-
光频梳由一系列等间距、高稳定性的频率线组成. 由于具有超高频率稳定性和超低相位噪声, 光频梳在精密光谱测量、成像、通信等领域具有重要应用. 在太赫兹波段, 基于半导体的电抽运太赫兹量子级联激光器具有大功率输出、宽频率覆盖范围等特点, 是产生太赫兹光频梳的理想载体. 本文主要介绍基于太赫兹半导体量子级联激光器光频梳的研究进展, 详细列举了自由运行、主动稳频和被动稳频模式下产生光频梳的方法. 双光梳光谱可以克服传统太赫兹光谱仪需要机械扫描系统而难以实现实时光谱检测的难题, 是光频梳应用的主要方向. 在光频梳基础之上, 本文还介绍了采用两个太赫兹量子级联激光器产生双光梳的方法和应用.
-
关键词:
- 太赫兹量子级联激光器 /
- 色散 /
- 光频梳 /
- 双光梳
Optical frequency comb consists of a series of equally spaced and highly stable frequency lines. Due to the advantages of the ultra-high frequency stability and ultra-low phase noise, the optical frequency combs have important applications in high precision spectroscopy, imaging, communications, etc. In the terahertz frequency range, semiconductor-based electrically pumped terahertz quantum cascade lasers have the characteristics of high output power and wide frequency coverage, and are the ideal candidates for generating terahertz optical frequency combs. In this article, we first briefly introduce the research progress of the optical frequency comb in the communication and the mid-infrared bands. Then we mainly review the research progress of the optical frequency combs based on the terahertz semiconductor quantum cascade laser (QCL) operating in free-running, active frequency stabilization and passive frequency stabilization modes. In free running mode, the terahertz QCL frequency comb is mainly limited by the large group velocity dispersion which results in a small comb bandwidth. Therefore, the dispersion compensation is one of the important methods to stabilize the optical frequency comb and broaden the spectral bandwidth. At present, the active frequency stabilization mode is a relatively matured method to realize the optical frequency combs in terahertz QCLs. In this article, we also detail the methods and applications of terahertz QCL dual-comb operations, including on-chip dual-comb and dual-comb spectroscopy. Compared with the Fourier transform infrared spectroscopy and time domain spectroscopy, the terahertz dual-comb spectroscopy has advantages in fast data acquisition (real-time) and high spectral resolution. The emergence of the dual-comb technique not only verifies the concept of optical frequency combs, but also further promotes the applications of frequency combs.-
Keywords:
- terahertz quantum cascade laser /
- dispersion /
- frequency comb /
- dual-comb
[1] Diddams S A 2010 J. Opt. Soc. Am. B 27 B51Google Scholar
[2] Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar
[3] Schliesser A, Picqué N, Hänsch T W 2012 Nat. Photon. 6 440Google Scholar
[4] Füser H, Bieler M 2014 J. Infrared Millim. Terahertz Waves 35 585Google Scholar
[5] Reichert J, Niering M, Holzwarth R, Weitz M, Udem T, Hansch T W 2000 Phys. Rev. Lett. 84 3232Google Scholar
[6] Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem T, Hansch T W 2000 Phys. Rev. Lett. 84 5102Google Scholar
[7] Beha K, Cole D C, Del’Haye P, Coillet A, Diddams S A, Papp S B 2017 Optica 4 406Google Scholar
[8] Kourogi M, Nakagawa K i, Ohtsu M 1993 IEEE J. Quantum Electron. 29 2693Google Scholar
[9] Zhang M, Buscaino B, Wang C, Shams-Ansari A, Reimer C, Zhu R, Kahn J M, Lončar M 2019 Nature 568 373Google Scholar
[10] Wang C, Zhang M, Yu M, Zhu R, Hu H, Loncar M 2019 Nat. Commun. 10 978Google Scholar
[11] Marin-Palomo P, Kemal J N, Karpov M, Kordts A, Pfeifle J, Pfeiffer M H P, Trocha P, Wolf S, Brasch V, Anderson M H, Rosenberger R, Vijayan K, Freude W, Kippenberg T J, Koos C 2017 Nature 546 274Google Scholar
[12] Fischer C, W. Sigrist M 1970 Top. Appl. Phys. 99Google Scholar
[13] Gubin M A, Kireev A N, Konyashchenko A V, Kryukov P G, Shelkovnikov A S, Tausenev A V, Tyurikov D A 2009 Appl. Phys. B 95 661Google Scholar
[14] Adler F, Cossel K, J Thorpe M, Hartl I, Fermann M, Ye J 2009 Opt. Lett. 34 1330Google Scholar
[15] Scalari G, Faist J, Picqué N 2019 Appl. Phys. Lett. 114 150401Google Scholar
[16] Jun Y, Schnatz H, Hollberg L W 2003 IEEE J. Sel. Top. Quantum Electron. 9 1041Google Scholar
[17] Wang Y, Soskind M G, Wang W, Wysocki G 2014 Appl. Phys. Lett. 104 031114Google Scholar
[18] Kumar S 2011 IEEE J. Sel. Top. Quantum Electron. 17 38Google Scholar
[19] Siegel P 2002 IEEE Trans. Microw. Theory Tech. 50 910Google Scholar
[20] Ferguson B, Zhang X 2002 Nat. Mater. 1 26Google Scholar
[21] Cao J 2003 Phys. Rev. Lett. 91 237401Google Scholar
[22] Tonouchi M 2007 Nat. Photon. 1 97Google Scholar
[23] Walther C, Fischer M, Scalari G, Terazzi R, Hoyler N, Faist J 2007 Appl. Phys. Lett. 91 131122Google Scholar
[24] Carr G, Martin M, McKinney W, Jordan K, Neil G, Williams G 2002 Nature 420 153Google Scholar
[25] Woolard D L, Brown R, Pepper M, Kemp M 2005 Proc. IEEE 93 1722Google Scholar
[26] Federici J, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005 Semicond. Sci. Technol. 20 S266Google Scholar
[27] Kawase K, Ogawa Y, Yuuki W, Inoue H 2003 Opt. Express 11 2549Google Scholar
[28] Chen J, Chen Y, Zhao H, Bastiaans G, Zhang X C 2007 Opt. Express 15 12060Google Scholar
[29] Kawase K, Shibuya T, Hayashi S i, Suizu K 2010 C. R. Physique 11 510Google Scholar
[30] Fischer B, Walther M, Jepsen P 2002 Phys. Med. Biol. 47 3807Google Scholar
[31] Siegel P 2004 IEEE Trans. Microw. Theory Tech. 52 2438Google Scholar
[32] Castro-Camus E, Johnston M B 2008 Chem. Phys. Lett. 455 289Google Scholar
[33] Kleine-Ostmann T, Pierz K, Hein G, Dawson P, Koch M 2004 Electron. Lett. 40 124Google Scholar
[34] Grant P D, Laframboise S R, Dudek R, Graf M, Bezinger A, Liu H 2009 Electron. Lett. 45 952Google Scholar
[35] Chen Z, Tan Z Y, Han Y J, Zhang R, Guo X G, Li H, Cao J C, Liu H 2011 Electron. Lett. 47 1002Google Scholar
[36] Burford N M, El-Shenawee M O 2017 Opt. Eng. 56 010901Google Scholar
[37] Tani M, Hirota Y, Que C T, Tanaka S, Hattori R, Yamaguchi M, Nishizawa S, Hangyo M 2007 J. Infrared Millim. Waves 27 531Google Scholar
[38] Yasui T, Kabetani Y, Saneyoshi E, Yokoyama S, Araki T 2006 Appl. Phys. Lett. 88 241104Google Scholar
[39] Scalari G, Walther C, Fischer M, Terazzi R, Beere H, Ritchie D, Faist J 2009 Laser Photon. Rev. 3 45Google Scholar
[40] Belkin M A, Fan J A, Hormoz S, Capasso F, Khanna S P, Lachab M, Davies A G, Linfield E H 2008 Opt. Express 16 3242Google Scholar
[41] Brandstetter M, Deutsch C, Krall M, Detz H, MacFarland D C, Zederbauer T, Andrews A M, Schrenk W, Strasser G, Unterrainer K 2013 Appl. Phys. Lett. 103 171113Google Scholar
[42] Danylov A, Erickson N, Light A, Waldman J 2015 Opt. Lett. 40 5090Google Scholar
[43] Williams B S 2007 Nat. Photon. 1 517Google Scholar
[44] Li H, Laffaille P, Gacemi D, Apfel M, Sirtori C, Leonardon J, Santarelli G, Rosch M, Scalari G, Beck M, Faist J, Hansel W, Holzwarth R, Barbieri S 2015 Opt. Express 23 33270Google Scholar
[45] Friedli P, Sigg H, Hinkov B, Hugi A, Riedi S, Beck M, Faist J 2013 Appl. Phys. Lett. 102 222104Google Scholar
[46] Gmachl C, Sivco D, Colombelli R, Capasso F, Cho A 2002 Nature 415 883Google Scholar
[47] Villares G, Riedi S, Wolf J, Kazakov D, Süess M J, Jouy P, Beck M, Faist J 2016 Optica 3 252Google Scholar
[48] Faist J, Villares G, Scalari G, Rösch M, Bonzon C, Hugi A, Beck M 2016 Nanophotonics 5 272Google Scholar
[49] Villares G, Faist J 2015 Opt. Express 23 1651Google Scholar
[50] Zhou K, Li H, Wan W J, Li Z P, Liao X Y, Cao J C 2019 Appl. Phys. Lett. 114 191106Google Scholar
[51] Li H, Cao J, T. Lu J 2008 J. Appl. Phys. 103 103113Google Scholar
[52] Burghoff D, Yang Y, Hayton D J, Gao J R, Reno J L, Hu Q 2015 Opt. Express 23 1190Google Scholar
[53] Cappelli F, Villares G, Riedi S, Faist J 2015 Optica 2 836Google Scholar
[54] Wienold M, Schrottke L, Giehler M, Hey R, Anders W, Grahn H T 2010 Appl. Phys. Lett. 97 071113Google Scholar
[55] Dean P, Valavanis A, Keeley J, Bertling K, Lim Y L, Alhathlool R, Burnett A D, Li L H, Khanna S P, Indjin D, Taimre T, Rakić A D, Linfield E H, Davies A G 2014 J. Phys. D Appl. Phys. 47 374008Google Scholar
[56] Turčinková D, Scalari G, Castellano F, Amanti M I, Beck M, Faist J 2011 Appl. Phys. Lett. 99 191104Google Scholar
[57] Rösch M, Beck M, Süess M J, Bachmann D, Unterrainer K, Faist J, Scalari G 2018 Nanophotonics 7 237Google Scholar
[58] Rösch M, Scalari G, Beck M, Faist J 2014 Nat. Photon. 9 42Google Scholar
[59] Williams B S, Kumar S, Callebaut H, Hu Q, Reno J L 2003 Appl. Phys. Lett. 83 2124Google Scholar
[60] Finneran I, Good J, Holland D, Carroll P, Allodi M, Blake G 2015 Phys. Rev. Lett. 114 163902Google Scholar
[61] Burghoff D, Kao T Y, Han N, Chan C W I, Cai X, Yang Y, Hayton D J, Gao J R, Reno J L, Hu Q 2014 Nat. Photon. 8 462Google Scholar
[62] Hillbrand J, Jouy P, Beck M, Faist J 2018 Opt. Lett. 43 1746Google Scholar
[63] Yang Y, Burghoff D, Reno J, Hu Q 2017 Opt. Lett. 42 3888Google Scholar
[64] Barbieri S, Gellie P, Santarelli G, Ding L, Maineult W, Sirtori C, Colombelli R, Beere H, Ritchie D 2010 Nat. Photon. 4 636Google Scholar
[65] Gellie P, Barbieri S, Lampin J-F, Filloux P, Manquest C, Sirtori C, Sagnes I, Khanna S P, Linfield E H, Davies A G, Beere H, Ritchie D 2010 Opt. Express 18 20799Google Scholar
[66] Faist J, Beck M, Aellen T, Gini E 2001 Appl. Phys. Lett. 78 147Google Scholar
[67] Amanti M I, Scalari G, Terazzi R, Fischer M, Beck M, Faist J, Rudra A, Gallo P, Kapon E 2009 New J. Phys. 11 125022Google Scholar
[68] Wienold M, Schrottke L, Giehler M, Hey R, Grahn H T 2011 J. Appl. Phys. 109 073112Google Scholar
[69] Barbieri S, Ravaro M, Gellie P, Santarelli G, Manquest C, Sirtori C, Khanna S P, Linfield E H, Davies A G 2011 Nat. Photon. 5 306Google Scholar
[70] Wan W J, Li H, Zhou T, Cao J C 2017 Sci. Rep. 7 44109Google Scholar
[71] Wang F, Nong H, Fobbe T, Pistore V, Houver S, Markmann S, Jukam N, Amanti M, Sirtori C, Moumdji S, Colombelli R, Li L, Linfield E, Davies G, Mangeney J, Tignon J, Dhillon S 2017 Laser Photon. Rev. 11 1700013Google Scholar
[72] Wienold M, Röben B, Schrottke L, Grahn H T 2014 Opt. Express 22 30410Google Scholar
[73] Coldren L A, Miller B I, Iga K, Rentschler J A 1981 Appl. Phys. Lett. 38 315Google Scholar
[74] Tsang W T, Olsson N A, Logan R A 1983 Electron. Lett. 19 488Google Scholar
[75] Coldren L, Koch T 1984 IEEE J. Quantum Electron. 20 659Google Scholar
[76] Ebeling K J, Coldren L A, Miller B I, Rentschler J A 1983 Appl. Phys. Lett. 42 6Google Scholar
[77] Li Z, Li H, Wan W, Zhou K, Cao J, Chang G, Xu G 2018 Opt. Express 26 32675Google Scholar
[78] Oustinov D, Jukam N, Rungsawang R, Madeo J, Barbieri S, Filloux P, Sirtori C, Marcadet X, Tignon J, Dhillon S 2010 Nat. Commun. 1 69Google Scholar
[79] Udem T, Reichert J, Holzwarth R, Diddams S, Jones D, Ye J, Cundiff S, Hansch T, Hall J 2007 The Hydrogen Atom (Berlin Heidelberg: Springer-Verlag) p125
[80] Auston D H, Cheung K P 1985 J. Opt. Soc. Am. B 2 606Google Scholar
[81] Liang G, Hu X, Yu X, Shen Y, Li L H, Davies A G, Linfield E H, Liang H K, Zhang Y, Yu S F, Wang Q J 2015 ACS Photonics 2 1559Google Scholar
[82] Li H, Yan M, Wan W, Zhou T, Zhou K, Li Z, Cao J, Yu Q, Zhang K, Li M, Nan J, He B, Zeng H 2019 Adv. Sci. 6 1900460Google Scholar
[83] Han P Y, Tani M, Usami M, Kono S, Kersting R, Zhang X C 2001 J. Appl. Phys. 89 2357Google Scholar
[84] Hu G, Mizuguchi T, Oe R, Nitta K, Zhao X, Minamikawa T, Li T, Zheng Z, Yasui T 2018 Sci. Rep. 8 11155Google Scholar
[85] Jerez B, Walla F, Betancur A, Martin-Mateos P, de Dios C, Acedo P 2019 Opt. Lett. 44 415Google Scholar
[86] Bernhardt B, Ozawa A, Jacquet P, Jacquey M, Kobayashi Y, Udem T, Holzwarth R, Guelachvili G, Hänsch T W, Picqué N 2010 Nat. Photon. 4 55Google Scholar
[87] Rösch M, Scalari G, Villares G, Bosco L, Beck M, Faist J 2016 Appl. Phys. Lett. 108 171104Google Scholar
[88] Li Z, Wan W, Zhou K, Liao X, Yang S, Fu Z, Cao J C, Li H 2019 Phys. Rev. Appl. 12 044068Google Scholar
[89] Yang Y, Burghoff D, Hayton D J, Gao J R, Reno J L, Hu Q 2016 Optica 3 499Google Scholar
[90] Richter H, Semenov A D, Pavlov S G, Mahler L, Tredicucci A, Beere H E, Ritchie D A, Il’in K S, Siegel M, Hübers H W 2008 Appl. Phys. Lett. 93 141108Google Scholar
[91] Li H, Li Z, Wan W, Zhou K, Liao X, Yang S, Wang C, Cao J C, Zeng H 2020 ACS Photonics 7 49Google Scholar
[92] Sterczewski L A, Westberg J, Yang Y, Burghoff D, Reno J, Hu Q, Wysocki G 2019 Optica 6 766Google Scholar
-
图 2 (a)铌酸锂微环谐振腔的显微图; (b) EO梳的输出光谱, 带宽超过80 nm, 频梳线超过900条, 左侧插图为虚线框的放大, 右侧插图为在不同调制指数β的情况下测量的透射光谱[9]
Fig. 2. (a) Micrograph of a fabricated lithium niobate microring resonator. (b) Output spectrum of the EO comb generated from the microring resonator, the bandwidth exceeding 80 nm and more than 900 comb lines. The left inset shows a magnified view of the dotted. The right inset shows the measured transmission spectrum for several different modulation indices
$\beta $ [9].图 3 (a)两个间隔为
$\delta $ 的初始频率v1和v2; (b)四波混频过程后的频率分布图, 绿色曲线为产生的新的频率边带, 频率分别为${v_1} - \delta $ 和${v_2} + \delta $ [44]Fig. 3. (a) Initial mode frequencies,
${v_1}$ and${v_2}$ , separated by$\delta $ ; (b) final frequencies resulting from four-wave mixing, with the two sidebands at${v_1} - \delta $ and${v_2} + \delta $ shown in green[44].图 4 (a)不同脊条宽度下器件的钳制增益和总损耗与频率的关系; (b)不同脊条宽度下的总GVD, 其中4.05—4.35 THz的阴影区域代表THz QCL的激射区域[50]
Fig. 4. (a) Calculated clamped gain and total loss as function of frequency for lasers with different ridge widths; (b) total GVDs at different ridge widths. The shaded area from 4.05 to 4.35 THz represents the lasing range of the THz QCL[50].
图 6 (a)啁啾波纹型结构, 红色为较长波长的波, 蓝色为较短波长的波; (b)温度为50 K时, THz QCL梳的光谱, 黄线表示为水汽吸收[61]; (c)两段式器件结构示意图, 直流部分为蓝色, FP的一部分为红色; (d)每一段结构的电流-电压特性, 粉色阴影区域表示激光器的动态范围, 插图为实际设备空气间隙的SEM照片[63]
Fig. 6. (a) Schematic of the chirped corrugation. The red wave has longer wavelength, while the blue wave has shorter wavelength. (b) Spectrum of the THz QCL comb at a temperature of 50 K. Atmospheric absorption is shown in yellow[61]. (c) Schematic of the device in a two-section configuration. The DC section is shown in blue; part of the FP section is in red. (d) Current-voltage characteristics for each section. The pink-shaded area indicates the entire dynamic range of lasing. The inset shows the SEM photo for the air gap in the real device[63].
图 8 (a), (b)对THz QCL同时进行注入和锁相的情况下, 改变RF功率和电流得到的拍频信号图; (c), (d)对应条件下在时域内测得的波形, 图中的黑点为实验值, 红色曲线为理论计算值, 其中假设了所有模式具有等相位[69]
Fig. 8. (a), (b) In the case of simultaneous injection and phase-locking of THz QCL, the beat-note signal diagram obtained by changing the RF power and the current. (c), (d) The waveforms are measured in the time domain under the corresponding conditions. The black dots in the figure are experimental values. The red curves are the result of theoretical calculations by assuming that all modes have equal phase[69].
图 9 (a) RF调制THz QCL实验装置图; (b)不同调制电流下的THz发射光谱图, 蓝色曲线为从HITRAN数据库提取3.9—4.2 THz范围内的水吸收线[70]
Fig. 9. (a) Experimental setup of RF modulation to THz QCL; (b) THz emission spectra under different modulation current. The water absorption lines in the frequency range from 3.9 to 4.4 THz extracted from the HITRAN database[70]
图 10 (a)通过注入相干THz脉冲实现QCL载波相位固定的实验装置; (b)在不同输入THz脉冲幅度条件下测量的QCL输出光场, THz脉冲幅度正比于天线电压, 分别为1 V (绿色曲线)、0.25 V (蓝色曲线)和0.06 V (灰色曲线)[78]
Fig. 10. (a) Experimental setup for achieving the carrier phase fixed in QCL by injecting coherent THz pulse. (b) Measured fields of the QCL output for various input THz pulse amplitudes. The THz pulse amplitude is proportional to the antenna voltage with 1 V (green curve), 0.25 V (blue curve) and 0.06 V (grey curve)[78].
图 12 (a)片上双光梳的实验原理图; (b)双光梳光谱, 其中蓝色曲线为光谱图, 插图为放大的两相邻梳齿的峰值, 红色曲线为从本地振荡梳中提取出的多外差光谱[87]; (c)双RF注入下的片上双光梳结构示意图, 插图为实际双光梳装置的光学照片; (d)自由运行模式和RF注入模式下的下转换双光梳谱[88]
Fig. 12. (a) Schematics of the dual-comb on chip. (b) Optical spectrum (blue curve). The inset shows that the modes consist of two peaks corresponding to the two combs. In red is the corresponding multi-heterodyne spectrum extracted from the current bias of the LO laser[87]. (c) Schematics of the on-chip dual-comb system under double injection. The inset shows an optical photo of the mounted dual-comb device. (d) The down-converted dual-comb spectra in free-running mode and under a microwave double injection[88].
图 13 (a)分离式双光梳实验装置图, 插图显示了铜支架上的两个通过硅透镜耦合的频率梳; (b)在HEB上得到的多外差信号光谱[89]; (c)紧凑型双光梳实验模拟图, 插图为实际实验装置[91]
Fig. 13. (a) Experimental setup for separating dual-comb system. Inset shows real laser frequency combs on the copper mount, both of which are silicon lens-coupled. (b) Multiheterodyne signal obtained from the HEB[89]. (c) Experimental simulation diagram for compact dual-comb system. The illustration shows the actual experimental device[91].
图 14 (a)双光梳高光谱成像系统; (b)在光路中放入(红色)或者不放入(蓝色)硅片获取的拍频信号光谱; (c)根据(a)计算出的透射光谱; (d)在零水汽(蓝色)和相对湿度为23% (红色)下获取的拍频信号光谱; (e)根据(d)计算的透射光谱, 蓝色曲线为从2016 HITRAN数据库获得的参数[92]
Fig. 14. (a) Dual-comb hyperspectral imaging system. (b) Beat note spectra acquired with (red) or without (blue) a silicon wafer inserted in the beam path. (c) Transmission spectra calculated from the beat note spectra in (b). (d) Beat note spectra acquired with zero gas (blue) and atmospheric water vapor at 23% relative humidity (red). (e) Transmission spectra calculated from (d); the blue curve is extracted from the HITRAN 2016 database[92].
-
[1] Diddams S A 2010 J. Opt. Soc. Am. B 27 B51Google Scholar
[2] Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar
[3] Schliesser A, Picqué N, Hänsch T W 2012 Nat. Photon. 6 440Google Scholar
[4] Füser H, Bieler M 2014 J. Infrared Millim. Terahertz Waves 35 585Google Scholar
[5] Reichert J, Niering M, Holzwarth R, Weitz M, Udem T, Hansch T W 2000 Phys. Rev. Lett. 84 3232Google Scholar
[6] Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem T, Hansch T W 2000 Phys. Rev. Lett. 84 5102Google Scholar
[7] Beha K, Cole D C, Del’Haye P, Coillet A, Diddams S A, Papp S B 2017 Optica 4 406Google Scholar
[8] Kourogi M, Nakagawa K i, Ohtsu M 1993 IEEE J. Quantum Electron. 29 2693Google Scholar
[9] Zhang M, Buscaino B, Wang C, Shams-Ansari A, Reimer C, Zhu R, Kahn J M, Lončar M 2019 Nature 568 373Google Scholar
[10] Wang C, Zhang M, Yu M, Zhu R, Hu H, Loncar M 2019 Nat. Commun. 10 978Google Scholar
[11] Marin-Palomo P, Kemal J N, Karpov M, Kordts A, Pfeifle J, Pfeiffer M H P, Trocha P, Wolf S, Brasch V, Anderson M H, Rosenberger R, Vijayan K, Freude W, Kippenberg T J, Koos C 2017 Nature 546 274Google Scholar
[12] Fischer C, W. Sigrist M 1970 Top. Appl. Phys. 99Google Scholar
[13] Gubin M A, Kireev A N, Konyashchenko A V, Kryukov P G, Shelkovnikov A S, Tausenev A V, Tyurikov D A 2009 Appl. Phys. B 95 661Google Scholar
[14] Adler F, Cossel K, J Thorpe M, Hartl I, Fermann M, Ye J 2009 Opt. Lett. 34 1330Google Scholar
[15] Scalari G, Faist J, Picqué N 2019 Appl. Phys. Lett. 114 150401Google Scholar
[16] Jun Y, Schnatz H, Hollberg L W 2003 IEEE J. Sel. Top. Quantum Electron. 9 1041Google Scholar
[17] Wang Y, Soskind M G, Wang W, Wysocki G 2014 Appl. Phys. Lett. 104 031114Google Scholar
[18] Kumar S 2011 IEEE J. Sel. Top. Quantum Electron. 17 38Google Scholar
[19] Siegel P 2002 IEEE Trans. Microw. Theory Tech. 50 910Google Scholar
[20] Ferguson B, Zhang X 2002 Nat. Mater. 1 26Google Scholar
[21] Cao J 2003 Phys. Rev. Lett. 91 237401Google Scholar
[22] Tonouchi M 2007 Nat. Photon. 1 97Google Scholar
[23] Walther C, Fischer M, Scalari G, Terazzi R, Hoyler N, Faist J 2007 Appl. Phys. Lett. 91 131122Google Scholar
[24] Carr G, Martin M, McKinney W, Jordan K, Neil G, Williams G 2002 Nature 420 153Google Scholar
[25] Woolard D L, Brown R, Pepper M, Kemp M 2005 Proc. IEEE 93 1722Google Scholar
[26] Federici J, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005 Semicond. Sci. Technol. 20 S266Google Scholar
[27] Kawase K, Ogawa Y, Yuuki W, Inoue H 2003 Opt. Express 11 2549Google Scholar
[28] Chen J, Chen Y, Zhao H, Bastiaans G, Zhang X C 2007 Opt. Express 15 12060Google Scholar
[29] Kawase K, Shibuya T, Hayashi S i, Suizu K 2010 C. R. Physique 11 510Google Scholar
[30] Fischer B, Walther M, Jepsen P 2002 Phys. Med. Biol. 47 3807Google Scholar
[31] Siegel P 2004 IEEE Trans. Microw. Theory Tech. 52 2438Google Scholar
[32] Castro-Camus E, Johnston M B 2008 Chem. Phys. Lett. 455 289Google Scholar
[33] Kleine-Ostmann T, Pierz K, Hein G, Dawson P, Koch M 2004 Electron. Lett. 40 124Google Scholar
[34] Grant P D, Laframboise S R, Dudek R, Graf M, Bezinger A, Liu H 2009 Electron. Lett. 45 952Google Scholar
[35] Chen Z, Tan Z Y, Han Y J, Zhang R, Guo X G, Li H, Cao J C, Liu H 2011 Electron. Lett. 47 1002Google Scholar
[36] Burford N M, El-Shenawee M O 2017 Opt. Eng. 56 010901Google Scholar
[37] Tani M, Hirota Y, Que C T, Tanaka S, Hattori R, Yamaguchi M, Nishizawa S, Hangyo M 2007 J. Infrared Millim. Waves 27 531Google Scholar
[38] Yasui T, Kabetani Y, Saneyoshi E, Yokoyama S, Araki T 2006 Appl. Phys. Lett. 88 241104Google Scholar
[39] Scalari G, Walther C, Fischer M, Terazzi R, Beere H, Ritchie D, Faist J 2009 Laser Photon. Rev. 3 45Google Scholar
[40] Belkin M A, Fan J A, Hormoz S, Capasso F, Khanna S P, Lachab M, Davies A G, Linfield E H 2008 Opt. Express 16 3242Google Scholar
[41] Brandstetter M, Deutsch C, Krall M, Detz H, MacFarland D C, Zederbauer T, Andrews A M, Schrenk W, Strasser G, Unterrainer K 2013 Appl. Phys. Lett. 103 171113Google Scholar
[42] Danylov A, Erickson N, Light A, Waldman J 2015 Opt. Lett. 40 5090Google Scholar
[43] Williams B S 2007 Nat. Photon. 1 517Google Scholar
[44] Li H, Laffaille P, Gacemi D, Apfel M, Sirtori C, Leonardon J, Santarelli G, Rosch M, Scalari G, Beck M, Faist J, Hansel W, Holzwarth R, Barbieri S 2015 Opt. Express 23 33270Google Scholar
[45] Friedli P, Sigg H, Hinkov B, Hugi A, Riedi S, Beck M, Faist J 2013 Appl. Phys. Lett. 102 222104Google Scholar
[46] Gmachl C, Sivco D, Colombelli R, Capasso F, Cho A 2002 Nature 415 883Google Scholar
[47] Villares G, Riedi S, Wolf J, Kazakov D, Süess M J, Jouy P, Beck M, Faist J 2016 Optica 3 252Google Scholar
[48] Faist J, Villares G, Scalari G, Rösch M, Bonzon C, Hugi A, Beck M 2016 Nanophotonics 5 272Google Scholar
[49] Villares G, Faist J 2015 Opt. Express 23 1651Google Scholar
[50] Zhou K, Li H, Wan W J, Li Z P, Liao X Y, Cao J C 2019 Appl. Phys. Lett. 114 191106Google Scholar
[51] Li H, Cao J, T. Lu J 2008 J. Appl. Phys. 103 103113Google Scholar
[52] Burghoff D, Yang Y, Hayton D J, Gao J R, Reno J L, Hu Q 2015 Opt. Express 23 1190Google Scholar
[53] Cappelli F, Villares G, Riedi S, Faist J 2015 Optica 2 836Google Scholar
[54] Wienold M, Schrottke L, Giehler M, Hey R, Anders W, Grahn H T 2010 Appl. Phys. Lett. 97 071113Google Scholar
[55] Dean P, Valavanis A, Keeley J, Bertling K, Lim Y L, Alhathlool R, Burnett A D, Li L H, Khanna S P, Indjin D, Taimre T, Rakić A D, Linfield E H, Davies A G 2014 J. Phys. D Appl. Phys. 47 374008Google Scholar
[56] Turčinková D, Scalari G, Castellano F, Amanti M I, Beck M, Faist J 2011 Appl. Phys. Lett. 99 191104Google Scholar
[57] Rösch M, Beck M, Süess M J, Bachmann D, Unterrainer K, Faist J, Scalari G 2018 Nanophotonics 7 237Google Scholar
[58] Rösch M, Scalari G, Beck M, Faist J 2014 Nat. Photon. 9 42Google Scholar
[59] Williams B S, Kumar S, Callebaut H, Hu Q, Reno J L 2003 Appl. Phys. Lett. 83 2124Google Scholar
[60] Finneran I, Good J, Holland D, Carroll P, Allodi M, Blake G 2015 Phys. Rev. Lett. 114 163902Google Scholar
[61] Burghoff D, Kao T Y, Han N, Chan C W I, Cai X, Yang Y, Hayton D J, Gao J R, Reno J L, Hu Q 2014 Nat. Photon. 8 462Google Scholar
[62] Hillbrand J, Jouy P, Beck M, Faist J 2018 Opt. Lett. 43 1746Google Scholar
[63] Yang Y, Burghoff D, Reno J, Hu Q 2017 Opt. Lett. 42 3888Google Scholar
[64] Barbieri S, Gellie P, Santarelli G, Ding L, Maineult W, Sirtori C, Colombelli R, Beere H, Ritchie D 2010 Nat. Photon. 4 636Google Scholar
[65] Gellie P, Barbieri S, Lampin J-F, Filloux P, Manquest C, Sirtori C, Sagnes I, Khanna S P, Linfield E H, Davies A G, Beere H, Ritchie D 2010 Opt. Express 18 20799Google Scholar
[66] Faist J, Beck M, Aellen T, Gini E 2001 Appl. Phys. Lett. 78 147Google Scholar
[67] Amanti M I, Scalari G, Terazzi R, Fischer M, Beck M, Faist J, Rudra A, Gallo P, Kapon E 2009 New J. Phys. 11 125022Google Scholar
[68] Wienold M, Schrottke L, Giehler M, Hey R, Grahn H T 2011 J. Appl. Phys. 109 073112Google Scholar
[69] Barbieri S, Ravaro M, Gellie P, Santarelli G, Manquest C, Sirtori C, Khanna S P, Linfield E H, Davies A G 2011 Nat. Photon. 5 306Google Scholar
[70] Wan W J, Li H, Zhou T, Cao J C 2017 Sci. Rep. 7 44109Google Scholar
[71] Wang F, Nong H, Fobbe T, Pistore V, Houver S, Markmann S, Jukam N, Amanti M, Sirtori C, Moumdji S, Colombelli R, Li L, Linfield E, Davies G, Mangeney J, Tignon J, Dhillon S 2017 Laser Photon. Rev. 11 1700013Google Scholar
[72] Wienold M, Röben B, Schrottke L, Grahn H T 2014 Opt. Express 22 30410Google Scholar
[73] Coldren L A, Miller B I, Iga K, Rentschler J A 1981 Appl. Phys. Lett. 38 315Google Scholar
[74] Tsang W T, Olsson N A, Logan R A 1983 Electron. Lett. 19 488Google Scholar
[75] Coldren L, Koch T 1984 IEEE J. Quantum Electron. 20 659Google Scholar
[76] Ebeling K J, Coldren L A, Miller B I, Rentschler J A 1983 Appl. Phys. Lett. 42 6Google Scholar
[77] Li Z, Li H, Wan W, Zhou K, Cao J, Chang G, Xu G 2018 Opt. Express 26 32675Google Scholar
[78] Oustinov D, Jukam N, Rungsawang R, Madeo J, Barbieri S, Filloux P, Sirtori C, Marcadet X, Tignon J, Dhillon S 2010 Nat. Commun. 1 69Google Scholar
[79] Udem T, Reichert J, Holzwarth R, Diddams S, Jones D, Ye J, Cundiff S, Hansch T, Hall J 2007 The Hydrogen Atom (Berlin Heidelberg: Springer-Verlag) p125
[80] Auston D H, Cheung K P 1985 J. Opt. Soc. Am. B 2 606Google Scholar
[81] Liang G, Hu X, Yu X, Shen Y, Li L H, Davies A G, Linfield E H, Liang H K, Zhang Y, Yu S F, Wang Q J 2015 ACS Photonics 2 1559Google Scholar
[82] Li H, Yan M, Wan W, Zhou T, Zhou K, Li Z, Cao J, Yu Q, Zhang K, Li M, Nan J, He B, Zeng H 2019 Adv. Sci. 6 1900460Google Scholar
[83] Han P Y, Tani M, Usami M, Kono S, Kersting R, Zhang X C 2001 J. Appl. Phys. 89 2357Google Scholar
[84] Hu G, Mizuguchi T, Oe R, Nitta K, Zhao X, Minamikawa T, Li T, Zheng Z, Yasui T 2018 Sci. Rep. 8 11155Google Scholar
[85] Jerez B, Walla F, Betancur A, Martin-Mateos P, de Dios C, Acedo P 2019 Opt. Lett. 44 415Google Scholar
[86] Bernhardt B, Ozawa A, Jacquet P, Jacquey M, Kobayashi Y, Udem T, Holzwarth R, Guelachvili G, Hänsch T W, Picqué N 2010 Nat. Photon. 4 55Google Scholar
[87] Rösch M, Scalari G, Villares G, Bosco L, Beck M, Faist J 2016 Appl. Phys. Lett. 108 171104Google Scholar
[88] Li Z, Wan W, Zhou K, Liao X, Yang S, Fu Z, Cao J C, Li H 2019 Phys. Rev. Appl. 12 044068Google Scholar
[89] Yang Y, Burghoff D, Hayton D J, Gao J R, Reno J L, Hu Q 2016 Optica 3 499Google Scholar
[90] Richter H, Semenov A D, Pavlov S G, Mahler L, Tredicucci A, Beere H E, Ritchie D A, Il’in K S, Siegel M, Hübers H W 2008 Appl. Phys. Lett. 93 141108Google Scholar
[91] Li H, Li Z, Wan W, Zhou K, Liao X, Yang S, Wang C, Cao J C, Zeng H 2020 ACS Photonics 7 49Google Scholar
[92] Sterczewski L A, Westberg J, Yang Y, Burghoff D, Reno J, Hu Q, Wysocki G 2019 Optica 6 766Google Scholar
计量
- 文章访问数: 11621
- PDF下载量: 346
- 被引次数: 0