搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pt/BiFeO3/Nb:SrTiO3异质结的光伏效应和光调控整流特性

刘川川 郝飞翔 殷月伟 李晓光

引用本文:
Citation:

Pt/BiFeO3/Nb:SrTiO3异质结的光伏效应和光调控整流特性

刘川川, 郝飞翔, 殷月伟, 李晓光

Photovoltaic effect and photo-assisted diode behavior in Pt/BiFeO3/Nb-doped SrTiO3 heterojunction

Liu Chuan-Chuan, Hao Fei-Xiang, Yin Yue-Wei, Li Xiao-Guang
PDF
HTML
导出引用
  • 铁电薄膜异质结的光伏效应因具有重要的应用前景而备受关注, 而且其中多种光伏效应机制的共存带来了丰富而复杂的物理内涵. 为了研究界面对光伏效应的重要作用, 制备了基于BiFeO3铁电薄膜的具有“金属/铁电体/半导体”非对称电极结构的Pt/BiFeO3/Nb:SrTiO3异质结, 并系统研究了其在不同波长(365和445 nm)激光照射下的光伏效应. 在365 nm, 74 mW/cm2光照下, 异质结的光伏开路电压高达0.55 V. 而且, 由于光激发和光吸收过程的不同, 365 nm激光照射下该异质结的开路电压和短路电流比445 nm激光照射下的结果显著提高. 随着温度降低, 开路电压单调上升, 而不同波长下的短路电流则表现出不同的变化规律. 另外, 随着光强的提高, 异质结整流效应获得增强, 通过分析, 空间电荷限制电流传导机制对异质结输运有重要贡献, 而光生载流子将通过填充缺陷影响输运特性.
    The photovoltaic effect of ferroelectric BiFeO3 (BFO)-based heterojunction has been one of hot subjects of theoretical and experimental studies due to its important application prospects, and the coexistence of varieties of photovoltaic effect mechanisms (bulk photovoltaic effect, domain wall effect, interfacial barrier effect, etc.) can bright rich and complicated physics nature. In order to investigate the important role that the interface plays in the photovoltaic effect, we prepare the Pt/BFO(60 nm)/Nb:SrTiO3 (NSTO) heterojunction with an asymmetric metal/ferroelectric/semiconductor structure, and systematically investigate the photovoltaic effect under laser irradiation with different wavelengths (365 nm and 445 nm). The heterojunction exhibits much stronger open-circuit voltage (Voc, ~0.55 V at 74 mW/cm2) and short-circuit current density (Jsc, ~ 208 μA/cm2 at 74 mW/cm2) for the laser irradiation with 365 nm wavelength than those for the laser irradiation with 445 nm wavelength, and the Voc and Jsc are both strengthened with the increase of light intensity. This is because the 365 nm light with the photon energy ~3.4 eV can stimulate photon-induced carriers in both BFO (band gap ~2.7 eV) and NSTO (band gap ~3.2 eV) at both the Pt/BFO interface and the BFO/NSTO interface, while the 445 nm light with the photon energy ~2.8 eV can only generate carriers in BFO. Thus the photovoltaic voltage is much bigger for the 365 nm light. Furthermore, the laser absorption process is much more efficient for the 365 nm light (79% absorbed in BFO and 21% absorbed in NSTO) than for the 445 nm light (21% absorbed in BFO). In addition, the temperature dependent Voc and Jsc are also investigated. It is found that for the 365 nm and 445 nm laser irradiation, the Voc increases with temperature decreasing, which is possibly due to the variations of the built-in potential, concentration of thermal charge carriers, and/or electron-phonon scatterings. The sharper variation of Voc above ~ 200 K may suggest the more significant role of thermal charge carriers at high temperatures. Interestingly, the temperature dependent Jsc behaves differently for the 365 nm and 445 nm light. Under the 365 nm laser irradiation, the Jsc remains almost unchanged below 170 K and increases sharply with temperature increasing above 170 K, which may be related to the dominant role of thermal excitation for the 365 nm light. While for the 445 nm light, the Jsc decreases with temperature increasing, which follows the variation trend of its Voc. What is more, the conduction mechanism of Pt/BFO/NSTO heterojunction under laser irradiation is also studied. It is found that the conduction for the 445 nm light can be nicely described by the space-charge-limited bulk conduction (SCLC) model and the photon-generated carriers may fill the traps and thus leading the transition voltage to decrease. While for the 365 nm light, the conduction is more complicated and cannot be described by the SCLC model. Our findings may be helpful in understanding the photovoltaic effect in transition-metal oxide based heterojunctions and designing photovoltaic devices.
      通信作者: 殷月伟, yyw@ustc.edu.cn
    • 基金项目: 国家级-国家重点基础研究发展计划(2016YFA0300103 2019YFA0307900)
      Corresponding author: Yin Yue-Wei, yyw@ustc.edu.cn
    [1]

    Tan Z W, Hong L Q, Fan Z, Tian J J, Zhang L Y, Jiang Y, Hou Z P, Chen D Y, Qin M H, Zeng M, Gao J W, Lu X B, Zhou G F, Gao X S, Liu J M 2019 NPG Asia Mater. 11 20Google Scholar

    [2]

    Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J, Rosei F 2014 Nat. Photonics 9 61Google Scholar

    [3]

    Grinberg I, West D V, Torres M, Gou G Y, Stein D M, Wu L Y, Chen G N, Gallo E M, Akbashev A R, Davies P K, Spanier J E, Rappe A M 2013 Nature 503 509Google Scholar

    [4]

    Chakrabartty J, Harnagea C, Celikin M, Rosei F, Nechache R 2018 Nat. Photonics 12 271Google Scholar

    [5]

    Wang J, Ma J, Yang Y B, Chen M F, Zhang J X, Ma J, Nan C W 2019 ACS Appl. Electron. Mater. 1 862Google Scholar

    [6]

    Li J K, Ge C, Jin K J, Du J Y, Yang J T, Lu H B, Yang G Z 2017 Appl. Phys. Lett. 110 142901Google Scholar

    [7]

    Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W, Chu J H 2015 Adv. Mater. 27 6575Google Scholar

    [8]

    Wang P, Wang Y, Ye L, Wu M Z, Xie R Z, Wang X D, Chen X S, Fan Z Y, Wang J L, Hu W D 2018 Small 14 e1800492Google Scholar

    [9]

    Guo R, You L, Zhou Y, Shiuh L Z, Zou X, Chen L, Ramesh R, Wang J L 2013 Nat. Commun. 4 1990Google Scholar

    [10]

    Wei M C, Liu M F, Yang L, Xie B, Li X, Wang X Z, Cheng X Y, Zhu Y D, Li Z J, Su Y L, Li M Y, Hu Z Q, Liu J M 2020 Ceram. Int. 46 5126Google Scholar

    [11]

    Thakoor S 1992 Appl. Phys. Lett. 60 3319Google Scholar

    [12]

    Liu C C, Sun H Y, Ma C, Chen Z W, Luo Z, Su T S, Yin Y W, Li X G 2020 IEEE Electron Device Lett. 41 42Google Scholar

    [13]

    Liu Y K, Yao Y P, Dong S N, Yang S W, Li X G 2012 Phys. Rev. B 86 075113Google Scholar

    [14]

    Fan Z, Yao K, Wang J 2014 Appl. Phys. Lett. 105 162903Google Scholar

    [15]

    Basu S R, Martin L W, Chu Y H, Gajek M, Ramesh R, Rai R C, Xu X, Musfeldt J L 2008 Appl. Phys. Lett. 92 091905Google Scholar

    [16]

    Chen B, Zheng X J, Yang M J, Zhou Y, Kundu S, Shi J, Zhu K, Priya S 2015 Nano Energy 13 582Google Scholar

    [17]

    Zhao R D, Ma N, Qi J, Mishra Y K, Adelung R, Yang Y 2019 Adv. Electron. Mater. 5 1800791Google Scholar

    [18]

    Yang T, Wei J, Guo Y, Lü Z, Xu Z, Cheng Z 2019 ACS Appl. Mater. Interfaces 11 23372Google Scholar

    [19]

    You L, Zheng F, Fang L, Zhou Y, Tan L Z, Zhang Z Y, Ma G H, Schmidt D, Rusydi A, Wang L, Chang L, Rappe A M, Wang J L 2018 Sci. Adv. 4 eaat3438Google Scholar

    [20]

    Yuan Y B, Xiao Z G, Yang B, Huang J S 2014 J. Mater. Chem. A 2 6027Google Scholar

    [21]

    蔡田怡, 雎胜 2018 67 157801Google Scholar

    Cai T Y, Ju S 2018 Acta Phys. Sin. 67 157801Google Scholar

    [22]

    Zhang J J, Su X D, Shen M R, Dai Z H, Zhang L J, He X Y, Cheng W X, Cao M Y, Zou G F 2013 Sci. Rep. 3 2109Google Scholar

    [23]

    Hu W J, Wang Z H, Yu W L, Wu T 2016 Nat. Commun. 7 10808Google Scholar

    [24]

    Quattropani A, Makhort A S, Rastei M V, Versini G, Schmerber G, Barre S, Dinia A, Slaoui A, Rehspringer J L, Fix T, Colis S, Kundys B 2018 Nanoscale 10 13761Google Scholar

    [25]

    Jin K X, Zhai Y X, Li H, Tian Y F, Luo B C, Wu T 2014 Solid State Commun. 199 39Google Scholar

    [26]

    Qu T L, Zhao Y G, Xie D, Shi J P, Chen Q P, Ren T L 2011 Appl. Phys. Lett. 98 173507Google Scholar

    [27]

    Feng L, Yang S W, Lin Y, Zhang D L, Huang W C, Zhao W B, Yin Y W, Dong S N, Li X G 2015 ACS Appl. Mater. Interfaces 7 26036Google Scholar

    [28]

    Huang W C, Liu Y K, Luo Z, Hou C M, Zhao W B, Yin Y W, Li X G 2018 J. Phys. D: Appl. Phys. 51 234005Google Scholar

    [29]

    Wang X J, Zhou Q, Li H, Hu C, Zhang L L, Zhang Y, Zhang Y H, Sui Y, Song B 2018 Appl. Phys. Lett. 112 122103Google Scholar

    [30]

    Yang M M, Zhao X Q, Wang J, Zhu Q X, Zhang J X, Li X M, Luo H S, Li X G, Zheng R K 2014 Appl. Phys. Lett. 104 052902Google Scholar

    [31]

    Biegalski M D, Dörr K, Kim D H, Christen H M 2010 Appl. Phys. Lett. 96 151905Google Scholar

    [32]

    Lord K, Hunter D, Williams T M, Pradhan A K 2006 Appl. Phys. Lett. 89 052116Google Scholar

    [33]

    Dong H F, Wu Z G, Wang S Y, Duan W H, Li J B 2013 Appl. Phys. Lett. 102 072905Google Scholar

    [34]

    Sze S M, Ng K K 2006 Physics of Semiconductor Devices (3rd Ed.) (Hoboken: John Wiley & Sons Inc) p53

    [35]

    曹汝楠, 徐飞, 朱佳斌, 葛升, 王文贞, 徐海涛, 徐闰, 吴杨琳, 马忠权, 洪峰, 蒋最敏 2016 65 188801Google Scholar

    Cao R N, Xu F, Zhu J B, Ge S, Wang W Z, Xu H T, Xu R, Wu Y L, Ma Z Q, Hong F, Jiang Z M 2016 Acta Phys. Sin. 65 188801Google Scholar

    [36]

    Riedel I, Parisi J, Dyakonov V, Lutsen L, Vanderzande D, Hummelen J C 2004 Adv. Funct. Mater. 14 38Google Scholar

    [37]

    Kemerink M, Kramer J M, Gommans H H P, Janssen R A J 2006 Appl. Phys. Lett. 88 192108Google Scholar

    [38]

    Snaith H J, Mende S L, Grätzel M, Chiesa M 2006 Phys. Rev. B 74 045306Google Scholar

    [39]

    Elumalai N K, Uddin A 2016 Energy Environ. Sci. 9 391Google Scholar

    [40]

    Katz E A, Faiman D, Tuladhar S M, Kroon J M, Wienk M M, Fromherz T, Padinger F, Brabec C J, Sariciftci N S 2001 J. Appl. Phys. 90 5343Google Scholar

    [41]

    Sun J R, Shen B G, Sheng Z G, Sun Y P 2004 Appl. Phys. Lett. 85 3375Google Scholar

    [42]

    Hao F X, Zhang C, Liu X, Yin Y W, Sun Y Z, Li X G 2016 Appl. Phys. Lett. 109 131104Google Scholar

    [43]

    刘恩科, 朱秉升, 罗晋生 2008 半导体物理学(第7版) (北京: 电子工业出版社) 第183页

    Liu E K, Zhu B S, Luo J S 2008 The Physics of Semiconductors (7th Ed.) (Beijing: Publishing House of Electronics Industry) p183 (in Chinese)

    [44]

    Shen J X, Qian H Q, Wang G F, An Y H, Li P G, Zhang Y, Wang S L, Chen B Y, Tang W H 2013 Appl. Phys. A 111 303Google Scholar

    [45]

    Menzinger M, Wolfgang R 1969 Angew. Chem., Int. Ed. Engl. 8 438Google Scholar

    [46]

    Schuller S, Schilinsky P, Hauch J, Brabec C J 2004 Appl. Phys. A 79 37Google Scholar

    [47]

    Zhang L M, Ye X F, Boloor M, Poletayev A, Melosh N A, Chueh W C 2016 Energy Environ. Sci. 9 2044Google Scholar

    [48]

    Steiner M A, Geisz J F, Friedman D J, Olavarria W J, Duda A, Moriarty T E 2011 37th IEEE Photovoltaic Specialists Conference (PVSC) Seattle, WA, USA, June 19–24, 2011 p002527

    [49]

    Krawczyk S K, Jakubowski A, Żurawska M 1981 Sol. Cells 4 187Google Scholar

    [50]

    Kabulov R R, Matchanov N A, Umarov B R 2018 Appl. Sol. Energy 53 297Google Scholar

    [51]

    Wu C Y, Chen J F 1982 J. Appl. Phys. 53 3852Google Scholar

    [52]

    Mihailetchi V D, Koster L J A, Hummelen J C, Blom P W M 2004 Phys. Rev. Lett. 93 216601Google Scholar

    [53]

    Lee D, Baek S H, Kim T H, Yoon J G, Folkman C M, Eom C B, Noh T W 2011 Phys. Rev. B 84 125305Google Scholar

    [54]

    Janardhanam V, Lee H K, Shim K H, Hong H B, Lee S H, Ahn K S, Choi C J 2010 J. Alloys Compd. 504 146Google Scholar

    [55]

    Chang S T, Lee J Y M 2002 Appl. Phys. Lett. 80 655Google Scholar

    [56]

    Nana R, Gnanachchelvi P, Awaah M A, Gowda M H, Kamto A M, Wang Y, Park M, Das K 2010 Phys. Status Solidi A 207 1489Google Scholar

    [57]

    Guo Y P, Guo B, Dong W, Li H, Liu H Z 2013 Nanotechnology 24 275201Google Scholar

    [58]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63Google Scholar

  • 图 1  Pt/BFO/NSTO异质结 (a)样品结构示意图; (b)能带结构示意图

    Fig. 1.  Pt/BFO/NSTO heterojunction: (a) Schematic illustration; (b) energy band structure diagram.

    图 2  (a) BFO/NSTO异质结的XRD测试结果; (b)在2 kHz下测量BFO (200 nm)薄膜的P-E铁电回滞曲线

    Fig. 2.  (a) XRD pattern of BFO/NSTO heterojunction; (b) P-E hysteresis loop of BFO (200 nm) film measured under 2 kHz.

    图 3  室温下, 黑暗及不同光强的光照射下Pt/BFO(60 nm)/NSTO异质结的J-V曲线 (a)波长365 nm光照下的结果; (b)波长445 nm光照下的结果, 插图为低电压区域的放大图像

    Fig. 3.  J-V curves of Pt/BFO(60 nm)/NSTO heterojunction in the dark and under the laser irradiation with various irradiation intensities at room temperature: (a) λ ~ 365 nm; (b) λ ~ 445 nm. The inset of panel (b) shows the magnified image at low voltages.

    图 4  不同波长光照下的(a)开路电压和(b)短路电流密度随着光照强度的变化

    Fig. 4.  Light intensity dependent (a) open-circuit voltage and (b) short-circuit current density under laser irradiation with different wavelengths.

    图 5  (a), (c)不同温度下Pt/BFO/NSTO异质结的J-V曲线; (b), (d)开路电压和短路电流密度随温度的变化; (a), (b) λ ~ 365 nm, 74 mW/cm2; (c), (d) λ ~ 445 nm, 1.56 W/cm2

    Fig. 5.  (a), (c) Temperature dependent J-V curves of Pt/BFO/NSTO heterojunction under laser irradiation; (b), (d) corresponding temperature dependent open-circuit voltage and short-circuit current density. In (a) and (b), λ ~ 365 nm, 74 mW/cm2; in (c) and (d), λ ~ 445 nm, 1.56 W/cm2.

    图 6  Jsc随1000/T的变化及Arrhenius公式拟合

    Fig. 6.  Jsc vs. 1000/T and the fitting result by Arrhenius model.

    图 7  肖特基势垒高度和理想因子随温度的变化 (a) λ ~ 365 nm, 74 mW/cm2; (b) λ ~ 445 nm, 1.56 W/cm2

    Fig. 7.  Temperature dependent Schottky barrier height and ideal factor: (a) λ ~ 365 nm, 74 mW/cm2; (b) λ ~ 445 nm, 1.56 W/cm2.

    图 8  (a)在445 nm光照和不加光时Pt/BFO/NSTO异质结的J-V曲线, 黑色实线是根据SCLC模型拟合的结果; (b) Vtran${V'_{{\rm{tran}}}}$随光强的变化关系

    Fig. 8.  (a) J-V curves of Pt/BFO/NSTO heterojunction in the dark and under the laser irradiation with different irradiation intensities for 445 nm wavelength. The black solid lines are fitting results by SCLC model. (b) Light intensity dependent Vtran and ${V'_{{\rm{tran}}}}$.

    Baidu
  • [1]

    Tan Z W, Hong L Q, Fan Z, Tian J J, Zhang L Y, Jiang Y, Hou Z P, Chen D Y, Qin M H, Zeng M, Gao J W, Lu X B, Zhou G F, Gao X S, Liu J M 2019 NPG Asia Mater. 11 20Google Scholar

    [2]

    Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J, Rosei F 2014 Nat. Photonics 9 61Google Scholar

    [3]

    Grinberg I, West D V, Torres M, Gou G Y, Stein D M, Wu L Y, Chen G N, Gallo E M, Akbashev A R, Davies P K, Spanier J E, Rappe A M 2013 Nature 503 509Google Scholar

    [4]

    Chakrabartty J, Harnagea C, Celikin M, Rosei F, Nechache R 2018 Nat. Photonics 12 271Google Scholar

    [5]

    Wang J, Ma J, Yang Y B, Chen M F, Zhang J X, Ma J, Nan C W 2019 ACS Appl. Electron. Mater. 1 862Google Scholar

    [6]

    Li J K, Ge C, Jin K J, Du J Y, Yang J T, Lu H B, Yang G Z 2017 Appl. Phys. Lett. 110 142901Google Scholar

    [7]

    Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W, Chu J H 2015 Adv. Mater. 27 6575Google Scholar

    [8]

    Wang P, Wang Y, Ye L, Wu M Z, Xie R Z, Wang X D, Chen X S, Fan Z Y, Wang J L, Hu W D 2018 Small 14 e1800492Google Scholar

    [9]

    Guo R, You L, Zhou Y, Shiuh L Z, Zou X, Chen L, Ramesh R, Wang J L 2013 Nat. Commun. 4 1990Google Scholar

    [10]

    Wei M C, Liu M F, Yang L, Xie B, Li X, Wang X Z, Cheng X Y, Zhu Y D, Li Z J, Su Y L, Li M Y, Hu Z Q, Liu J M 2020 Ceram. Int. 46 5126Google Scholar

    [11]

    Thakoor S 1992 Appl. Phys. Lett. 60 3319Google Scholar

    [12]

    Liu C C, Sun H Y, Ma C, Chen Z W, Luo Z, Su T S, Yin Y W, Li X G 2020 IEEE Electron Device Lett. 41 42Google Scholar

    [13]

    Liu Y K, Yao Y P, Dong S N, Yang S W, Li X G 2012 Phys. Rev. B 86 075113Google Scholar

    [14]

    Fan Z, Yao K, Wang J 2014 Appl. Phys. Lett. 105 162903Google Scholar

    [15]

    Basu S R, Martin L W, Chu Y H, Gajek M, Ramesh R, Rai R C, Xu X, Musfeldt J L 2008 Appl. Phys. Lett. 92 091905Google Scholar

    [16]

    Chen B, Zheng X J, Yang M J, Zhou Y, Kundu S, Shi J, Zhu K, Priya S 2015 Nano Energy 13 582Google Scholar

    [17]

    Zhao R D, Ma N, Qi J, Mishra Y K, Adelung R, Yang Y 2019 Adv. Electron. Mater. 5 1800791Google Scholar

    [18]

    Yang T, Wei J, Guo Y, Lü Z, Xu Z, Cheng Z 2019 ACS Appl. Mater. Interfaces 11 23372Google Scholar

    [19]

    You L, Zheng F, Fang L, Zhou Y, Tan L Z, Zhang Z Y, Ma G H, Schmidt D, Rusydi A, Wang L, Chang L, Rappe A M, Wang J L 2018 Sci. Adv. 4 eaat3438Google Scholar

    [20]

    Yuan Y B, Xiao Z G, Yang B, Huang J S 2014 J. Mater. Chem. A 2 6027Google Scholar

    [21]

    蔡田怡, 雎胜 2018 67 157801Google Scholar

    Cai T Y, Ju S 2018 Acta Phys. Sin. 67 157801Google Scholar

    [22]

    Zhang J J, Su X D, Shen M R, Dai Z H, Zhang L J, He X Y, Cheng W X, Cao M Y, Zou G F 2013 Sci. Rep. 3 2109Google Scholar

    [23]

    Hu W J, Wang Z H, Yu W L, Wu T 2016 Nat. Commun. 7 10808Google Scholar

    [24]

    Quattropani A, Makhort A S, Rastei M V, Versini G, Schmerber G, Barre S, Dinia A, Slaoui A, Rehspringer J L, Fix T, Colis S, Kundys B 2018 Nanoscale 10 13761Google Scholar

    [25]

    Jin K X, Zhai Y X, Li H, Tian Y F, Luo B C, Wu T 2014 Solid State Commun. 199 39Google Scholar

    [26]

    Qu T L, Zhao Y G, Xie D, Shi J P, Chen Q P, Ren T L 2011 Appl. Phys. Lett. 98 173507Google Scholar

    [27]

    Feng L, Yang S W, Lin Y, Zhang D L, Huang W C, Zhao W B, Yin Y W, Dong S N, Li X G 2015 ACS Appl. Mater. Interfaces 7 26036Google Scholar

    [28]

    Huang W C, Liu Y K, Luo Z, Hou C M, Zhao W B, Yin Y W, Li X G 2018 J. Phys. D: Appl. Phys. 51 234005Google Scholar

    [29]

    Wang X J, Zhou Q, Li H, Hu C, Zhang L L, Zhang Y, Zhang Y H, Sui Y, Song B 2018 Appl. Phys. Lett. 112 122103Google Scholar

    [30]

    Yang M M, Zhao X Q, Wang J, Zhu Q X, Zhang J X, Li X M, Luo H S, Li X G, Zheng R K 2014 Appl. Phys. Lett. 104 052902Google Scholar

    [31]

    Biegalski M D, Dörr K, Kim D H, Christen H M 2010 Appl. Phys. Lett. 96 151905Google Scholar

    [32]

    Lord K, Hunter D, Williams T M, Pradhan A K 2006 Appl. Phys. Lett. 89 052116Google Scholar

    [33]

    Dong H F, Wu Z G, Wang S Y, Duan W H, Li J B 2013 Appl. Phys. Lett. 102 072905Google Scholar

    [34]

    Sze S M, Ng K K 2006 Physics of Semiconductor Devices (3rd Ed.) (Hoboken: John Wiley & Sons Inc) p53

    [35]

    曹汝楠, 徐飞, 朱佳斌, 葛升, 王文贞, 徐海涛, 徐闰, 吴杨琳, 马忠权, 洪峰, 蒋最敏 2016 65 188801Google Scholar

    Cao R N, Xu F, Zhu J B, Ge S, Wang W Z, Xu H T, Xu R, Wu Y L, Ma Z Q, Hong F, Jiang Z M 2016 Acta Phys. Sin. 65 188801Google Scholar

    [36]

    Riedel I, Parisi J, Dyakonov V, Lutsen L, Vanderzande D, Hummelen J C 2004 Adv. Funct. Mater. 14 38Google Scholar

    [37]

    Kemerink M, Kramer J M, Gommans H H P, Janssen R A J 2006 Appl. Phys. Lett. 88 192108Google Scholar

    [38]

    Snaith H J, Mende S L, Grätzel M, Chiesa M 2006 Phys. Rev. B 74 045306Google Scholar

    [39]

    Elumalai N K, Uddin A 2016 Energy Environ. Sci. 9 391Google Scholar

    [40]

    Katz E A, Faiman D, Tuladhar S M, Kroon J M, Wienk M M, Fromherz T, Padinger F, Brabec C J, Sariciftci N S 2001 J. Appl. Phys. 90 5343Google Scholar

    [41]

    Sun J R, Shen B G, Sheng Z G, Sun Y P 2004 Appl. Phys. Lett. 85 3375Google Scholar

    [42]

    Hao F X, Zhang C, Liu X, Yin Y W, Sun Y Z, Li X G 2016 Appl. Phys. Lett. 109 131104Google Scholar

    [43]

    刘恩科, 朱秉升, 罗晋生 2008 半导体物理学(第7版) (北京: 电子工业出版社) 第183页

    Liu E K, Zhu B S, Luo J S 2008 The Physics of Semiconductors (7th Ed.) (Beijing: Publishing House of Electronics Industry) p183 (in Chinese)

    [44]

    Shen J X, Qian H Q, Wang G F, An Y H, Li P G, Zhang Y, Wang S L, Chen B Y, Tang W H 2013 Appl. Phys. A 111 303Google Scholar

    [45]

    Menzinger M, Wolfgang R 1969 Angew. Chem., Int. Ed. Engl. 8 438Google Scholar

    [46]

    Schuller S, Schilinsky P, Hauch J, Brabec C J 2004 Appl. Phys. A 79 37Google Scholar

    [47]

    Zhang L M, Ye X F, Boloor M, Poletayev A, Melosh N A, Chueh W C 2016 Energy Environ. Sci. 9 2044Google Scholar

    [48]

    Steiner M A, Geisz J F, Friedman D J, Olavarria W J, Duda A, Moriarty T E 2011 37th IEEE Photovoltaic Specialists Conference (PVSC) Seattle, WA, USA, June 19–24, 2011 p002527

    [49]

    Krawczyk S K, Jakubowski A, Żurawska M 1981 Sol. Cells 4 187Google Scholar

    [50]

    Kabulov R R, Matchanov N A, Umarov B R 2018 Appl. Sol. Energy 53 297Google Scholar

    [51]

    Wu C Y, Chen J F 1982 J. Appl. Phys. 53 3852Google Scholar

    [52]

    Mihailetchi V D, Koster L J A, Hummelen J C, Blom P W M 2004 Phys. Rev. Lett. 93 216601Google Scholar

    [53]

    Lee D, Baek S H, Kim T H, Yoon J G, Folkman C M, Eom C B, Noh T W 2011 Phys. Rev. B 84 125305Google Scholar

    [54]

    Janardhanam V, Lee H K, Shim K H, Hong H B, Lee S H, Ahn K S, Choi C J 2010 J. Alloys Compd. 504 146Google Scholar

    [55]

    Chang S T, Lee J Y M 2002 Appl. Phys. Lett. 80 655Google Scholar

    [56]

    Nana R, Gnanachchelvi P, Awaah M A, Gowda M H, Kamto A M, Wang Y, Park M, Das K 2010 Phys. Status Solidi A 207 1489Google Scholar

    [57]

    Guo Y P, Guo B, Dong W, Li H, Liu H Z 2013 Nanotechnology 24 275201Google Scholar

    [58]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63Google Scholar

  • [1] 王婉玉, 石凯熙, 李金华, 楚学影, 方铉, 匡尚奇, 徐国华. MoO3覆盖层对MoS2基光伏型光电探测器性能的影响.  , 2023, 72(14): 147301. doi: 10.7498/aps.72.20230464
    [2] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器.  , 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [3] 蔡田怡, 雎胜. 铁电体的光伏效应.  , 2018, 67(15): 157801. doi: 10.7498/aps.67.20180979
    [4] 左依凡, 李培丽, 栾开智, 王磊. 基于自准直效应的光子晶体异质结偏振分束器.  , 2018, 67(3): 034204. doi: 10.7498/aps.67.20171815
    [5] 张强, 王建元, 罗炳成, 邢辉, 金克新, 陈长乐. La1.3Sr1.7Mn2O7/SrTiO3-Nb异质结的整流和光伏特性.  , 2016, 65(10): 107301. doi: 10.7498/aps.65.107301
    [6] 魏纪周, 张铭, 邓浩亮, 楚上杰, 杜敏永, 严辉. Bi0.8Ba0.2FeO3/La0.7Sr0.3MnO3异质结制备及其交换偏置效应研究.  , 2015, 64(8): 088101. doi: 10.7498/aps.64.088101
    [7] 韩典荣, 王璐, 罗成林, 朱兴凤, 戴亚飞. (n, n)-(2n, 0)碳纳米管异质结的扭转力学特性.  , 2015, 64(10): 106102. doi: 10.7498/aps.64.106102
    [8] 温家乐, 徐志成, 古宇, 郑冬琴, 钟伟荣. 异质结碳纳米管的热整流效率.  , 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [9] 程立锋, 任承, 王萍, 冯帅. 基于异质结界面优化的光子晶体二极管单向传输特性研究.  , 2014, 63(15): 154213. doi: 10.7498/aps.63.154213
    [10] 薛源, 郜超军, 谷锦华, 冯亚阳, 杨仕娥, 卢景霄, 黄强, 冯志强. 薄膜硅/晶体硅异质结电池中本征硅薄膜钝化层的性质及光发射谱研究.  , 2013, 62(19): 197301. doi: 10.7498/aps.62.197301
    [11] 杨世海, 金克新, 王晶, 罗炳成, 陈长乐. BaTiO3/p-Si异质结的整流特性和光诱导特性的研究.  , 2013, 62(14): 147305. doi: 10.7498/aps.62.147305
    [12] 赵赓, 程晓曼, 田海军, 杜博群, 梁晓宇, 吴峰. V2O5电极修饰对C60/Pentacene双层异质结场效应晶体管性能的影响.  , 2012, 61(21): 218502. doi: 10.7498/aps.61.218502
    [13] 张歆, 章晓中, 谭新玉, 于奕, 万蔡华. Al2O3增强的Co2-C98/Al2O3/Si异质结的光伏效应.  , 2012, 61(14): 147303. doi: 10.7498/aps.61.147303
    [14] 陈鹏, 金克新, 陈长乐, 谭兴毅. La0.88 Te0.12 MnO3/Si异质结的整流和光伏特性研究.  , 2011, 60(6): 067303. doi: 10.7498/aps.60.067303
    [15] 吴利华, 章晓中, 于奕, 万蔡华, 谭新玉. a-C: Fe/AlOx/Si基异质结的光伏效应.  , 2011, 60(3): 037807. doi: 10.7498/aps.60.037807
    [16] 张伟英, 邬小鹏, 孙利杰, 林碧霞, 傅竹西. ZnO/Si异质结的光电转换特性研究.  , 2008, 57(7): 4471-4475. doi: 10.7498/aps.57.4471
    [17] 李 彤, 李驰平, 张 铭, 王 波, 严 辉. La1-xSrxMnO3/TiO2 (x=0.2, 0.15, 0.04)异质pn结的整流特性.  , 2007, 56(7): 4132-4136. doi: 10.7498/aps.56.4132
    [18] 关春颖, 苑立波. 六角蜂窝结构光子晶体异质结带隙特性研究.  , 2006, 55(3): 1244-1247. doi: 10.7498/aps.55.1244
    [19] 汪大云, 刘思敏, 陈晓虎, 赵红娥, 郭 儒, 杨立森, 高垣梅, 黄春福, 陆 猗. 非相干辐照对LiNbO3:Fe晶体光折变非线性的影响与控制作用.  , 2003, 52(2): 395-400. doi: 10.7498/aps.52.395
    [20] 侯春风, 李师群, 李斌, 孙秀冬. 有外加电场的光伏光折变晶体中的非相干耦合亮-暗屏蔽光伏孤子对.  , 2001, 50(9): 1709-1712. doi: 10.7498/aps.50.1709
计量
  • 文章访问数:  10791
  • PDF下载量:  374
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-24
  • 修回日期:  2020-03-12
  • 刊出日期:  2020-06-20

/

返回文章
返回
Baidu
map