搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超构材料的Cherenkov辐射

林月钗 刘仿 黄翊东

引用本文:
Citation:

基于超构材料的Cherenkov辐射

林月钗, 刘仿, 黄翊东

Cherenkov radiation based on metamaterials

Lin Yue-Chai, Liu Fang, Huang Yi-Dong
PDF
HTML
导出引用
  • Cherenkov辐射(Cherenkov radiation, CR)是自由电子速度超过介质中光速时产生的电磁辐射, 其在粒子探测、生物医学、电磁辐射源等领域具有重要的应用价值. 近年来, 人们发现由不同材料和结构组成的超构材料具有新奇的力学、声学和光学特性. 电磁波在超构材料中的传播、耦合和辐射可以具有与传统材料完全不同的奇特性质. 将传统真空电子学与微纳光电子学结合, 探索自由电子与超构材料的相互作用, 成为近期不少研究者关注的热点之一. 超构材料的引入打破了传统材料和结构中电磁学规律的限制, 自由电子在其中产生的辐射以及与辐射的相互作用表现出许多新现象和新效应. 本文首先回顾了CR的基本概念和辐射原理, 在此基础上介绍了自由电子与双曲超材料、负折射率材料、高Q值超材料以及超表面相互作用产生辐射的相关工作, 重点阐述在这些不同功能的超构材料中产生CR的机理及其特性, 涉及的工作包括无阈值CR、反向CR、受激CR以及辐射偏振和相位的调控. 自由电子与各种新型超构材料相互作用的研究和发展, 为实现新型高效的集成化自由电子器件提供了新的途径.
    Cherenkov radiation (CR) is an electromagnetic radiation emitted by charged particles traveling through a dielectric medium at a speed faster than the phase velocity of light. CR plays an important role in the fields of particle detection, biomedicine and electromagnetic-radiation source. Recently, metamaterials demonstrate their novel mechanical, acoustic, and optical properties by delicately designing the structures and materials. In metamaterials, the electromagnetic properties, such as wave propagation, coupling, and radiation, could be flexibly manipulated. Thus, it is expected that the combination of vacuum electronics and micro- & nano-photonics would result in numerous novel phenomena and effects by having free electrons interacting with metamaterials. In this paper, we firstly review the concept and generation mechanism of CR. Then, recent research advances in the CR generation by using different types of metamaterials are reviewed, including threshold-less CR in hyperbolic metamaterials, reverse CR in negative metamaterials, CR lasing based on high Q-factor metamaterials and Smith-Purcell radiation manipulation with metasurfaces. The unique characteristics and interesting mechanisms of CR based on these metamaterials are elaborated. The research and development of interaction between free electrons and various metamaterials open up possibilities for realizing novel integrated free-electron devices.
      通信作者: 刘仿, liu_fang@tsinghua.edu.cn ; 黄翊东, yidonghuang@tsinghua.edu.cn
    • 基金项目: 国家级-国家重点研发计划(批准号: 2016YFA0200503) 资助的课题(2018YFB2200402)
      Corresponding author: Liu Fang, liu_fang@tsinghua.edu.cn ; Huang Yi-Dong, yidonghuang@tsinghua.edu.cn
    [1]

    Engheta N, Ziolkowski R W 2006 Metamaterials: Physics and Engineering Explorations (Hoboken: John Wiley & Sons) pp5–9

    [2]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617Google Scholar

    [3]

    Zheludev N I, Kivshar Y S 2012 Nat. Mater. 11 917Google Scholar

    [4]

    Poddubny A, Iorsh I, Belov P, Kivshar Y 2013 Nat. Photonics 7 948Google Scholar

    [5]

    Shekhar P, Atkinson J, Jacob Z 2014 Nano Converg. 1 14Google Scholar

    [6]

    Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G, Zhang X 2008 Nature 455 376Google Scholar

    [7]

    Smith D R, Kroll N 2000 Phys. Rev. Lett. 85 2933Google Scholar

    [8]

    Vesseur E J R, Coenen T, Caglayan H, Engheta N, Polman A 2013 Phys. Rev. Lett. 110 013902Google Scholar

    [9]

    Moitra P, Yang Y, Anderson Z, Kravchenko I I, Briggs D P, Valentine J 2013 Nat. Photonics 7 791Google Scholar

    [10]

    Lin D, Fan P, Hasman E, Brongersma M L 2014 Science 345 298Google Scholar

    [11]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J-P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [12]

    Elder F R, Gurewitsch A M, Langmuir R V, Pollock H C 1947 Phys. Rev. 71 829

    [13]

    Hendrickson W A 1991 Science 254 51Google Scholar

    [14]

    Asner D M, Bradley R F, de Viveiros L, Doe P J, Fernandes J L, Fertl M, Finn E C, Formaggio J A, Furse D, Jones A M, Kofron J N, LaRoque B H, Leber M, McBride E L, Miller M L, Mohanmurthy P, Monreal B, Oblath N S, Robertson R G H, Rosenberg L J, Rybka G, Rysewyk D, Sternberg M G, Tedeschi J R, Thümmler T, VanDevender B A, Woods N L 2015 Phys. Rev. Lett. 114 162501Google Scholar

    [15]

    Bornatici M, Cano R, De Barbieri O, Engelmann F 1983 Nucl. Fusion 23 1153Google Scholar

    [16]

    Cherenkov P A 1934 Dokl. Akad. Nauk SSSR 2 451

    [17]

    Kobzev A P 2010 Phys. Part. Nucl. 41 452Google Scholar

    [18]

    Doucas G, Mulvey J H, Omori M, Walsh J, Kimmitt M F 1992 Phys. Rev. Lett. 69 1761Google Scholar

    [19]

    Smith S J, Purcell E M 1953 Phys. Rev. 92 1069

    [20]

    Bolotovskii B M 2009 Phys. Usp. 52 1099Google Scholar

    [21]

    Frank I M, Tamm I E 1991 Selected Papers (Berlin, Heidelberg: Springer Berlin Heidelberg) pp29–35

    [22]

    Eichmeier J A, Thumm M 2008 Vacuum Electronics: Components and Devices (Berlin: Springer Science & Business Media) p315

    [23]

    Ren H, Deng X, Zheng Y, An N, Chen X 2012 Phys. Rev. Lett. 108 223901Google Scholar

    [24]

    Aubert J J, Becker U, Biggs P J, Burger J, Chen M, Everhart G, Goldhagen P, Leong J, McCorriston T, Rhoades T G, Rohde M, Ting S C C, Wu S L, Lee Y Y 1974 Phys. Rev. Lett. 33 1404Google Scholar

    [25]

    Chamberlain O, Segrè E, Wiegand C, Ypsilantis T 1955 Phys. Rev. 100 947Google Scholar

    [26]

    Fukuda Y, Hayakawa T, Ichihara E, Inoue K, Ishihara K, Ishino H, Itow Y, Kajita T, Kameda J, Kasuga S 1998 Phys. Rev. Lett. 81 1562Google Scholar

    [27]

    Bugaev S P, Cherepenin V A, Kanavets V I, Klimov A I, Kopenkin A D, Koshelev V I, Popov V A, Slepkov A I 1990 IEEE Trans. Plasma Sci. 18 525Google Scholar

    [28]

    Duan Z, Shapiro M A, Schamiloglu E, Behdad N, Gong Y, Booske J H, Basu B N, Temkin R J 2019 IEEE Trans. Electron Devices 66 207Google Scholar

    [29]

    Korovin S D, Eltchaninov A A, Rostov V V, Shpak V G, Yalandin M I, Ginzburg N S, Sergeev A S, Zotova I V 2006 Phys. Rev. E 74 016501

    [30]

    Saltzberg D, Gorham P, Walz D, Field C, Iverson R, Odian A, Resch G, Schoessow P, Williams D 2001 Phys. Rev. Lett. 86 2802Google Scholar

    [31]

    Kotagiri N, Sudlow G P, Akers W J, Achilefu S 2015 Nat. Nanotechnol. 10 370Google Scholar

    [32]

    Robertson R, Germanos M S, Li C, Mitchell G S, Cherry S R, Silva M D 2009 Phys. Med. Biol. 54 N355Google Scholar

    [33]

    Ruggiero A, Holland J P, Lewis J S, Grimm J 2010 J. Nucl. Med. 51 1123Google Scholar

    [34]

    French D M, Shiffler D, Cartwright K 2013 Phys. Plasmas 20 083116Google Scholar

    [35]

    Matsui T 2017 J. Infrared Millim. Te. 38 1140Google Scholar

    [36]

    Fulton T, Rohrlich F 1960 Ann. Phys. 9 499Google Scholar

    [37]

    Schwinger J 1949 Phys. Rev. 75 1912Google Scholar

    [38]

    Madey J M J 1971 J. Appl. Phys. 42 1906Google Scholar

    [39]

    Koch H W, Motz J W 1959 Rev. Mod. Phys. 31 920Google Scholar

    [40]

    Tamm I E 1991 Selected Papers (Berlin, Heidelberg: Springer Berlin Heidelberg) pp55–67

    [41]

    Luo C, Ibanescu M, Johnson S G, Joannopoulos J D 2003 Science 299 368Google Scholar

    [42]

    Schächter L 2011 Beam-Wave Interaction in Periodic and Quasi-Periodic Structures (Berlin, Heidelberg : Springer Berlin Heidelberg) pp169–170

    [43]

    Van den Berg P M 1973 J. Opt. Soc. Am. 63 689Google Scholar

    [44]

    Van den Berg P M 1973 J. Opt. Soc. Am. 63 1588Google Scholar

    [45]

    Gover A, Dvorkis P, Elisha U 1984 J. Opt. Soc. Am. B 1 723

    [46]

    García de Abajo F J 2010 Rev. Mod. Phys. 82 209Google Scholar

    [47]

    Wahlstrand J K, Merlin R 2003 Phys. Rev. B 68 054301

    [48]

    Silveirinha M 2017 Nat. Photonics 11 269Google Scholar

    [49]

    Liu F, Xiao L, Ye Y, Wang M, Cui K, Feng X, Zhang W, Huang Y 2017 Nat. Photonics 11 289Google Scholar

    [50]

    Cortes C, Newman W, Molesky S, Jacob Z 2012 J. Opt. 14 063001Google Scholar

    [51]

    Adamo G, MacDonald K F, Fu Y H, Wang C M, Tsai D P, García de Abajo F J, Zheludev N I 2009 Phys. Rev. Lett. 103 113901Google Scholar

    [52]

    So J K, García de Abajo F J, MacDonald K F, Zheludev N I 2015 ACS Photonics 2 1236Google Scholar

    [53]

    Shekhar P, Pendharker S, Sahasrabudhe H, Vick D, Malac M, Rahman R, Jacob Z 2018 Optica 5 1590Google Scholar

    [54]

    Fernandes D E, Maslovski S I, Silveirinha M G 2012 Phys. Rev. B 85 155107Google Scholar

    [55]

    Jacob Z, Kim J Y, Naik G V, Boltasseva A, Narimanov E E, Shalaev V M 2010 Appl. Phys. B 100 215Google Scholar

    [56]

    Caldwell J D, Kretinin A V, Chen Y, Giannini V, Fogler M M, Francescato Y, Ellis C T, Tischler J G, Woods C R, Giles A J, Hong M, Watanabe K, Taniguchi T, Maier S A, Novoselov K S 2014 Nat. Commun. 5 5221

    [57]

    Esslinger M, Vogelgesang R, Talebi N, Khunsin W, Gehring P, De Zuani S, Gompf B, Kern K 2014 ACS Photonics 1 1285Google Scholar

    [58]

    Narimanov E E, Kildishev A V 2015 Nat. Photonics 9 214Google Scholar

    [59]

    Govyadinov A A, Konečná A, Chuvilin A, Vélez S, Dolado I, Nikitin A Y, Lopatin S, Casanova F, Hueso L E, Aizpurua J 2017 Nat. Commun. 8 95Google Scholar

    [60]

    屈拓 2019 博士学位论文 (北京: 清华大学)

    Qu T 2019 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [61]

    Shekhar P, Pendharker S, Vick D, Malac M, Jacob Z 2019 Opt. Express 27 6970Google Scholar

    [62]

    Tao J, Wu L, Zheng G, Yu S 2019 Carbon 150 136Google Scholar

    [63]

    Marqués R, Medina F, Rafii-El-Idrissi R 2002 Phys. Rev. B 65 144440Google Scholar

    [64]

    Veselago V G 1968 Sov. Phys. Usp. 10 509Google Scholar

    [65]

    Zharov A A, Shadrivov I V, Kivshar Y S 2003 Phys. Rev. Lett. 91 037401Google Scholar

    [66]

    Lezec H J, Dionne J A, Atwater H A 2007 Science 316 430Google Scholar

    [67]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77Google Scholar

    [68]

    Xi S, Chen H, Jiang T, Ran L, Huangfu J, Wu B I, Kong J A, Chen M 2009 Phys. Rev. Lett. 103 194801Google Scholar

    [69]

    Zhang S, Zhang X 2009 Physics 2 91Google Scholar

    [70]

    Duan Z, Tang X, Wang Z, Zhang Y, Chen X, Chen M, Gong Y 2017 Nat. Commun. 8 14901

    [71]

    Akopov N, Aschenauer E C, Bailey K, et al. 2002 Nucl. Instrum. Methods Phys. Res., Sect. A 479 511Google Scholar

    [72]

    Nishino H, Clark S, Abe K, Hayato Y, Iida T, Ikeda M, Kameda J, Kobayashi K, Koshio Y, Miura M 2009 Phys. Rev. Lett. 102 141801Google Scholar

    [73]

    Séguinot J, Ypsilantis T 1977 Nucl. Instrum. Methods 142 377Google Scholar

    [74]

    Ginis V, Danckaert J, Veretennicoff I, Tassin P 2014 Phys. Rev. Lett. 113 167402Google Scholar

    [75]

    Duan Z, Wu B I, Xi S, Chen H, Chen M 2009 Prog. Electromagn. Res. 90 75Google Scholar

    [76]

    Hsu C W, Zhen B, Stone A D, Joannopoulos J D, Soljačić M 2016 Nat. Rev. Mater. 1 16048

    [77]

    Kim S, Baek I K, Bhattacharya R, Hong D, Sattorov M, Bera A, So J K, Kim D S, Park G S 2018 Adv. Opt. Mater. 6 1800041Google Scholar

    [78]

    Song Y, Jiang N, Liu L, Hu X, Zi J 2018 Phys. Rev. Appl. 10 064026Google Scholar

    [79]

    Yang Y, Massuda A, Roques-Carmes C, Kooi S E, Christensen T, Johnson S G, Joannopoulos J D, Miller O D, Kaminer I, Soljačić M 2018 Nat. Phys. 14 894Google Scholar

    [80]

    Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kanté B 2017 Nature 541 196Google Scholar

    [81]

    Marinica D C, Borisov A G, Shabanov S V 2008 Phys. Rev. Lett. 100 183902Google Scholar

    [82]

    Kimura W D, Kim G H, Romea R D, Steinhauer L C, Pogorelsky I V, Kusche K P, Fernow R C, Wang X, Liu Y 1995 Phys. Rev. Lett. 74 546Google Scholar

    [83]

    Kumar V, Kim K-J 2006 Phys. Rev. E 73 026501Google Scholar

    [84]

    Ye Y, Liu F, Cui K, Feng X, Zhang W, Huang Y 2018 Opt. Express 26 31402Google Scholar

    [85]

    Denis T, van Dijk M W, Lee J H H, van der Meer R, Strooisma A, van der Slot P J M, Vos W L, Boller K J 2016 Phys. Rev. A 94 053852Google Scholar

    [86]

    Von Laven S, Branscum J, Golub J, Layman R, Walsh J 1982 Appl. Phys. Lett. 41 408Google Scholar

    [87]

    Wiggins S M, Jaroszynski D A, McNeil B W J, Robb G R M, Aitken P, Phelps A D R, Cross A W, Ronald K, Ginzburg N S, Shpak V G, Yalandin M I, Shunailov S A, Ulmaskulov M R 2000 Phys. Rev. Lett. 84 2393Google Scholar

    [88]

    Kim K J, Song S B 2001 Nucl. Instrum. Methods Phys. Res., Sect. A 475 158Google Scholar

    [89]

    Chen H-T, Taylor A J, Yu N 2016 Rep. Prog. Phys. 79 076401Google Scholar

    [90]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009Google Scholar

    [91]

    Yu N, Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [92]

    Brownell J H, Doucas G 2005 Phys. Rev. Spec. Top. Accel Beams 8 091301

    [93]

    Wang Z, Yao K, Chen M, Chen H, Liu Y 2016 Phys. Rev. Lett. 117 157401Google Scholar

    [94]

    Yang Y, Roques-Carmes C, Kaminer I, Zaidi A, Massuda A, Yang Y, Kooi S E, Berggren K K, Soljačić M Conference on Lasers and Electro-Optics San Jose, California, May 13, 2018 pFW4 H.1

    [95]

    Su Z, Cheng F, Li L, Liu Y 2019 ACS Photonics 6 1947Google Scholar

    [96]

    Gamzina D, Li H, Himes L, Barchfeld R, Popovic B, Pan P, Letizia R, Mineo M, Feng J, Paoloni C, Luhmann N C 2016 IEEE Trans. Nanotechnol. 15 85Google Scholar

    [97]

    Hu P, Lei W, Jiang Y, Huang Y, Song R, Chen H, Dong Y 2019 IEEE Electron Device Lett. 40 973Google Scholar

    [98]

    Liu S, Zhang C, Hu M, Chen X, Zhang P, Gong S, Zhao T, Zhong R 2014 Appl. Phys. Lett. 104 201104Google Scholar

    [99]

    Shin Y M, So J K, Jang K H, Won J H, Srivastava A, Park G S 2007 Appl. Phys. Lett. 90 031502Google Scholar

    [100]

    Breuer J, Hommelhoff P 2013 Phys. Rev. Lett. 111 134803Google Scholar

    [101]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [102]

    Peralta E A, Soong K, England R J, Colby E R, Wu Z, Montazeri B, McGuinness C, McNeur J, Leedle K J, Walz D, Sozer E B, Cowan B, Schwartz B, Travish G, Byer R L 2013 Nature 503 91Google Scholar

    [103]

    Rosolen G, Wong L J, Rivera N, Maes B, Soljačić M, Kaminer I 2018 Light-Sci. Appl. 7 1Google Scholar

    [104]

    Friedman A, Gover A, Kurizki G, Ruschin S, Yariv A 1988 Rev. Mod. Phys. 60 471Google Scholar

    [105]

    Gover A, Yariv A 1974 J. Appl. Phys. 45 2596Google Scholar

    [106]

    Mikhailov S A 2013 Phys. Rev. B 87 115405Google Scholar

    [107]

    Tsui D C, Gornik E, Logan R A 1980 Solid State Commun. 35 875Google Scholar

    [108]

    Chen C D, Hu X P, Xu Y L, Xu P, Zhao G, Zhu S N 2012 Appl. Phys. Lett. 101 071113Google Scholar

    [109]

    Tien P K, Ulrich R, Martin R J 1970 Appl. Phys. Lett. 17 447Google Scholar

    [110]

    Saltiel S M, Sheng Y, Voloch-Bloch N, Neshev D N, Krolikowski W, Arie A, Koynov K, Kivshar Y S 2009 IEEE J. Quantum Electron. 45 1465Google Scholar

    [111]

    Zhang Y, Gao Z D, Qi Z, Zhu S N, Ming N B 2008 Phys. Rev. Lett. 100 163904Google Scholar

    [112]

    Wai P K A, Menyuk C R, Lee Y C, Chen H H 1986 Opt. Lett. 11 464Google Scholar

    [113]

    Coen S, Randle H G, Sylvestre T, Erkintalo M 2013 Opt. Lett. 38 37Google Scholar

    [114]

    Brasch V, Geiselmann M, Herr T, Lihachev G, Pfeiffer M H, Gorodetsky M L, Kippenberg T J 2016 Science 351 357Google Scholar

  • 图 1  (a) CR示意图, 自由电子在介质中飞行, 电子速度v大于介质中的光速c/n[20]; (b) SPR示意图, 电子周围消逝场经光栅散射成为自由空间的辐射[45]

    Fig. 1.  (a) Schematic of CR. An electron passes through a dielectric medium at a speed (v) greater than the phase velocity of light (c/n)[20]; (b) schematic of SPR. The evanescent field surrounding the electron is scattered into free space by a periodic grating[45].

    图 2  (a) 自由电子在各向同性材料中产生CR的波矢匹配图, 速度较快的电子对应较短的波矢(绿色虚线箭头), 与光子态k+k-满足z方向波矢匹配, 可以激励CR; 而速度较小的电子周围消逝场(红色箭头)不存在与之匹配的光子态, 无法产生CR; (b) 自由电子在双曲超材料中产生CR的波矢匹配图, 慢速的电子(红色箭头)可以产生CR; (c) 由金属和介质多层膜构成的双曲超材料; 引自文献[48], 重新定义了(a), (b)图中的kx轴和ky轴的方向, 并在(c)图中标出了坐标轴

    Fig. 2.  (a) Diagram of wave-vector matching for CR generation in the isotropic material. Fast electrons (e) (dashed green arrow) can satisfy the wave-vector matching condition with two photonic states k+ and k in the considered plane, and thereby emit CR. In contrast, slow electrons (solid red arrow) can not excite photonic states to satisfy the matching condition; (b) diagram of wave-vector matching for CR generation in the hyperbolic metamaterial. Slow electrons (solid red arrow) can emit CR; (c) hyperbolic metamaterial formed by a stack of metal and dielectric slabs. Reproduced from Ref. [48] with kx and ky redefined in (a), (b) and the coordinates marked in (c).

    图 3  (a) 集成CR芯片示意图和电子显微镜照片, 器件上表面为钼平面电子发射源, 中间为由Au和SiO2多层膜组成的双曲超材料, 下方为周期金属纳米狭缝用于将CR耦合到自由空间; (b)能量为0.1 keV的自由电子在多层膜双曲超材料中产生CR (电场Ez分量)的仿真结果, 场图对应真空波长为800 nm; (c) 阴阳极电压Vca为0.25—1.4 kV时, 芯片辐射输出功率; (d) 不同纳米缝隙周期Pslit对应的输出光谱; 引自文献[49]

    Fig. 3.  (a) Schematic of the integrated CR emitter and scanning electron microscopy images. The planar Mo electrodes is on the top surface of the emitter. The hyperbolic metamaterial in the middle is formed by alternating Au and SiO2 films. The plasmonic nanoslits under the emitter are used to couple the CR in the hyperbolic metamaterial to free space; (b) numerical simulation of CR (electric field Ez) with electron energy of 0.1 keV when λ0 = 800 nm; (c) optical output power of the chip with cathode-anode voltage Vca varying from 0.25 to 1.4 kV; (d) spectra of output light with different plasmonic nanoslit period of Pslit. Extracted from Ref. [49]

    图 4  (a) 从太赫兹到极紫外(extreme ultraviolet, EUV)的范围内, 不同材料的SP共振频率; (b) 电子能量损失谱(electron energy-loss spectroscopy, k-EELS)测量Si膜的光子能带的示意图; (c) 60 nm厚Si膜的光子能带结构测量结果, Si的SP共振频率约为11.5 eV, 处于EUV波段; (d) EUV波段的无阈值CR的示意图, 双曲超材料由Si和SiO2多层膜组成; 引自文献[53]

    Fig. 4.  (a) Measured surface plasmon resonance for various materials across the electromagnetic spectrum from terahertz to EUV; (b) schematic showing the k-EELS technique for measuring the photonic band structure of silicon; (c) the photonic band structure of 60 nm thick silicon films. It shows evidence of the SP of silicon in the EUV; (d) schematic of thresholdless CR in the EUV excited in a hyperbolic metamaterial composed of Si and SiO2 multilayer stack. Extracted from Ref. [53].

    图 5  (a) 反向CR的实验示意图以及负折射率材料的照片; (b) 负折射率材料结构单元的顶视和侧视示意图; (c) 在负折射率(实线)和正折射率(虚线)区间, 辐射功率随角度变化的功率谱; (a)图引自文献[69], (b), (c)图引自文献[68]

    Fig. 5.  (a) Schematic of the experimental configuration used to demonstrate backward CR and the photographic image of the negative index metamaterials; (b) the top and side view of the negative index metamaterials; (c) spectra of the radiation power in each angle in the negative band (solid line) and positive band (dashed line). (a) is extracted from Ref. [69]. (b), (c) are extracted from Ref. [68].

    图 6  (a) 反向CR器件构造图, 电子束沿+z方向飞行与器件相互作用; (b) 自由电子和反向CR器件的色散曲线, 负折射率材料的色散曲线通过模型计算和高频结构仿真软件(HFSS)仿真得到; (c) 在端口2和端口1测试反向CR器件的功率谱分布; 引自文献[70], 并在(a)中标记了位于左侧的“Port 2”和右侧的“Port 1”

    Fig. 6.  (a) Schematic diagram of the constructed structure interacting with a single sheet electron beam bunch travelling along the +z direction; (b) dispersion curves characterized by frequency versus phase advance. The dispersion curve of the negative metamaterial is obtained by model calculation and high frequency structure simulator (HFSS) simulation; (c) measured power spectral densities of the reversed Cherenkov radiation and its reflection signals at ports 2 and 1. Extracted from Ref. [70] with “Ports 2” and “Port 1” marked in (a).

    图 7  (a)和(b)是两种非对称结构的Fano共振金属超构材料, 超构材料由亚波长的金属狭缝构成; (c)和(d)是不同入射角度下, 两种非对称结构的透射谱结果, 透射谱中的四个低峰表示p偏振光激励的Fano共振; 引自文献[77]

    Fig. 7.  (a), (b) Fano-enhanced metallic metamaterials consisting of subwavelength slits with two different structural asymmetries; (c), (d) transmission results with different angles of incidence and structural asymmetries. The four sharp dips represent the excitation of the Fano resonance by capturing the p-polarized incident wave. Extracted from Ref. [77].

    图 8  (a) 自由电子飞过Si周期光栅的示意图; (b) 在给定频率下不同电子速度的辐射强度, BIC附近的SPR得到极大增强; (c) 平面波入射双排Si介质光栅示意图; (d) 归一化频率下介质光栅的反射系数R, 插图为共振频率处| Hy |场图; (e) 共振频率fR的品质因子Q随光栅间距h的变化关系; (a), (b)图引自文献[79]; (c)−(e)图引自文献[78]

    Fig. 8.  (a) Schematic of free electrons flying over a silicon-on-insulator grating; (b) emission probability at a given frequency for different electron velocities, and strongly enhanced SPR near the BIC; (c) schematic of the normal impinging of a propagating plane wave upon a double silicon grating; (d) specular reflection coefficient R as a function of normalized frequency. Inset: the profile of |Hy| at resonant frequency. (e) Q factor at fR as a function of the distance h. (a), (b) are extracted from Ref. [79]. (c)−(e) are extracted from Ref. [78].

    图 9  (a) 自由电子和Babinet超表面作用产生SPR的示意图, 均匀带电粒子在超表面上方沿+ x轴方向飞行; (b)和(c)分别是C形孔结构和环结构的超表面, 以及自由电子产生SPR的电场分布模拟结果; 引自文献[93]

    Fig. 9.  (a) Schematic of the SPR produced by the interaction of free electrons and a Babinet metasurface. The uniform sheet of free electrons moves closely parallel to the metasurface along the +x axis; (b), (c) the structures of C-aperture and C-ring metasurfaces, and the electric field distributions of SPR generated via the interaction with free electrons. Extracted from Ref. [93].

    图 10  (a) 基于石墨烯超表面产生SPR的示意图; (b) SPR辐射强度、相位与石墨烯带状结构宽度w的关系; (c) SPR二阶辐射相位与石墨烯在单位结构中位置Δx的关系; (d) SPR的ExEy分量的强度和相位与石墨烯的旋转角度α之间的关系; 引自文献[95]

    Fig. 10.  (a) Schematic of SPR mediated by graphene metasurfaces; (b) dependence of the SPR amplitude and phase on the width of the graphene ribbons; (c) dependence of the SPR phase on the displacement of a graphene ribbon in its unit cell for the second-order SPR; (d) dependence of the amplitude and phase of electric field Ex and Ey on the rotating angle of rectangular graphene patches. Extracted from Ref. [95].

    Baidu
  • [1]

    Engheta N, Ziolkowski R W 2006 Metamaterials: Physics and Engineering Explorations (Hoboken: John Wiley & Sons) pp5–9

    [2]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617Google Scholar

    [3]

    Zheludev N I, Kivshar Y S 2012 Nat. Mater. 11 917Google Scholar

    [4]

    Poddubny A, Iorsh I, Belov P, Kivshar Y 2013 Nat. Photonics 7 948Google Scholar

    [5]

    Shekhar P, Atkinson J, Jacob Z 2014 Nano Converg. 1 14Google Scholar

    [6]

    Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G, Zhang X 2008 Nature 455 376Google Scholar

    [7]

    Smith D R, Kroll N 2000 Phys. Rev. Lett. 85 2933Google Scholar

    [8]

    Vesseur E J R, Coenen T, Caglayan H, Engheta N, Polman A 2013 Phys. Rev. Lett. 110 013902Google Scholar

    [9]

    Moitra P, Yang Y, Anderson Z, Kravchenko I I, Briggs D P, Valentine J 2013 Nat. Photonics 7 791Google Scholar

    [10]

    Lin D, Fan P, Hasman E, Brongersma M L 2014 Science 345 298Google Scholar

    [11]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J-P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [12]

    Elder F R, Gurewitsch A M, Langmuir R V, Pollock H C 1947 Phys. Rev. 71 829

    [13]

    Hendrickson W A 1991 Science 254 51Google Scholar

    [14]

    Asner D M, Bradley R F, de Viveiros L, Doe P J, Fernandes J L, Fertl M, Finn E C, Formaggio J A, Furse D, Jones A M, Kofron J N, LaRoque B H, Leber M, McBride E L, Miller M L, Mohanmurthy P, Monreal B, Oblath N S, Robertson R G H, Rosenberg L J, Rybka G, Rysewyk D, Sternberg M G, Tedeschi J R, Thümmler T, VanDevender B A, Woods N L 2015 Phys. Rev. Lett. 114 162501Google Scholar

    [15]

    Bornatici M, Cano R, De Barbieri O, Engelmann F 1983 Nucl. Fusion 23 1153Google Scholar

    [16]

    Cherenkov P A 1934 Dokl. Akad. Nauk SSSR 2 451

    [17]

    Kobzev A P 2010 Phys. Part. Nucl. 41 452Google Scholar

    [18]

    Doucas G, Mulvey J H, Omori M, Walsh J, Kimmitt M F 1992 Phys. Rev. Lett. 69 1761Google Scholar

    [19]

    Smith S J, Purcell E M 1953 Phys. Rev. 92 1069

    [20]

    Bolotovskii B M 2009 Phys. Usp. 52 1099Google Scholar

    [21]

    Frank I M, Tamm I E 1991 Selected Papers (Berlin, Heidelberg: Springer Berlin Heidelberg) pp29–35

    [22]

    Eichmeier J A, Thumm M 2008 Vacuum Electronics: Components and Devices (Berlin: Springer Science & Business Media) p315

    [23]

    Ren H, Deng X, Zheng Y, An N, Chen X 2012 Phys. Rev. Lett. 108 223901Google Scholar

    [24]

    Aubert J J, Becker U, Biggs P J, Burger J, Chen M, Everhart G, Goldhagen P, Leong J, McCorriston T, Rhoades T G, Rohde M, Ting S C C, Wu S L, Lee Y Y 1974 Phys. Rev. Lett. 33 1404Google Scholar

    [25]

    Chamberlain O, Segrè E, Wiegand C, Ypsilantis T 1955 Phys. Rev. 100 947Google Scholar

    [26]

    Fukuda Y, Hayakawa T, Ichihara E, Inoue K, Ishihara K, Ishino H, Itow Y, Kajita T, Kameda J, Kasuga S 1998 Phys. Rev. Lett. 81 1562Google Scholar

    [27]

    Bugaev S P, Cherepenin V A, Kanavets V I, Klimov A I, Kopenkin A D, Koshelev V I, Popov V A, Slepkov A I 1990 IEEE Trans. Plasma Sci. 18 525Google Scholar

    [28]

    Duan Z, Shapiro M A, Schamiloglu E, Behdad N, Gong Y, Booske J H, Basu B N, Temkin R J 2019 IEEE Trans. Electron Devices 66 207Google Scholar

    [29]

    Korovin S D, Eltchaninov A A, Rostov V V, Shpak V G, Yalandin M I, Ginzburg N S, Sergeev A S, Zotova I V 2006 Phys. Rev. E 74 016501

    [30]

    Saltzberg D, Gorham P, Walz D, Field C, Iverson R, Odian A, Resch G, Schoessow P, Williams D 2001 Phys. Rev. Lett. 86 2802Google Scholar

    [31]

    Kotagiri N, Sudlow G P, Akers W J, Achilefu S 2015 Nat. Nanotechnol. 10 370Google Scholar

    [32]

    Robertson R, Germanos M S, Li C, Mitchell G S, Cherry S R, Silva M D 2009 Phys. Med. Biol. 54 N355Google Scholar

    [33]

    Ruggiero A, Holland J P, Lewis J S, Grimm J 2010 J. Nucl. Med. 51 1123Google Scholar

    [34]

    French D M, Shiffler D, Cartwright K 2013 Phys. Plasmas 20 083116Google Scholar

    [35]

    Matsui T 2017 J. Infrared Millim. Te. 38 1140Google Scholar

    [36]

    Fulton T, Rohrlich F 1960 Ann. Phys. 9 499Google Scholar

    [37]

    Schwinger J 1949 Phys. Rev. 75 1912Google Scholar

    [38]

    Madey J M J 1971 J. Appl. Phys. 42 1906Google Scholar

    [39]

    Koch H W, Motz J W 1959 Rev. Mod. Phys. 31 920Google Scholar

    [40]

    Tamm I E 1991 Selected Papers (Berlin, Heidelberg: Springer Berlin Heidelberg) pp55–67

    [41]

    Luo C, Ibanescu M, Johnson S G, Joannopoulos J D 2003 Science 299 368Google Scholar

    [42]

    Schächter L 2011 Beam-Wave Interaction in Periodic and Quasi-Periodic Structures (Berlin, Heidelberg : Springer Berlin Heidelberg) pp169–170

    [43]

    Van den Berg P M 1973 J. Opt. Soc. Am. 63 689Google Scholar

    [44]

    Van den Berg P M 1973 J. Opt. Soc. Am. 63 1588Google Scholar

    [45]

    Gover A, Dvorkis P, Elisha U 1984 J. Opt. Soc. Am. B 1 723

    [46]

    García de Abajo F J 2010 Rev. Mod. Phys. 82 209Google Scholar

    [47]

    Wahlstrand J K, Merlin R 2003 Phys. Rev. B 68 054301

    [48]

    Silveirinha M 2017 Nat. Photonics 11 269Google Scholar

    [49]

    Liu F, Xiao L, Ye Y, Wang M, Cui K, Feng X, Zhang W, Huang Y 2017 Nat. Photonics 11 289Google Scholar

    [50]

    Cortes C, Newman W, Molesky S, Jacob Z 2012 J. Opt. 14 063001Google Scholar

    [51]

    Adamo G, MacDonald K F, Fu Y H, Wang C M, Tsai D P, García de Abajo F J, Zheludev N I 2009 Phys. Rev. Lett. 103 113901Google Scholar

    [52]

    So J K, García de Abajo F J, MacDonald K F, Zheludev N I 2015 ACS Photonics 2 1236Google Scholar

    [53]

    Shekhar P, Pendharker S, Sahasrabudhe H, Vick D, Malac M, Rahman R, Jacob Z 2018 Optica 5 1590Google Scholar

    [54]

    Fernandes D E, Maslovski S I, Silveirinha M G 2012 Phys. Rev. B 85 155107Google Scholar

    [55]

    Jacob Z, Kim J Y, Naik G V, Boltasseva A, Narimanov E E, Shalaev V M 2010 Appl. Phys. B 100 215Google Scholar

    [56]

    Caldwell J D, Kretinin A V, Chen Y, Giannini V, Fogler M M, Francescato Y, Ellis C T, Tischler J G, Woods C R, Giles A J, Hong M, Watanabe K, Taniguchi T, Maier S A, Novoselov K S 2014 Nat. Commun. 5 5221

    [57]

    Esslinger M, Vogelgesang R, Talebi N, Khunsin W, Gehring P, De Zuani S, Gompf B, Kern K 2014 ACS Photonics 1 1285Google Scholar

    [58]

    Narimanov E E, Kildishev A V 2015 Nat. Photonics 9 214Google Scholar

    [59]

    Govyadinov A A, Konečná A, Chuvilin A, Vélez S, Dolado I, Nikitin A Y, Lopatin S, Casanova F, Hueso L E, Aizpurua J 2017 Nat. Commun. 8 95Google Scholar

    [60]

    屈拓 2019 博士学位论文 (北京: 清华大学)

    Qu T 2019 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [61]

    Shekhar P, Pendharker S, Vick D, Malac M, Jacob Z 2019 Opt. Express 27 6970Google Scholar

    [62]

    Tao J, Wu L, Zheng G, Yu S 2019 Carbon 150 136Google Scholar

    [63]

    Marqués R, Medina F, Rafii-El-Idrissi R 2002 Phys. Rev. B 65 144440Google Scholar

    [64]

    Veselago V G 1968 Sov. Phys. Usp. 10 509Google Scholar

    [65]

    Zharov A A, Shadrivov I V, Kivshar Y S 2003 Phys. Rev. Lett. 91 037401Google Scholar

    [66]

    Lezec H J, Dionne J A, Atwater H A 2007 Science 316 430Google Scholar

    [67]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77Google Scholar

    [68]

    Xi S, Chen H, Jiang T, Ran L, Huangfu J, Wu B I, Kong J A, Chen M 2009 Phys. Rev. Lett. 103 194801Google Scholar

    [69]

    Zhang S, Zhang X 2009 Physics 2 91Google Scholar

    [70]

    Duan Z, Tang X, Wang Z, Zhang Y, Chen X, Chen M, Gong Y 2017 Nat. Commun. 8 14901

    [71]

    Akopov N, Aschenauer E C, Bailey K, et al. 2002 Nucl. Instrum. Methods Phys. Res., Sect. A 479 511Google Scholar

    [72]

    Nishino H, Clark S, Abe K, Hayato Y, Iida T, Ikeda M, Kameda J, Kobayashi K, Koshio Y, Miura M 2009 Phys. Rev. Lett. 102 141801Google Scholar

    [73]

    Séguinot J, Ypsilantis T 1977 Nucl. Instrum. Methods 142 377Google Scholar

    [74]

    Ginis V, Danckaert J, Veretennicoff I, Tassin P 2014 Phys. Rev. Lett. 113 167402Google Scholar

    [75]

    Duan Z, Wu B I, Xi S, Chen H, Chen M 2009 Prog. Electromagn. Res. 90 75Google Scholar

    [76]

    Hsu C W, Zhen B, Stone A D, Joannopoulos J D, Soljačić M 2016 Nat. Rev. Mater. 1 16048

    [77]

    Kim S, Baek I K, Bhattacharya R, Hong D, Sattorov M, Bera A, So J K, Kim D S, Park G S 2018 Adv. Opt. Mater. 6 1800041Google Scholar

    [78]

    Song Y, Jiang N, Liu L, Hu X, Zi J 2018 Phys. Rev. Appl. 10 064026Google Scholar

    [79]

    Yang Y, Massuda A, Roques-Carmes C, Kooi S E, Christensen T, Johnson S G, Joannopoulos J D, Miller O D, Kaminer I, Soljačić M 2018 Nat. Phys. 14 894Google Scholar

    [80]

    Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kanté B 2017 Nature 541 196Google Scholar

    [81]

    Marinica D C, Borisov A G, Shabanov S V 2008 Phys. Rev. Lett. 100 183902Google Scholar

    [82]

    Kimura W D, Kim G H, Romea R D, Steinhauer L C, Pogorelsky I V, Kusche K P, Fernow R C, Wang X, Liu Y 1995 Phys. Rev. Lett. 74 546Google Scholar

    [83]

    Kumar V, Kim K-J 2006 Phys. Rev. E 73 026501Google Scholar

    [84]

    Ye Y, Liu F, Cui K, Feng X, Zhang W, Huang Y 2018 Opt. Express 26 31402Google Scholar

    [85]

    Denis T, van Dijk M W, Lee J H H, van der Meer R, Strooisma A, van der Slot P J M, Vos W L, Boller K J 2016 Phys. Rev. A 94 053852Google Scholar

    [86]

    Von Laven S, Branscum J, Golub J, Layman R, Walsh J 1982 Appl. Phys. Lett. 41 408Google Scholar

    [87]

    Wiggins S M, Jaroszynski D A, McNeil B W J, Robb G R M, Aitken P, Phelps A D R, Cross A W, Ronald K, Ginzburg N S, Shpak V G, Yalandin M I, Shunailov S A, Ulmaskulov M R 2000 Phys. Rev. Lett. 84 2393Google Scholar

    [88]

    Kim K J, Song S B 2001 Nucl. Instrum. Methods Phys. Res., Sect. A 475 158Google Scholar

    [89]

    Chen H-T, Taylor A J, Yu N 2016 Rep. Prog. Phys. 79 076401Google Scholar

    [90]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009Google Scholar

    [91]

    Yu N, Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [92]

    Brownell J H, Doucas G 2005 Phys. Rev. Spec. Top. Accel Beams 8 091301

    [93]

    Wang Z, Yao K, Chen M, Chen H, Liu Y 2016 Phys. Rev. Lett. 117 157401Google Scholar

    [94]

    Yang Y, Roques-Carmes C, Kaminer I, Zaidi A, Massuda A, Yang Y, Kooi S E, Berggren K K, Soljačić M Conference on Lasers and Electro-Optics San Jose, California, May 13, 2018 pFW4 H.1

    [95]

    Su Z, Cheng F, Li L, Liu Y 2019 ACS Photonics 6 1947Google Scholar

    [96]

    Gamzina D, Li H, Himes L, Barchfeld R, Popovic B, Pan P, Letizia R, Mineo M, Feng J, Paoloni C, Luhmann N C 2016 IEEE Trans. Nanotechnol. 15 85Google Scholar

    [97]

    Hu P, Lei W, Jiang Y, Huang Y, Song R, Chen H, Dong Y 2019 IEEE Electron Device Lett. 40 973Google Scholar

    [98]

    Liu S, Zhang C, Hu M, Chen X, Zhang P, Gong S, Zhao T, Zhong R 2014 Appl. Phys. Lett. 104 201104Google Scholar

    [99]

    Shin Y M, So J K, Jang K H, Won J H, Srivastava A, Park G S 2007 Appl. Phys. Lett. 90 031502Google Scholar

    [100]

    Breuer J, Hommelhoff P 2013 Phys. Rev. Lett. 111 134803Google Scholar

    [101]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [102]

    Peralta E A, Soong K, England R J, Colby E R, Wu Z, Montazeri B, McGuinness C, McNeur J, Leedle K J, Walz D, Sozer E B, Cowan B, Schwartz B, Travish G, Byer R L 2013 Nature 503 91Google Scholar

    [103]

    Rosolen G, Wong L J, Rivera N, Maes B, Soljačić M, Kaminer I 2018 Light-Sci. Appl. 7 1Google Scholar

    [104]

    Friedman A, Gover A, Kurizki G, Ruschin S, Yariv A 1988 Rev. Mod. Phys. 60 471Google Scholar

    [105]

    Gover A, Yariv A 1974 J. Appl. Phys. 45 2596Google Scholar

    [106]

    Mikhailov S A 2013 Phys. Rev. B 87 115405Google Scholar

    [107]

    Tsui D C, Gornik E, Logan R A 1980 Solid State Commun. 35 875Google Scholar

    [108]

    Chen C D, Hu X P, Xu Y L, Xu P, Zhao G, Zhu S N 2012 Appl. Phys. Lett. 101 071113Google Scholar

    [109]

    Tien P K, Ulrich R, Martin R J 1970 Appl. Phys. Lett. 17 447Google Scholar

    [110]

    Saltiel S M, Sheng Y, Voloch-Bloch N, Neshev D N, Krolikowski W, Arie A, Koynov K, Kivshar Y S 2009 IEEE J. Quantum Electron. 45 1465Google Scholar

    [111]

    Zhang Y, Gao Z D, Qi Z, Zhu S N, Ming N B 2008 Phys. Rev. Lett. 100 163904Google Scholar

    [112]

    Wai P K A, Menyuk C R, Lee Y C, Chen H H 1986 Opt. Lett. 11 464Google Scholar

    [113]

    Coen S, Randle H G, Sylvestre T, Erkintalo M 2013 Opt. Lett. 38 37Google Scholar

    [114]

    Brasch V, Geiselmann M, Herr T, Lihachev G, Pfeiffer M H, Gorodetsky M L, Kippenberg T J 2016 Science 351 357Google Scholar

  • [1] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态.  , 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [2] 李靖, 刘运全. 基于相对论自由电子的量子物理.  , 2022, 71(23): 233302. doi: 10.7498/aps.71.20221289
    [3] 周毅, 陈瑞, 陈雯洁, 马云贵. 空域模拟光学计算器件的研究进展.  , 2020, 69(15): 157803. doi: 10.7498/aps.69.20200283
    [4] 权家琪, 圣宗强, 吴宏伟. 基于人工表面等离激元结构的全向隐身.  , 2019, 68(15): 154101. doi: 10.7498/aps.68.20190283
    [5] 姚尧, 沈悦, 郝加明, 戴宁. 基于亚波长人工微结构的电磁波减反增透研究进展.  , 2019, 68(14): 147802. doi: 10.7498/aps.68.20190702
    [6] 徐进, 李荣强, 蒋小平, 王身云, 韩天成. 基于方形开口环的超宽带线性极化转换器.  , 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [7] 杨鹏, 韩天成. 极化控制的双波段宽带红外吸收器研究.  , 2018, 67(10): 107801. doi: 10.7498/aps.67.20172716
    [8] 蒲明博, 王长涛, 王彦钦, 罗先刚. 衍射极限尺度下的亚波长电磁学.  , 2017, 66(14): 144101. doi: 10.7498/aps.66.144101
    [9] 冉茂怡, 胡耀垓, 赵正予, 张援农. 高功率微波注入对流层对氟利昂的影响.  , 2017, 66(4): 045101. doi: 10.7498/aps.66.045101
    [10] 马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚. 超构天线:原理、器件与应用.  , 2017, 66(14): 147802. doi: 10.7498/aps.66.147802
    [11] 邓俊鸿, 李贵新. 非线性光学超构表面.  , 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [12] 龙洋, 任捷, 江海涛, 孙勇, 陈鸿. 超构材料中的光学量子自旋霍尔效应.  , 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [13] 曹苗苗, 刘文鑫, 王勇, 朱觉远, 李科. 太赫兹波段Smith-Purcell辐射的介质加载光栅高频特性.  , 2016, 65(1): 014101. doi: 10.7498/aps.65.014101
    [14] 傅涛, 欧阳征标. 等离子体填充金属光子晶体Cherenkov辐射源模拟研究.  , 2016, 65(7): 074208. doi: 10.7498/aps.65.074208
    [15] 陈达鑫, 陈志峰, 徐初东, 赖天树. 铁磁薄膜中圆偏振光感应的瞬态磁光Kerr峰的物理起源.  , 2010, 59(10): 7362-7367. doi: 10.7498/aps.59.7362
    [16] 高喜, 杨梓强, 侯钧, 亓丽梅, 兰峰, 史宗君, 李大治, 梁正. 具有变态光子带隙结构的相对论Cherenkov辐射源的研究.  , 2009, 58(2): 1105-1109. doi: 10.7498/aps.58.1105
    [17] 赵东焕. 自由电子激光中电子与辐射波相互作用有效时间的分析.  , 1996, 45(4): 573-579. doi: 10.7498/aps.45.573
    [18] 赵东焕, 雷仕湛. 自由电子激光辐射场的经典理论分析.  , 1996, 45(2): 192-200. doi: 10.7498/aps.45.192
    [19] 刘盛纲, 孙雁. 渡越辐射自由电子激光中自发辐射与受激辐射的关系.  , 1988, 37(9): 1505-1509. doi: 10.7498/aps.37.1505
    [20] 张毅波. 切伦科夫自由电子激光中自发辐射与受激辐射的关系.  , 1987, 36(10): 1344-1348. doi: 10.7498/aps.36.1344
计量
  • 文章访问数:  10748
  • PDF下载量:  422
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-22
  • 修回日期:  2020-04-07
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-08-05

/

返回文章
返回
Baidu
map