搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁电材料中电场对唯象系数和电卡强度的影响

鲁圣国 李丹丹 林雄威 简晓东 赵小波 姚英邦 陶涛 梁波

引用本文:
Citation:

铁电材料中电场对唯象系数和电卡强度的影响

鲁圣国, 李丹丹, 林雄威, 简晓东, 赵小波, 姚英邦, 陶涛, 梁波

Influence of electric field on the phenomenological coefficient and electrocaloric strength in ferroelectrics

Lu Sheng-Guo, Li Dan-Dan, Lin Xiong-Wei, Jian Xiao-Dong, Zhao Xiao-Bo, Yao Ying-Bang, Tao Tao, Liang Bo
PDF
HTML
导出引用
  • 由于电场强度能够影响铁电材料的极化强度和介电常数, 因此唯象系数$ {a}_{0} $是电场强度的隐函数. 在铁电相区域, 唯象系数$ {a}_{0} $由铁电极化强度和介电常数倒数确定, 是电场的非线性函数. 在顺电相区域, 唯象系数$ {a}_{0} $由介电常数倒数确定, 也是电场的非线性函数. 本文研究了铁电共聚物、铁电三聚物和钛酸锶钡钙陶瓷的唯象系数与电场的关系, 发现唯象系数随电场的增加而增加, 最大约1倍. 电卡强度被用来表征电卡材料在电场作用下的电卡效应强弱, 通过研究电卡强度可以发现高效率的电卡材料. 本文通过热力学理论, 得到了电卡强度的解析表达式, 发现唯象系数、相变温度、极化强度、比热以及相变温度处的介电常数峰值, 对电卡强度具有明显的影响. 该表达式适用于一级相变材料、二级相变材料、以及弛豫型铁电体.
    As the electric field can affect the polarization and dielectric constant, the phenomenological coefficient a0 is an implicit function of electric field. The phenomenological coefficient a0 is determined by the polarization and the reciprocal of permittivity, and a nonlinear function of electric field in the ferroelectric phase regime. In the paraelectric phase regime, however, a0 is merely subjected to the reciprocal of permittivity, and also a nonlinear function of electric field. In this paper, we investigate the electric field dependence of phenomenological coefficient in ferroelectric copolymers, terpolymers and Ba0.85Ca0.05Sr0.1TiO3 ceramics. It is indicated that the phenomenological coefficient increases with the increasing electric field, the maximum value is obtained to be about 2 times the original value. Moreover, the electrocaloric strength is used to measure the magnitude of electrocaloric effect of electrocaloric materials in an external electric field. It can be used to find out novel and efficient electrocaloric materials through studying the electrocaloric strength. Based on the thermodynamic theory, the analytical expression of electrocaloric strength is deduced. It is found that the phenomenological coefficient, phase transition, specific heat capacity, and permittivity versus temperature peak value at the phase transition temperature have a clear influence on the electrocaloric strength. The expression can be applied to 1st order, 2nd order phase transition materials and relaxor ferroelectrics.
      通信作者: 鲁圣国, sglu@gdut.edu.cn
    • 基金项目: 国家级-国家自然科学基金委-广东省联合基金(U1501246)
      Corresponding author: Lu Sheng-Guo, sglu@gdut.edu.cn
    [1]

    莱因斯 M E, 格拉斯 A M 著 (钟维烈 译) 1989 铁电体及有关材料的原理和应用 (北京: 科学出版社) 第159—162页

    Lines M E, Glass A M (translated by Zhong W L) 1989 Principles and Applications of Ferroelectrics and Related Materials (Beijing: Science Press) pp159–162 (in Chinese)

    [2]

    Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270Google Scholar

    [3]

    Neese B, Chu B J, Lu S G, Wang Y, Furman E, Zhang Q M 2008 Science 321 821Google Scholar

    [4]

    Correia T, Zhang Q 2014 Electrocaloric Materials: New Generation of Coolers (Berlin, Heidelberg, London: Springer Verlag) pp1–15

    [5]

    Scott J F 2011 Ann. Rev. Mater. Res. 41 229Google Scholar

    [6]

    Lu S G, Zhang Q M 2012 J. Adv. Dielectr. 2 1230011Google Scholar

    [7]

    Okaya A, Barash L F 1962 Proc. IRE 50 2081Google Scholar

    [8]

    Lu S G, Neese B, Chu B J, Wang Y, Zhang Q M 2008 Appl. Phys. Lett. 93 042905Google Scholar

    [9]

    Lu S G, Xu Z K, Chen H D 2005 Phys. Rev. B 72 054120Google Scholar

    [10]

    Padmini P, Taylor T R, Lefevre M J, Nagra A S, York R A, Speck J S 1999 Appl. Phys. Lett. 75 3186Google Scholar

    [11]

    Zhi Y, Chen A, Guo R Y, Bhalla A S 2002 Appl. Phys. Lett. 81 1285Google Scholar

    [12]

    Ye H J, Qian X S, Jeong D Y, Zhang S J, Zhou Y, Shao W Z, Zhen L, Zhang Q M 2014 Appl. Phys. Lett. 105 152908Google Scholar

    [13]

    Amin A, Cross L E, Newnham R E 1981 Ferroelectrics 37 647Google Scholar

    [14]

    Rose M C, Cohen R E 2012 Phys. Rev. Lett. 109 209903Google Scholar

    [15]

    Buessem W R, Cross L E, Goswami A K 1966 J. Am. Ceram. Soc. 49 33Google Scholar

    [16]

    Lu S G, Rozic B, Kutnjiak Z, Zhang Q M 2011 Integr. Ferroelectr. 125 176Google Scholar

    [17]

    Inoue M, Tada Y, Suganuma K, Ishiguro H 2007 Polym. Degrad. Stab. 92 1833Google Scholar

    [18]

    Pelrine R, Kornbluh R, Pei Q B, Joseph J 2000 Science 287 836Google Scholar

    [19]

    杨学良 2013 硕士学位论文 (天津: 天津师范大学)

    Yang X L 2013 M. S. Thesis (Tianjin: Tianjin Normal University) (in Chinese)

    [20]

    Lu S G, Zhang Q M 2009 Adv. Mater. 21 1983Google Scholar

    [21]

    Horchidan N, Ianculescu A, Vasilescu C, Deluca M, Musteata V, Ursic H, Frunza R, Malic B, Mitoseriu L 2014 J. Eur. Ceram. Soc. 34 3661Google Scholar

    [22]

    Moya X, Stern-Taulats E, Crossley S, González-Alonso D, Kar-Narayan S, Planes A, Mañosa L, Mathur N D 2013 Adv. Mater. 25 1360Google Scholar

  • 图 1  钛酸钡晶体极化强度(a)和介电常数倒数(b)在外电场作用下与温度的关系

    Fig. 1.  (a) Polarization and (b) reciprocal of permittivity of BaTiO3 as a function of temperature at various external electric fields.

    图 2  图1(a)得到的$ {a}_{0}' $与温度和电场的关系

    Fig. 2.  $ {a}_{0}' $ derived from Fig. 1(a) as a function of electric field and temperature.

    图 3  (a)聚(偏氟乙烯-三氟乙烯) 55 mol%/45 mol%共聚物介电常数与温度和电场的关系; (b)介电常数倒数与温度和电场的关系; (c)唯象系数$ {a}_{0}' $与电场的关系, 图中实线是为了观察方便

    Fig. 3.  (a) Permittivity of P(VDF-TrFE) 55 mol%/45 mol% as a function of electric field and temperature; (b) reciprocal of permittivity as a function of temperature and electric field; (c) $ {a}_{0}' $ as a function of electric field and linear fitting, and the solid line occurred is guided for observation.

    图 4  (a)聚(偏氟乙烯-三氟乙烯-氯氟乙烯) (P(VDF-TrFE-CFE)) 69.7 mol%/30.3 mol%/6.05 mol%三聚物介电常数倒数与温度和电场的关系; (b)相应的唯象系数$ {a}_{0}' $与电场的关系

    Fig. 4.  (a) Reciprocal of permittivity of the (P(VDF-TrFE-CFE)) 69.7 mol%/30.3 mol%/6.05 mol% as a function of temperature and electric field; (b) the corresponding $ {a}_{0}' $ as a function of electric field.

    图 5  (a) Ba0.85Ca0.05Sr0.1TiO3陶瓷介电常数倒数与温度和电场的函数关系; (b) 相应的唯象系数$ {a}_{0}' $与电场的关系

    Fig. 5.  (a) Reciprocal of permittivity of Ba0.85Ca0.05Sr0.1TiO3 ceramics as a function of temperature and electric field; (b) the corresponding $ {a}_{0}' $ as a function of electric field.

    图 6  聚(偏氟乙烯-三氟乙烯) 55 mol%/45 mol%共聚物的电卡强度(dT/dE)与温度、电场和频率的关系 (a) f = 0.1 kHz; (b) f = 1 kHz; (c) f = 10 kHz; (d) f = 100 kHz

    Fig. 6.  Electrocaloric strength (dT/dE) of P(VDF-TrFE) 55 mol%/45 mol% copolymer as a function of temperature, electric field and frequency: (a) f = 0.1 kHz; (b) f = 1 kHz; (c) f = 10 kHz; (d) f = 100 kHz

    表 1  用于理论模拟的钛酸钡的参数[15]

    Table 1.  Parameters of BaTiO3 used for theoretical simulation[15].

    唯象系数符号唯象系数数值
    a01.15 × 106
    b–5.24 × 109
    c2.16 × 1010
    下载: 导出CSV
    Baidu
  • [1]

    莱因斯 M E, 格拉斯 A M 著 (钟维烈 译) 1989 铁电体及有关材料的原理和应用 (北京: 科学出版社) 第159—162页

    Lines M E, Glass A M (translated by Zhong W L) 1989 Principles and Applications of Ferroelectrics and Related Materials (Beijing: Science Press) pp159–162 (in Chinese)

    [2]

    Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270Google Scholar

    [3]

    Neese B, Chu B J, Lu S G, Wang Y, Furman E, Zhang Q M 2008 Science 321 821Google Scholar

    [4]

    Correia T, Zhang Q 2014 Electrocaloric Materials: New Generation of Coolers (Berlin, Heidelberg, London: Springer Verlag) pp1–15

    [5]

    Scott J F 2011 Ann. Rev. Mater. Res. 41 229Google Scholar

    [6]

    Lu S G, Zhang Q M 2012 J. Adv. Dielectr. 2 1230011Google Scholar

    [7]

    Okaya A, Barash L F 1962 Proc. IRE 50 2081Google Scholar

    [8]

    Lu S G, Neese B, Chu B J, Wang Y, Zhang Q M 2008 Appl. Phys. Lett. 93 042905Google Scholar

    [9]

    Lu S G, Xu Z K, Chen H D 2005 Phys. Rev. B 72 054120Google Scholar

    [10]

    Padmini P, Taylor T R, Lefevre M J, Nagra A S, York R A, Speck J S 1999 Appl. Phys. Lett. 75 3186Google Scholar

    [11]

    Zhi Y, Chen A, Guo R Y, Bhalla A S 2002 Appl. Phys. Lett. 81 1285Google Scholar

    [12]

    Ye H J, Qian X S, Jeong D Y, Zhang S J, Zhou Y, Shao W Z, Zhen L, Zhang Q M 2014 Appl. Phys. Lett. 105 152908Google Scholar

    [13]

    Amin A, Cross L E, Newnham R E 1981 Ferroelectrics 37 647Google Scholar

    [14]

    Rose M C, Cohen R E 2012 Phys. Rev. Lett. 109 209903Google Scholar

    [15]

    Buessem W R, Cross L E, Goswami A K 1966 J. Am. Ceram. Soc. 49 33Google Scholar

    [16]

    Lu S G, Rozic B, Kutnjiak Z, Zhang Q M 2011 Integr. Ferroelectr. 125 176Google Scholar

    [17]

    Inoue M, Tada Y, Suganuma K, Ishiguro H 2007 Polym. Degrad. Stab. 92 1833Google Scholar

    [18]

    Pelrine R, Kornbluh R, Pei Q B, Joseph J 2000 Science 287 836Google Scholar

    [19]

    杨学良 2013 硕士学位论文 (天津: 天津师范大学)

    Yang X L 2013 M. S. Thesis (Tianjin: Tianjin Normal University) (in Chinese)

    [20]

    Lu S G, Zhang Q M 2009 Adv. Mater. 21 1983Google Scholar

    [21]

    Horchidan N, Ianculescu A, Vasilescu C, Deluca M, Musteata V, Ursic H, Frunza R, Malic B, Mitoseriu L 2014 J. Eur. Ceram. Soc. 34 3661Google Scholar

    [22]

    Moya X, Stern-Taulats E, Crossley S, González-Alonso D, Kar-Narayan S, Planes A, Mañosa L, Mathur N D 2013 Adv. Mater. 25 1360Google Scholar

  • [1] 邹幸, 朱哲, 方文啸. 纳米线电卡效应的表面应力与固溶改性相场模拟.  , 2024, 73(10): 100501. doi: 10.7498/aps.73.20240105
    [2] 白刚, 韩宇航, 高存法. (111)取向无铅K0.5Na0.5NbO3外延薄膜的相变和电卡效应: 外应力与错配应变效应.  , 2022, 71(9): 097701. doi: 10.7498/aps.71.20220234
    [3] 汤卉, 牛翔, 杨志朋, 彭小草, 赵小波, 姚英邦, 陶涛, 梁波, 唐新桂, 鲁圣国. 0.7BiFeO3-0.3BaTiO3陶瓷中极化翻转产生的巨电卡效应增加及Mn4+离子掺杂对其介电、铁电性能的影响.  , 2022, 71(14): 147701. doi: 10.7498/aps.71.20220280
    [4] 魏晓薇, 陶红, 赵纯林, 吴家刚. 高性能铌酸钾钠基无铅陶瓷的压电和电卡性能.  , 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [5] 高荣贞, 王静, 王俊升, 黄厚兵. Landau-Devonshire理论探究不同类型铁电材料的电卡效应.  , 2020, 69(21): 217801. doi: 10.7498/aps.69.20201195
    [6] 蔡田怡, 雎胜. 铁电体的光伏效应.  , 2018, 67(15): 157801. doi: 10.7498/aps.67.20180979
    [7] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应.  , 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [8] 蒋招绣, 王永刚, 聂恒昌, 刘雨生. 极化状态与方向对单轴压缩下Pb(Zr0.95Ti0.05)O3铁电陶瓷畴变与相变行为的影响.  , 2017, 66(2): 024601. doi: 10.7498/aps.66.024601
    [9] 王歆钰, 储瑞江, 魏胜男, 董正超, 仲崇贵, 曹海霞. 应力作用下EuTiO3铁电薄膜电热效应的唯象理论研究.  , 2015, 64(11): 117701. doi: 10.7498/aps.64.117701
    [10] 蒋招绣, 辛铭之, 申海艇, 王永刚, 聂恒昌, 刘雨生. 多孔未极化Pb(Zr0.95Ti0.05)O3铁电陶瓷单轴压缩力学响应与相变.  , 2015, 64(13): 134601. doi: 10.7498/aps.64.134601
    [11] 周大雨, 徐进. Si掺杂HfO2薄膜的铁电和反铁电性质.  , 2014, 63(11): 117703. doi: 10.7498/aps.63.117703
    [12] 张晋鲁, 李玉强, 赵兴宇, 黄以能. 用Weiss分子场理论对有外电场时铁电体系相变特征的研究.  , 2012, 61(14): 140501. doi: 10.7498/aps.61.140501
    [13] 吴筱毅, 熊小敏, 张进修. 扭转应变谱及其在相变研究中的应用.  , 2012, 61(1): 014601. doi: 10.7498/aps.61.014601
    [14] 蒋冬冬, 谷岩, 冯玉军, 杜金梅. 静水压下锆锡钛酸铅铁电陶瓷相变和介电性能研究.  , 2011, 60(10): 107703. doi: 10.7498/aps.60.107703
    [15] 王英龙, 张鹏程, 刘虹让, 刘保亭, 傅广生. 晶粒尺寸及衬底应力对铁电薄膜特性的影响.  , 2011, 60(7): 077702. doi: 10.7498/aps.60.077702
    [16] 吕业刚, 梁晓琳, 龚跃球, 郑学军, 刘志壮. 外加电场对铁电薄膜相变的影响.  , 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [17] 周波, 陈云琳, 刘刚, 詹鹤. 铁电体中新畴成核经典模型的改进.  , 2009, 58(4): 2762-2767. doi: 10.7498/aps.58.2762
    [18] 张可言. 金属材料在中强度激光辐照下的相变速度研究.  , 2004, 53(6): 1815-1819. doi: 10.7498/aps.53.1815
    [19] 赵明磊, 钟维烈, 王春雷, 王矜奉, 张沛霖. 钛酸铋钠系铁电体的相变研究.  , 2002, 51(8): 1856-1860. doi: 10.7498/aps.51.1856
    [20] 刘 鹏, 杨同青, 张良莹, 姚 熹. Pb(Zr,Sn,Ti)O3反铁电陶瓷的低温相变扩散与极化弛豫.  , 2000, 49(11): 2300-2303. doi: 10.7498/aps.49.2300
计量
  • 文章访问数:  10211
  • PDF下载量:  370
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-27
  • 修回日期:  2020-04-01
  • 刊出日期:  2020-06-20

/

返回文章
返回
Baidu
map