-space with $t = 0$; (c), (f) $\left( {y, t} \right)$-plane with $x = 0$.

    图 4  ${\rho _0} = 1.5,\; \alpha = {\left| \omega \right|^{ - 1}} = 1$, $n = 1$, $k = 1$时, 由(22)式所确定的二维怪波激发 (a), (d) $y = 1$时在$\left( {x, t} \right)$平面上的演化图和相应的等高线图; (b), (e) $t = 0$时在$\left( {x, y} \right)$平面上的演化图和相应的等高线图; (c), (f) $x = 0$时在$\left( {y, t} \right)$平面的演化图和相应的等高线图

    Fig. 4.  Cross-sections of two-dimensional rogue wave propagations (top row) and contour plots (bottom row) for the density distribution ${\left| {u\left( {x, y, t} \right)} \right|^2}$ given in Eq. (22) for ${\rho _0} = 1.5$, $\alpha = {\left| \omega \right|^{ - 1}} = 1,\; n = 1$ with $k = 1$: (a), (d) $\left( {x, t} \right)$-plane with $y = 1$; (b), (e) $\left( {x, y} \right)$-space with $t = 0$; (c), (f) $\left( {y, t} \right)$-plane with $x = 0$.

    图 5  ${\rho _0} = 1.5,\; \alpha = {\left| \omega \right|^{ - 1}} = 1,\; n = 2,\; k = 2$时, 由(22)式所确定的二维怪波激发 (a), (d) $y = 0$时在$\left( {x, t} \right)$平面上的演化图和相应的等高线图; (b), (e) $t = 0$时在$\left( {x, y} \right)$平面上的演化图和相应的等高线图; (c), (f) $x = 0$时在$\left( {y, t} \right)$平面的演化图和相应的等高线图

    Fig. 5.  Cross-sections of two-dimensional rogue wave propagations (top row) and contour plots (bottom row) for the density distribution ${\left| {u\left( {x, y, t} \right)} \right|^2}$ given in Eq. (22) for ${\rho _0} = 1.5,\; \alpha = {\left| \omega \right|^{ - 1}} = 1,\; n = 2$ with $k = 2$: (a), (d) $\left( {x, t} \right)$-plane with $y = 0$; (b), (e) $\left( {x, y} \right)$-space with $t = 0$; (c), (f) $\left( {y, t} \right)$-plane with $x = 0$.

    图 6  由(22)式确定的二维怪波在$\left( {x, t} \right)$平面上的演化(这里取${\rho _0}{{ = 1}}{{.5}}$, $\alpha = {\left| \omega \right|^{ - 1}} = 1,\; n = 0$, $k = 3$) (a) $t = - 7$; (b) $t = - 3$; (c) $t = 0$; (d)$t = 0.5$; (e) $t = 5$; (f) $t = 10$

    Fig. 6.  Cross-sections of two-dimensional wave propagations (top row) for the density distribution ${\left| {u\left( {x, y, t} \right)} \right|^2}$ given in Eq. (22) for ${\rho _0} = 1.5,\; \alpha = {\left| \omega \right|^{ - 1}} = 1,\; n = 0$ with $k = 3$: (a) $t = - 7$; (b) $t = - 3$; (c) $t = 0$; (d) $t = 0.5$; (e) $t = 5$; (f) $t = 10$.

    图 7  由(22)式确定的二维怪波在$\left( {x, t} \right)$平面上的演化(这里取${\rho _0}{{ = 1}}{{.5}}$, $\alpha = {\left| \omega \right|^{ - 1}} = 1,\; n = 0$, $k = 3$) (a) $y = - 3$; (b) $y = -1$; (c) $y = 0$; (d) $y = 0.5$; (e) $y = 2$; (f) $y = 3$

    Fig. 7.  Cross-sections of two-dimensional rogue wave propagations (top row) for the density distribution ${\left| {u\left( {x, y, t} \right)} \right|^2}$ given in Eq. (22) for ${\rho _0} = 1.5,\; \alpha = {\left| \omega \right|^{ - 1}} = 1,\; n = 0$ with $k = 3$: (a) $y = - 3$; (b) $y = - 1$; (c) $y = 0$; (d) $y = 0.5$; (e) $y = 2$; (f) $y = 3$.

    Baidu
  • [1]

    Pelinovsky E and Kharf C 2008 Extreme Ocean Waves (Berlin: Springer)

    [2]

    Solli R, Ropers C, Koonath P, Jalali B 2007 Nature 450 1054Google Scholar

    [3]

    Montina A, Bortolozzo U, Residori S, Arecchi F T 2009 Phys. Rev. Lett. 103 173901Google Scholar

    [4]

    Wabnitz S 2013 J. Opt. 15 064002Google Scholar

    [5]

    Moslem W M 2011 Phys. Plasm. 18 032301Google Scholar

    [6]

    Laveder D, Passot T T, Sulem P, Sánchez Arriaga G 2011 Phys. Lett. A 375 3997Google Scholar

    [7]

    Bludov Yu V, Konotop V V, Akhmediev N 2009 Phys. Rev. A 80 033610Google Scholar

    [8]

    Efimov V B, Ganshin A N, Kolmakov G V, Mcclintock P V E, Mezhov Deglin L P 2010 Eur. Phys. J. Special Topics 185 181Google Scholar

    [9]

    Shats M, Punzmann H, Xia H 2010 Phys. Rev. Lett. 104 104503Google Scholar

    [10]

    Xia H, Maimbourg T, Punzmann H, Shats M 2012 Phys. Rev. Lett. 109 114502Google Scholar

    [11]

    Vergeles S, Turitsyn S K 2011 Phys. Rev. A 83 061801Google Scholar

    [12]

    Stenflo L, Marklund M 2010 J. Plasma Phys. 76 293Google Scholar

    [13]

    Yan Z Y 2010 Commun. Theor. Phys. 54 947Google Scholar

    [14]

    Demircan A, Amiranashvili S, Brée C, Mahnke C, Mitschke F, Steinmeyer G 2012 Sci. Rep. 2 850Google Scholar

    [15]

    Driben R, Babushkin I 2012 Opt. Lett. 37 5157Google Scholar

    [16]

    Marsal N, Caullet V, Wolfersberger D, Sciamanna M 2014 Opt. Lett. 39 3690Google Scholar

    [17]

    Residori S, Bortolozzo U, Montina A, Lenzini F, Arecchi F T 2012 Fluctuation Noise Lett. 11 1240014Google Scholar

    [18]

    Soto Crespo J M, Grelu P, Akhmediev N 2011 Phys. Rev. E 84 016604Google Scholar

    [19]

    Zamora M. J, Garbin B, Barland S, Giudici M, Rios Leite J R, Masoller C, Tredicce J R 2013 Phys. Rev. A 87 035802Google Scholar

    [20]

    Lecaplain C, Grelu P, Soto Crespo J M, Akhmediev N 2012 Phys. Rev. Lett. 108 233901Google Scholar

    [21]

    Buccoliero D, Steffensen H, Ebendorff Heidepriem H, Monro T M, Bang O 2011 Opt. Express 19 17973Google Scholar

    [22]

    Finot C, Hammani K, Fatome J, Dudley J M, Millot G 2010 IEEE J. Quantum Electron. 46 205Google Scholar

    [23]

    Hammani K, Finot C 2012 Opt. Fiber Technol. 18 93Google Scholar

    [24]

    Majus D, Jukna V, Valiulis G, Faccio D, Dubietis A 2011 Phys. Rev. A 83 025802Google Scholar

    [25]

    Hammani K, Finot C, Millot G 2009 Opt. Lett. 34 1138Google Scholar

    [26]

    Antikainen A, Erkintalo M, Dudley J M, Genty G 2012 Nonlinearity 25 73Google Scholar

    [27]

    Akhmediev N, Dudley J M, Solli D R, Turitsyn S K 2013 J. Opt. 15 060201Google Scholar

    [28]

    Chabchoub A, Hoffmann N P, Akhmediev N 2011 Phys. Rev. Lett. 106 204502Google Scholar

    [29]

    Bailung H, Sharma S K, Nakamura Y 2011 Phys. Rev. Lett. 107 255005Google Scholar

    [30]

    Randoux S, Suret P 2012 Opt. Lett. 37 500Google Scholar

    [31]

    潘昌昌, Baronio F, 陈世华 2020 69 010504Google Scholar

    Pan C C, Baronio F, Chen S H 2020 Acta Phys. Sin. 69 010504Google Scholar

    [32]

    李再东, 郭奇奇 2020 69 017501Google Scholar

    Li Z D and Guo Q Q 2020 Acta Phys. Sin. 69 017501Google Scholar

    [33]

    陈智敏, 段文山 2020 69 014701Google Scholar

    Chen Z M, Duan W S 2020 Acta Phys. Sin. 69 014701Google Scholar

    [34]

    李淑青, 杨光晔, 李禄 2014 63 104215Google Scholar

    Li S Q, Yang G Y, Li L 2014 Acta Phys. Sin. 63 104215Google Scholar

    [35]

    张解放, 戴朝卿 2016 65 050501Google Scholar

    Zhang J F, Dai C Q 2016 Acta Phys. Sin. 65 050501Google Scholar

    [36]

    胡文成, 张解放, 赵辟, 楼吉辉 2013 62 024216Google Scholar

    Hu W C, Zhang J F, Zhao B, Lou J H 2013 Acta Phys. Sin. 62 024216Google Scholar

    [37]

    Fokas A S 1994 Inverse Problems 10 19Google Scholar

    [38]

    Chen J C, Chen Y 2014 J. Nonlinear Math. Phys. 21 454Google Scholar

    [39]

    Radha R, Lakshmanan M 1997 Chaos, Solitons and Fractals 8 17Google Scholar

    [40]

    Villarroel J, Prada J, Estévez P G 2009 Stud. Appl. Math. 122 395Google Scholar

    [41]

    Estévez P G 1999 J. Math. Phys. 40 1406Google Scholar

    [42]

    Rao J G, Wang L H, Zhang Y, He J S 2015 Commun. Theor. Phys. 64 605Google Scholar

    [43]

    Chen T T, Hu P Y, He J S 2019 Commun. Theor. Phys. 71 496Google Scholar

    [44]

    Rao J G, Mihalacheb D, Cheng Y, He J S 2019 Phys.Lett. A 383 1138Google Scholar

    [45]

    Yan Z Y 2011 J. Math. Anal. Appl. 380 689

    [46]

    Benney D J 1976 Stud. Appl. Math. 55 93Google Scholar

    [47]

    Kivshar Yu S 1992 Opt. Lett. 17 1322Google Scholar

    [48]

    Chowdhury A, Tataronis J A 2008 Phys. Rev. Lett. 100 153905Google Scholar

    [49]

    Zakharov V E 1972 Sov. Phys. JETP 35 908Google Scholar

    [50]

    Benney D J 1977 Stud. Appl. Math. 56 81Google Scholar

    [51]

    Djordjevic V D, Redekopp L G 1977 J. Fluid Mech. 79 703Google Scholar

    [52]

    Ma Y C, Redekopp L G 1979 Phys. Fluids 22 1872Google Scholar

    [53]

    Chow K W, Chan H N, Kedziora D J, Grimshaw R H J 2013 J. Phys. Soc. Jpn. 82 074001Google Scholar

    [54]

    Chen S H, Grelu P, Soto Crespo J M 2014 Phys. Rev. E 89 011201Google Scholar

    [55]

    Abramowitz M, Stegun I A 1965 Handbook of Mathematical Functions (New York: Dover Publications)

  • [1] 张解放, 俞定国, 金美贞. 二维自相似变换理论和线怪波激发.  , 2022, 71(1): 014205. doi: 10.7498/aps.71.20211417
    [2] 张解放, 俞定国, 金美贞. (2+1)维Zakharov方程的自相似变换和线怪波簇激发.  , 2022, 71(8): 084204. doi: 10.7498/aps.71.20211181
    [3] 张解放, 金美贞, 胡文成. 非自治Kadomtsev-Petviashvili方程的自相似变换和二维怪波构造.  , 2020, 69(24): 244205. doi: 10.7498/aps.69.20200981
    [4] 张兴刚, 戴丹. 二维颗粒堆积中压力问题的格点系统模型.  , 2017, 66(20): 204501. doi: 10.7498/aps.66.204501
    [5] 陈海军, 李向富. 二维线性与非线性光晶格中物质波孤立子的稳定性.  , 2013, 62(7): 070302. doi: 10.7498/aps.62.070302
    [6] 陆大全, 胡巍. 椭圆响应强非局域非线性介质中的二维异步分数傅里叶变换及光束传输特性.  , 2013, 62(8): 084211. doi: 10.7498/aps.62.084211
    [7] 胡文成, 张解放, 赵辟, 楼吉辉. 光纤放大器中非自治光畸波的传播控制研究.  , 2013, 62(2): 024216. doi: 10.7498/aps.62.024216
    [8] 马正义, 马松华, 杨毅. 具有色散系数的(2+1)维非线性Schrdinger方程的有理解和空间孤子.  , 2012, 61(19): 190508. doi: 10.7498/aps.61.190508
    [9] 钱存, 王亮亮, 张解放. 变系数非线性Schrödinger方程的孤子解及其相互作用.  , 2011, 60(6): 064214. doi: 10.7498/aps.60.064214
    [10] 谢帆, 杨汝, 张波. 电流反馈型Buck变换器二维分段光滑系统边界碰撞和分岔研究.  , 2010, 59(12): 8393-8406. doi: 10.7498/aps.59.8393
    [11] 张立升, 邓敏艺, 孔令江, 刘慕仁, 唐国宁. 用元胞自动机模型研究二维激发介质中的非线性波.  , 2009, 58(7): 4493-4499. doi: 10.7498/aps.58.4493
    [12] 孟立民, 滕爱萍, 李英骏, 程涛, 张杰. 基于自相似模型的二维X射线激光等离子体流体力学.  , 2009, 58(8): 5436-5442. doi: 10.7498/aps.58.5436
    [13] 郑春龙, 张解放. (2+1)维Camassa-Holm方程的相似约化与解析解.  , 2002, 51(11): 2426-2430. doi: 10.7498/aps.51.2426
    [14] 张解放, 黄文华, 郑春龙. 一个新(2+1)维非线性演化方程的相干孤子结构.  , 2002, 51(12): 2676-2682. doi: 10.7498/aps.51.2676
    [15] 董全林, 刘彬. 在伽利略坐标变换下的二端面弹性转轴相似动力学方程.  , 2002, 51(10): 2191-2196. doi: 10.7498/aps.51.2191
    [16] 陈岩松, 郑师海, 李德华. 二维光学几何矩变换.  , 1991, 40(10): 1601-1606. doi: 10.7498/aps.40.1601
    [17] 郑师海, 陈岩松, 李德华. 二维Mellin变换的实现.  , 1990, 39(5): 749-753. doi: 10.7498/aps.39.749
    [18] 汪力, 董碧珍, 杨国桢. 非么正变换系统中的二维相位恢复问题.  , 1989, 38(11): 1809-1817. doi: 10.7498/aps.38.1809
    [19] 杜宜瑾, 陈立溁, 严祖同. 二维相变系统Collins模型的统计理论.  , 1983, 32(1): 96-102. doi: 10.7498/aps.32.96
    [20] 黄永仁. 弱耦合自旋1/2二核系统二维动态NMR谱.  , 1982, 31(9): 1141-1151. doi: 10.7498/aps.31.1141
计量
  • 文章访问数:  5647
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-12
  • 修回日期:  2020-06-11
  • 上网日期:  2020-10-30
  • 刊出日期:  2020-11-05

/

返回文章
返回
Baidu
map