搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锥形太赫兹量子级联激光器输出功率与光束特性研究

徐天鸿 姚辰 万文坚 朱永浩 曹俊诚

引用本文:
Citation:

锥形太赫兹量子级联激光器输出功率与光束特性研究

徐天鸿, 姚辰, 万文坚, 朱永浩, 曹俊诚

Analyses of the output power and beam quality of the tapered terahertz quantum cascade lasers

Xu Tian-Hong, Yao Chen, Wan Wen-Jian, Zhu Yong-Hao, Cao Jun-Cheng
PDF
导出引用
  • 针对锥形太赫兹量子级联激光器, 利用有限差分波束传播法和速率方程法, 建立了准三维的太赫兹有源器件仿真模型, 能够对具有轴向非线性波导结构的激光器进行模拟. 利用此模型, 研究了锥角大小对激光器输出光功率及光束质量的影响. 仿真结果表明, 考虑到器件之间的光耦合效率, 为了达到最大的有效输出光功率, 锥形太赫兹量子级联激光器的锥角存在一个最优值.
    We present a quasi-three-dimensional efficient model for simulating and designing the terahertz quantum cascade laser with nonlinear axial waveguide structure, based on the finite difference beam propagation method. The traditional beam propagation method is widely used to simulate the beam profile of the passive waveguide. In order to study the active device, however, the current induced variation in the active region should also be considered in the numerical simulation model. In the model presented in this paper, the phase and the amplitude of the propagating confined field in the active waveguide are determined by a few linear and non-linear effects. The parameters relating to the linear effects, such as the intrinsic refractive index profile and the intrinsic losses of the waveguide under zero current injection, are calculated by using COMSOL-Multiphysics. While the non-linear effects, such as the modal gain and the refractive index variation induced by current injection, are considered in a rigorous way by including the rate-equation set for calculating the carrier dynamics in the active region. The parameters used in the rate-equation set are obtained by referring to the literature and fitting the experimental results of the considered terahertz lasers. By adding the current induced gain and refractive index variation, the presented beam propagation model is able to simulate many current-dependant properties of a laser, such as the output power, the gain guiding effect, and the self-focusing effect. We show in this paper that the latter two effects have influence on inner-waveguide beam profile, and the competitive balance between them determines the output beam quality. By utilizing this numerical model, the terahertz quantum cascade laser with tapered waveguide structure is simulated, and the influences of the taper angle on output power and beam quality are investigated. According to the simulation results, we find that there is an obvious increase in the output power when the taper angle is increased from 0 to 3 degree, while the increment in the output power decreases rapidly when the taper angle is further increased. Besides, we observe that for the far field the full width at half maximum of the output beam decreases sharply with increasing the taper angle. However, when the taper angle equals 8 degree, multiple lateral modes are observed, which indicates poor output beam quality of this device and poor beam coupling efficiency between this device and the power meter.Therefore, although the simulation results show that the output power of this device is higher than that of the device with 5 degree taper angle, the experiment results show that the measured output power is lower. So the taper angle is not the larger the better, but there exists an optimum value, at which the terahertz quantum cascade laser can achieve the highest effective output power.
      通信作者: 曹俊诚, jccao@mail.sim.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2014CB339803)、国家高技术研究发展计划(批准号: 2011AA010205)、国家自然科学基金(批准号: 61131006, 61321492, 61176086, 61404149)、国家重大科学仪器设备开发专项(批准号: 2011YQ150021)、 02国家科技重大专项(批准号: 2011ZX02707)、中国科学院重要方向项目(批准号: YYYJ-1123-1)、中国科学院创新团队国际合作伙伴计划: 高迁移率材料工程创新团队项目和上海市青年科技英才扬帆计划(批准号: 15YF1414400)资助的课题.
      Corresponding author: Cao Jun-Cheng, jccao@mail.sim.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB339803), the National High Technology Research and Development Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant Nos. 61131006, 61321492, 61176086, 61404149), the Major National Development Project of Scientific Instrument and Equipment of China (Grant No. 2011YQ150021), the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX02707), the Major Project of Chinese Academy of Sciences (Grant No. YYYJ-1123-1), the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Yang Fan Program, China (Grant No. 15YF1414400).
    [1]

    Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553

    [2]

    Kohler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C, Rossi F 2002 Nature 417 156

    [3]

    Kumar S 2011 IEEE J. Sel. Top. Quantum Electron. 17 38

    [4]

    Li H, Han Y J, Tan Z Y, Zhang R, Cao J C 2010 Acta Phys. Sin. 59 2169 (in Chinese) [黎华, 韩英军, 谭智勇, 张戎, 曹俊诚 2010 59 2169]

    [5]

    Wan W J, Yin R, Tan Z Y, Wang F, Han Y J, Cao J C 2013 Acta Phys. Sin. 62 210701 (in Chinese) [万文坚, 尹嵘, 谭智勇, 王丰, 韩英军, 曹俊诚 2013 62 210701]

    [6]

    Williams B S, Kumar S, Hu Q, Reno J L 2006 Electron. Lett. 42 89

    [7]

    Williams B, Kumar S, Hu Q, Reno J 2005 Opt. Express 13 3331

    [8]

    Li L, Chen L, Zhu J, Freeman J, Dean P, Valavanis A, Davies A G, Linfield E H 2014 Electron. Lett. 50 309

    [9]

    Kumar S, Hu Q, Reno J L 2009 Appl. Phys. Lett. 94 131105

    [10]

    Kumar S, Williams B S, Qin Q, Lee A W, Hu Q, Reno J L 2007 Opt. Express 15 113

    [11]

    Burghoff D, Kao T Y, Han N, Chan C W I, Cai X, Yang Y, Hayton D J, Gao J R, Reno J L, Hu Q 2014 Nat. Photon. 8 462

    [12]

    Li Y, Wang J, Yang N, Liu J, Wang T, Liu F, Wang Z, Chu W, Duan S 2013 Opt. Express 21 15998

    [13]

    Kohen S, Williams B S, Hu Q 2005 J. Appl. Phys. 97 053106

    [14]

    Okamoto K 2006 Fundamentals of Optical Waveguides (San Diego: Elsevier Inc.) p365

    [15]

    Marciante J R, Agrawal G P 1996 IEEE J. Quantum Electron. 32 590

    [16]

    Liu J Q, Chen J Y, Liu F Q, Li L, Wang L J, Wang Z G 2010 Chin. Phys. Lett. 27 104205

    [17]

    Li H, Manceau J M, Andronico A, Jagtap V, Sirtori C, Li L H, Linfield E H, Davies A G, Barbieri S 2014 Appl. Phys. Lett. 104 241102

    [18]

    Wang J, Wu W D, Zhang X L, Duan S Q 2012 Chin. J. Comput. Phys. 29 127 (in Chinese) [王健, 吴卫东, 章小丽, 段素青 2012 计算物理 29 127]

    [19]

    Coldren L A, Corzine S W 1995 Diode Lasers and Photonic Integrated Circuits (New York: John Wiley Sons, Inc.) p209

    [20]

    Choi H, Diehl L, Wu Z K, Giovannini M, Faist J, Capasso F, Norris T B 2008 Phys. Rev. Lett. 100 167401

    [21]

    Jirauschek C 2010 Appl. Phys. Lett. 96 011103

    [22]

    Barbieri S, Sirtori C, Page H, Beck M, Faist J, Nagle J 2000 IEEE J. Quantum Electron. 36 736

    [23]

    Thompson M G, Rae A R, Mo X, Penty R V, White I H 2009 IEEE J. Sel. Top. Quantum Electron. 15 661

    [24]

    Xu T, Bardella P, Montrosset I 2013 IEEE Photon. Technol. Lett. 25 63

    [25]

    Hadley G R 1992 IEEE J. Quantum Electron. 28 363

    [26]

    Nikitichev D, Ding Y, Cataluna M, Rafailov E, Drzewietzki L, Breuer S, Elsaesser W, Rossetti M, Bardella P, Xu T, Montrosset I, Krestnikov I, Livshits D, Ruiz M, Tran M, Robert Y, Krakowski M 2012 Laser Phys. 22 715

    [27]

    Li J C, Chen J B, Fan Z B, Ma K, Lou Y L 2002 J. Optoelectron. Laser 13 87 (in Chinese) [李俊昌, 陈劲波, 樊则宾, 马琨, 楼宇丽 2002 光电子激光 13 87]

  • [1]

    Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553

    [2]

    Kohler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C, Rossi F 2002 Nature 417 156

    [3]

    Kumar S 2011 IEEE J. Sel. Top. Quantum Electron. 17 38

    [4]

    Li H, Han Y J, Tan Z Y, Zhang R, Cao J C 2010 Acta Phys. Sin. 59 2169 (in Chinese) [黎华, 韩英军, 谭智勇, 张戎, 曹俊诚 2010 59 2169]

    [5]

    Wan W J, Yin R, Tan Z Y, Wang F, Han Y J, Cao J C 2013 Acta Phys. Sin. 62 210701 (in Chinese) [万文坚, 尹嵘, 谭智勇, 王丰, 韩英军, 曹俊诚 2013 62 210701]

    [6]

    Williams B S, Kumar S, Hu Q, Reno J L 2006 Electron. Lett. 42 89

    [7]

    Williams B, Kumar S, Hu Q, Reno J 2005 Opt. Express 13 3331

    [8]

    Li L, Chen L, Zhu J, Freeman J, Dean P, Valavanis A, Davies A G, Linfield E H 2014 Electron. Lett. 50 309

    [9]

    Kumar S, Hu Q, Reno J L 2009 Appl. Phys. Lett. 94 131105

    [10]

    Kumar S, Williams B S, Qin Q, Lee A W, Hu Q, Reno J L 2007 Opt. Express 15 113

    [11]

    Burghoff D, Kao T Y, Han N, Chan C W I, Cai X, Yang Y, Hayton D J, Gao J R, Reno J L, Hu Q 2014 Nat. Photon. 8 462

    [12]

    Li Y, Wang J, Yang N, Liu J, Wang T, Liu F, Wang Z, Chu W, Duan S 2013 Opt. Express 21 15998

    [13]

    Kohen S, Williams B S, Hu Q 2005 J. Appl. Phys. 97 053106

    [14]

    Okamoto K 2006 Fundamentals of Optical Waveguides (San Diego: Elsevier Inc.) p365

    [15]

    Marciante J R, Agrawal G P 1996 IEEE J. Quantum Electron. 32 590

    [16]

    Liu J Q, Chen J Y, Liu F Q, Li L, Wang L J, Wang Z G 2010 Chin. Phys. Lett. 27 104205

    [17]

    Li H, Manceau J M, Andronico A, Jagtap V, Sirtori C, Li L H, Linfield E H, Davies A G, Barbieri S 2014 Appl. Phys. Lett. 104 241102

    [18]

    Wang J, Wu W D, Zhang X L, Duan S Q 2012 Chin. J. Comput. Phys. 29 127 (in Chinese) [王健, 吴卫东, 章小丽, 段素青 2012 计算物理 29 127]

    [19]

    Coldren L A, Corzine S W 1995 Diode Lasers and Photonic Integrated Circuits (New York: John Wiley Sons, Inc.) p209

    [20]

    Choi H, Diehl L, Wu Z K, Giovannini M, Faist J, Capasso F, Norris T B 2008 Phys. Rev. Lett. 100 167401

    [21]

    Jirauschek C 2010 Appl. Phys. Lett. 96 011103

    [22]

    Barbieri S, Sirtori C, Page H, Beck M, Faist J, Nagle J 2000 IEEE J. Quantum Electron. 36 736

    [23]

    Thompson M G, Rae A R, Mo X, Penty R V, White I H 2009 IEEE J. Sel. Top. Quantum Electron. 15 661

    [24]

    Xu T, Bardella P, Montrosset I 2013 IEEE Photon. Technol. Lett. 25 63

    [25]

    Hadley G R 1992 IEEE J. Quantum Electron. 28 363

    [26]

    Nikitichev D, Ding Y, Cataluna M, Rafailov E, Drzewietzki L, Breuer S, Elsaesser W, Rossetti M, Bardella P, Xu T, Montrosset I, Krestnikov I, Livshits D, Ruiz M, Tran M, Robert Y, Krakowski M 2012 Laser Phys. 22 715

    [27]

    Li J C, Chen J B, Fan Z B, Ma K, Lou Y L 2002 J. Optoelectron. Laser 13 87 (in Chinese) [李俊昌, 陈劲波, 樊则宾, 马琨, 楼宇丽 2002 光电子激光 13 87]

  • [1] 张小丽, 殷秋鹏, 李果, 姚曦, 丁礼磊. 非线性磁电层合材料的对称等效电路理论及数值仿真分析.  , 2024, 73(23): 237501. doi: 10.7498/aps.73.20240934
    [2] 冯伟, 韦舒婷, 曹俊诚. 6G技术发展愿景与太赫兹通信.  , 2021, 70(24): 244303. doi: 10.7498/aps.70.20211729
    [3] 姚佳烽, 万建芬, 杨璐, 刘凯, 陈柏, 吴洪涛. 基于生物阻抗谱的细胞电学特性研究.  , 2020, 69(16): 163301. doi: 10.7498/aps.69.20200601
    [4] 廖小瑜, 曹俊诚, 黎华. 太赫兹半导体激光光频梳研究进展.  , 2020, 69(18): 189501. doi: 10.7498/aps.69.20200399
    [5] 马武英, 姚志斌, 何宝平, 王祖军, 刘敏波, 刘静, 盛江坤, 董观涛, 薛院院. 65 nm互补金属氧化物半导体场效应和晶体管总剂量效应及损伤机制.  , 2018, 67(14): 146103. doi: 10.7498/aps.67.20172542
    [6] 李振兴, 李珂, 沈俊, 戴巍, 高新强, 郭小惠, 公茂琼. 室温磁制冷技术的研究进展.  , 2017, 66(11): 110701. doi: 10.7498/aps.66.110701
    [7] 程秋虎, 王石语, 过振, 蔡德芳, 李兵斌. 超高斯光束抽运调Q固体激光器仿真模型研究.  , 2017, 66(18): 180204. doi: 10.7498/aps.66.180204
    [8] 王长宏, 林涛, 曾志环. 半导体温差发电过程的模型分析与数值仿真.  , 2014, 63(19): 197201. doi: 10.7498/aps.63.197201
    [9] 谭程, 梁志珊. 电感电流伪连续模式下Boost变换器的分数阶建模与分析.  , 2014, 63(7): 070502. doi: 10.7498/aps.63.070502
    [10] 张银, 陈明阳, 周骏, 张永康. 微结构芯大模场平顶光纤及其传输特性分析.  , 2013, 62(17): 174211. doi: 10.7498/aps.62.174211
    [11] 毕津顺, 刘刚, 罗家俊, 韩郑生. 22 nm工艺超薄体全耗尽绝缘体上硅晶体管单粒子瞬态效应研究.  , 2013, 62(20): 208501. doi: 10.7498/aps.62.208501
    [12] 张文明, 李雪, 刘爽, 李雅倩, 王博华. 一类非线性相对转动系统的混沌运动及多时滞反馈控制.  , 2013, 62(9): 094502. doi: 10.7498/aps.62.094502
    [13] 邱流潮. 基于不可压缩光滑粒子动力学的黏性液滴变形过程仿真.  , 2013, 62(12): 124702. doi: 10.7498/aps.62.124702
    [14] 张华, 吴建军, 张代贤, 张锐, 何振. 用于脉冲等离子体推力器烧蚀过程仿真的新型机电模型.  , 2013, 62(21): 210202. doi: 10.7498/aps.62.210202
    [15] 杨定新, 胡政, 杨拥民. 大参数周期信号随机共振解析.  , 2012, 61(8): 080501. doi: 10.7498/aps.61.080501
    [16] 谢子健, 胡作启, 王宇辉, 赵旭. 相变存储单元RESET多值存储过程的数值仿真研究.  , 2012, 61(10): 100201. doi: 10.7498/aps.61.100201
    [17] 孙棣华, 田川. 考虑驾驶员预估效应的交通流格子模型与数值仿真.  , 2011, 60(6): 068901. doi: 10.7498/aps.60.068901
    [18] 王发强, 马西奎. 电感电流连续模式下Boost变换器的分数阶建模与仿真分析.  , 2011, 60(7): 070506. doi: 10.7498/aps.60.070506
    [19] 乔晓华, 包伯成. 三维四翼广义增广Lü系统.  , 2009, 58(12): 8152-8159. doi: 10.7498/aps.58.8152
    [20] 田 赫, 掌蕴东, 王 号, 邱 巍, 王 楠, 袁 萍. 光脉冲在微环耦合谐振光波导中传输线性特性的数值仿真.  , 2008, 57(11): 7012-7016. doi: 10.7498/aps.57.7012
计量
  • 文章访问数:  6937
  • PDF下载量:  475
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-07
  • 修回日期:  2015-06-17
  • 刊出日期:  2015-11-05

/

返回文章
返回
Baidu
map