-
空域模拟光学计算器件具备高通量、实时性和低能耗的信息处理能力. 光学超构材料结构紧凑、对光波具有强大调控能力, 可被用于构建小型化、集成化的空域模拟光学计算器件. 目前空域模拟光学计算器件的研究根据设计方法主要分为4F系统法和格林函数法两类. 4F系统法需要两个傅里叶变换透镜和一个空间频率滤波器, 实际模拟计算过程是在空域完成的, 结构较为庞大复杂. 格林函数法直接利用特别设计的光学材料的非局域响应在空间频率域实现模拟计算过程, 不需要额外的傅里叶变换组件, 结构简单. 本文按照这两种设计方法介绍了近几年来空域模拟光学计算器件的研究进展, 根据计算功能又分为微分器、积分器、方程求解器和空间频率滤波器, 阐述了这些器件的设计方法. 其后介绍了新近提出的利用自旋轨道耦合作用实现空域模拟一阶微分的计算器件. 最后对空域模拟光学计算器件应用场景和研究前景进行了讨论和分析.Spatial analog optical computing devices possess the capability of high-throughput, real-time and low-energy information processing. Optical metamaterials, which are ultracompact in structure and possess powerful ability to control the light, can be utilized to establish miniatured and integrated spatial analog optical computing devices. The methods of designing the spatial analog optical computing devices could be mainly classified as two kinds—4F system method and Green’s function method. The 4F system method requires two Fourier transform lenses and a spatial frequency filter, where the actual computing procedure is performed in the spatial domain. The 4F system is usually bulky and complicated. The Green’s function method directly leverages the nonlocal response of the carefully tailored optical materials to implement analog computing procedure in the spatial frequency domain and its structure is compact without extra Fourier transform components. Research advances in spatial analog optical computing devices by using these two methods for the last few years are introduced in this paper. These researches could be classified as differentiators, integrators, equation solvers and spatial frequency filters according to the standard of computing functions. The approaches to designing these devices are further demonstrated. Then, computing devices which could realize spatial analog first-order difference by use of the spin-orbit interaction proposed recently are introduced. Finally, application fields and study prospects of spatial analog optical computing devices are discussed and summarized.
-
Keywords:
- spatial analog optical computing /
- optical information processing /
- metamaterial /
- multilayer film
[1] Goodman J W 2005 Introduction to Fourier Optics (3rd Ed.). (Englewood: Roberts & Company Publishers)
[2] Staude I, Schilling J 2017 Nat. Photonics 11 274
Google Scholar
[3] Aieta F, Kats M A, Genevet P, Capasso F 2015 Science 347 1342
Google Scholar
[4] Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotech. 10 308
Google Scholar
[5] Liu S, Vabishchevich P P, Vaskin A, Reno J L, Keeler G A, Sinclair M B, Staude I, Brener I 2018 Nat. Commun. 9 2507
Google Scholar
[6] Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N 2014 Science 343 160
Google Scholar
[7] Pors A, Nielsen M G, Bozhevolnyi S I 2015 Nano Lett. 15 791
Google Scholar
[8] Zhu T, Zhou Y, Lou Y, Ye H, Qiu M, Ruan Z, Fan S 2017 Nat. Commun. 8 15391
Google Scholar
[9] Estakhri N M, Edwards B, Engheta N 2019 Science 363 1333
Google Scholar
[10] Sajjad A R, Arik K, Khavasi A, Kavehvash Z 2015 Opt. Lett. 40 5239
Google Scholar
[11] Chen H, An D, Li Z, Zhao X 2017 Opt. Express 25 26417
Google Scholar
[12] Wang Z, Li T, Soman A, Mao D, Kananen T, Gu T 2019 Nat. Commun. 10 3547
Google Scholar
[13] Wu Y, Zhuang Z, Deng L, Liu Y A, Xue Q, Ghassemlooy Z 2018 Plasmonics 13 599
Google Scholar
[14] Chizari A, Sajjad A R Jamali M V, Salehi J A 2016 Opt. Lett. 41 3451
Google Scholar
[15] Dai C L, Zhao Z G, Li X L, Yang H W 2016 Phys. Lett. A 380 3942
Google Scholar
[16] Sajjad A R, Chizari A, Dorche A E, Jamali M V, Salehi J A 2017 Opt. Lett. 42 1197
Google Scholar
[17] Zhang W X, Qu C, Zhang X D 2016 J. Opt. 18 075102
Google Scholar
[18] Kwon H, Sounas D, Cordaro A, Polman A, Alù A 2018 Phys. Rev. Lett. 121 173004
Google Scholar
[19] Momeni A, Rajabalipanah H, Abdolali A, Achouri K 2019 Phys. Rev. Appl. 11 064042
Google Scholar
[20] Wang H W, Guo C, Zhao Z X, Fan S H 2020 ACS Photonics 7 338
Google Scholar
[21] Doskolovich L L, Bykov D A, Bezus E A, Soifer V A 2014 Opt. Lett. 39 1278
Google Scholar
[22] Ruan Z C 2015 Opt. Lett. 40 601
Google Scholar
[23] Youssefi A, Zangeneh-Nejad F, Sajjad A R, Khavasi A 2016 Opt. Lett. 41 3467
Google Scholar
[24] Bezus E A, Doskolovich L L, Bykov D A, Soifer V A 2018 Opt. Express 26 25156
Google Scholar
[25] Bykov D A, Doskolovich L L, Morozov A A, Podlipnov V V, Bezus E A, Verma P, Soifer V A 2018 Opt. Express 26 10997
Google Scholar
[26] Dong Z W, Si J N, Yu X Y, Deng X X 2018 Appl. Phys. Lett. 112 181102
Google Scholar
[27] Fang Y S, Ruan Z C 2018 Opt. Lett. 43 5893
Google Scholar
[28] Zangeneh-Nejad F, Khavasi A, Rejaei B 2018 Opt. Commun. 407 338
Google Scholar
[29] Zhang J, Ying Q, Ruan Z 2019 Opt. Lett. 44 4511
Google Scholar
[30] Zhou Y, Wu W, Chen R, Chen W, Chen R, Ma Y 2020 Adv. Opt. Mater. 8 1901523
Google Scholar
[31] Zhou Y, Chen R, Chen W, Chen R P, Ma Y 2020 Opt. Commun. 458 124674
Google Scholar
[32] Guo C, Xiao M, Minkov M, Shi Y, Fan S 2018 Optica 5 251
Google Scholar
[33] Hwang Y, Davis T J, Lin J, Yuan X C 2018 Opt. Express 26 7368
Google Scholar
[34] Saba A, Tavakol M R, Karimi-Khoozani P, Khavasi A 2018 IEEE Photonics Technol. Lett. 30 853
Google Scholar
[35] Zhou Y, Zheng H, Kravchenko I I, Valentine J 2020 Nat. Photonics 14 316
Google Scholar
[36] Bykov D A, Doskolovich L L, Bezus E A, Soifer V A 2014 Opt. Express 22 25084
Google Scholar
[37] Fang Y, Lou Y, Ruan Z 2017 Opt. Lett. 42 3840
Google Scholar
[38] Wu W, Jiang W, Yang J, Gong S, Ma Y 2017 Opt. Lett. 42 5270
Google Scholar
[39] Golovastikov N V, Bykov D A, Doskolovich L L, Bezus E A 2015 Opt. Commun. 338 457
Google Scholar
[40] Zangeneh-Nejad F, Khavasi A 2017 Opt. Lett. 42 1954
Google Scholar
[41] Abdolali A, Momeni A, Rajabalipanah H, Achouri K 2019 New J. Phys. 21 113048
Google Scholar
[42] Guo C, Xiao M, Minkov M, Shi Y, Fan S 2018 J. Opt. Soc. Am. A 35 1685
Google Scholar
[43] Roberts A, Gómez D E, Davis T J 2018 J. Opt. Soc. Am. A 35 1575
Google Scholar
[44] Davis T J, Eftekhari F, Gómez D E, Roberts A 2019 Phys. Rev. Lett. 123 013901
Google Scholar
[45] Zhu T F, Lou Y J, Zhou Y H, Zhang J H, Huang J Y, Li Y, Luo H L, Wen S C, Zhu S Y, Gong Q H, Qiu M, Ruan Z C 2019 Phys. Rev. Appl. 11 034043
Google Scholar
[46] Zhu T F, Huang J Y, Ruan Z C 2020 Adv. Photonics 2 016001
Google Scholar
[47] He S, Zhou J, Chen S, Shu W, Luo H, Wen S 2020 APL Photonics 5 036105
Google Scholar
[48] He S, Zhou J, Chen S, Shu W, Luo H, Wen S 2020 Opt. Lett. 45 877
Google Scholar
[49] Zhou J, Qian H, Chen C F, Zhao J, Li G, Wu Q, Luo H, Wen S, Liu Z 2019 Proc. Natl. Acad. Sci. U. S. A. 116 11137
Google Scholar
[50] 谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘俊敏, 周新星, 李瑛, 陈书青, 范滇元 2020 69 014101
Google Scholar
Xie Z Q, He Y L, Wang P P, Su M Y, Chen X Y, Yang B, Liu J M, Zhou X X, Li Y, Chen S Q, Fan D Y 2020 Acta Phys. Sin. 69 014101
Google Scholar
[51] Folland T G, Fali A, White S T, et al. 2018 Nat. Commun. 9 4371
Google Scholar
[52] Tian J, Luo H, Yang Y, Ding F, Qu Y, Zhao D, Qiu M, Bozhevolnyi S I 2019 Nat. Commun. 10 396
Google Scholar
[53] Wen D, Yue F, Li G, et al. 2015 Nat. Commun. 6 8241
Google Scholar
[54] Maguid E, Yulevich I, Veksler D, Kleiner V, Brongersma M L, Hasman E 2016 Science 352 1202
Google Scholar
-
图 2 利用4F系统法设计的超构材料空域模拟光学计算器件 (a), (b) MIM等离激元超构表面和对应反射强度分布[7]; (c), (d) 树枝状等离激元超构表面和对应反射强度分布[11]; (e), (f) SOI片上超构表面结构和对应一阶微分器[12]; (g), (h) 硅超构表面ODE、IDE求解器和对应电场仿真结果[16]
Fig. 2. Metamaterial spatial analog optical computing devices designed by 4F system method: (a), (b) MIM plasmon metasurface and corresponding reflective intensity distribution[7]; (c), (d) dendritic plasmon metasurface and corresponding reflective intensity distribution[11]; (e), (f) schematic of unit cell of SOI-based on-chip metasurface and corresponding first-order differentiator[12]; (g), (h) ODE and IDE solvers based on silicon metasurfaces and corresponding electric field simulation results[16].
图 3 基于平板或多层膜的空域模拟一阶微分器 (a) PSBG微分器和对应传递函数[21]; (b) 工作在Brewster角的介质平板微分器和对应传递函数[23]; (c) 基于SPP的微分器和边缘检测实验结果[8]
Fig. 3. Spatial analog first-order differentiator based on plates and multilayer films: (a) PSBG differentiator and corresponding transfer function[21]; (b) dielectric plate differentiator working at Brewster’s angle and corresponding transfer function[23]; (c) SPP-based differentiator and experimental results of edge detection[8].
图 4 基于光栅和普通超构材料的空域模拟一阶微分器 (a) 基于全介质光栅的微分器和边缘检测实验结果[26]; (b) 基于结构对称性破缺SRR的微分器和对应传递函数[18]; (c) 介质-金属超构表面微分器和边缘检测实验结果[30]
Fig. 4. Grating/metamaterial-based spatial analog first-order differentiator: (a) Differentiator based on all-dielectric grating and experimental results of edge detection[26]; (b) differentiator based on structure-symmetry-broken SRRs and corresponding transfer function[18]; (c) dielectric-metal metasurface differentiator and experimental results of edge detection[30].
图 5 超构材料空域模拟二阶微分器 (a) 光栅石墨烯复合微分器和对应传递函数幅度[37]; (b) 基于等离激元电路的微分器和对应交叉偏振散射强度随入射角度的函数关系[33]; (c) 基于光子晶体的微分器和对应传递函数幅度[32]
Fig. 5. Metamaterial spatial analog second-order differentiator: (a) On-grating graphene differentiator and magnitude of corresponding transfer function[37]; (b) differentiator based on plasmonic circuit and corresponding cross-polarized scattering intensity as function of incident angle[33]; (c) differentiator based on photonic crystal slab and magnitude of corresponding transfer function[32].
-
[1] Goodman J W 2005 Introduction to Fourier Optics (3rd Ed.). (Englewood: Roberts & Company Publishers)
[2] Staude I, Schilling J 2017 Nat. Photonics 11 274
Google Scholar
[3] Aieta F, Kats M A, Genevet P, Capasso F 2015 Science 347 1342
Google Scholar
[4] Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotech. 10 308
Google Scholar
[5] Liu S, Vabishchevich P P, Vaskin A, Reno J L, Keeler G A, Sinclair M B, Staude I, Brener I 2018 Nat. Commun. 9 2507
Google Scholar
[6] Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N 2014 Science 343 160
Google Scholar
[7] Pors A, Nielsen M G, Bozhevolnyi S I 2015 Nano Lett. 15 791
Google Scholar
[8] Zhu T, Zhou Y, Lou Y, Ye H, Qiu M, Ruan Z, Fan S 2017 Nat. Commun. 8 15391
Google Scholar
[9] Estakhri N M, Edwards B, Engheta N 2019 Science 363 1333
Google Scholar
[10] Sajjad A R, Arik K, Khavasi A, Kavehvash Z 2015 Opt. Lett. 40 5239
Google Scholar
[11] Chen H, An D, Li Z, Zhao X 2017 Opt. Express 25 26417
Google Scholar
[12] Wang Z, Li T, Soman A, Mao D, Kananen T, Gu T 2019 Nat. Commun. 10 3547
Google Scholar
[13] Wu Y, Zhuang Z, Deng L, Liu Y A, Xue Q, Ghassemlooy Z 2018 Plasmonics 13 599
Google Scholar
[14] Chizari A, Sajjad A R Jamali M V, Salehi J A 2016 Opt. Lett. 41 3451
Google Scholar
[15] Dai C L, Zhao Z G, Li X L, Yang H W 2016 Phys. Lett. A 380 3942
Google Scholar
[16] Sajjad A R, Chizari A, Dorche A E, Jamali M V, Salehi J A 2017 Opt. Lett. 42 1197
Google Scholar
[17] Zhang W X, Qu C, Zhang X D 2016 J. Opt. 18 075102
Google Scholar
[18] Kwon H, Sounas D, Cordaro A, Polman A, Alù A 2018 Phys. Rev. Lett. 121 173004
Google Scholar
[19] Momeni A, Rajabalipanah H, Abdolali A, Achouri K 2019 Phys. Rev. Appl. 11 064042
Google Scholar
[20] Wang H W, Guo C, Zhao Z X, Fan S H 2020 ACS Photonics 7 338
Google Scholar
[21] Doskolovich L L, Bykov D A, Bezus E A, Soifer V A 2014 Opt. Lett. 39 1278
Google Scholar
[22] Ruan Z C 2015 Opt. Lett. 40 601
Google Scholar
[23] Youssefi A, Zangeneh-Nejad F, Sajjad A R, Khavasi A 2016 Opt. Lett. 41 3467
Google Scholar
[24] Bezus E A, Doskolovich L L, Bykov D A, Soifer V A 2018 Opt. Express 26 25156
Google Scholar
[25] Bykov D A, Doskolovich L L, Morozov A A, Podlipnov V V, Bezus E A, Verma P, Soifer V A 2018 Opt. Express 26 10997
Google Scholar
[26] Dong Z W, Si J N, Yu X Y, Deng X X 2018 Appl. Phys. Lett. 112 181102
Google Scholar
[27] Fang Y S, Ruan Z C 2018 Opt. Lett. 43 5893
Google Scholar
[28] Zangeneh-Nejad F, Khavasi A, Rejaei B 2018 Opt. Commun. 407 338
Google Scholar
[29] Zhang J, Ying Q, Ruan Z 2019 Opt. Lett. 44 4511
Google Scholar
[30] Zhou Y, Wu W, Chen R, Chen W, Chen R, Ma Y 2020 Adv. Opt. Mater. 8 1901523
Google Scholar
[31] Zhou Y, Chen R, Chen W, Chen R P, Ma Y 2020 Opt. Commun. 458 124674
Google Scholar
[32] Guo C, Xiao M, Minkov M, Shi Y, Fan S 2018 Optica 5 251
Google Scholar
[33] Hwang Y, Davis T J, Lin J, Yuan X C 2018 Opt. Express 26 7368
Google Scholar
[34] Saba A, Tavakol M R, Karimi-Khoozani P, Khavasi A 2018 IEEE Photonics Technol. Lett. 30 853
Google Scholar
[35] Zhou Y, Zheng H, Kravchenko I I, Valentine J 2020 Nat. Photonics 14 316
Google Scholar
[36] Bykov D A, Doskolovich L L, Bezus E A, Soifer V A 2014 Opt. Express 22 25084
Google Scholar
[37] Fang Y, Lou Y, Ruan Z 2017 Opt. Lett. 42 3840
Google Scholar
[38] Wu W, Jiang W, Yang J, Gong S, Ma Y 2017 Opt. Lett. 42 5270
Google Scholar
[39] Golovastikov N V, Bykov D A, Doskolovich L L, Bezus E A 2015 Opt. Commun. 338 457
Google Scholar
[40] Zangeneh-Nejad F, Khavasi A 2017 Opt. Lett. 42 1954
Google Scholar
[41] Abdolali A, Momeni A, Rajabalipanah H, Achouri K 2019 New J. Phys. 21 113048
Google Scholar
[42] Guo C, Xiao M, Minkov M, Shi Y, Fan S 2018 J. Opt. Soc. Am. A 35 1685
Google Scholar
[43] Roberts A, Gómez D E, Davis T J 2018 J. Opt. Soc. Am. A 35 1575
Google Scholar
[44] Davis T J, Eftekhari F, Gómez D E, Roberts A 2019 Phys. Rev. Lett. 123 013901
Google Scholar
[45] Zhu T F, Lou Y J, Zhou Y H, Zhang J H, Huang J Y, Li Y, Luo H L, Wen S C, Zhu S Y, Gong Q H, Qiu M, Ruan Z C 2019 Phys. Rev. Appl. 11 034043
Google Scholar
[46] Zhu T F, Huang J Y, Ruan Z C 2020 Adv. Photonics 2 016001
Google Scholar
[47] He S, Zhou J, Chen S, Shu W, Luo H, Wen S 2020 APL Photonics 5 036105
Google Scholar
[48] He S, Zhou J, Chen S, Shu W, Luo H, Wen S 2020 Opt. Lett. 45 877
Google Scholar
[49] Zhou J, Qian H, Chen C F, Zhao J, Li G, Wu Q, Luo H, Wen S, Liu Z 2019 Proc. Natl. Acad. Sci. U. S. A. 116 11137
Google Scholar
[50] 谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘俊敏, 周新星, 李瑛, 陈书青, 范滇元 2020 69 014101
Google Scholar
Xie Z Q, He Y L, Wang P P, Su M Y, Chen X Y, Yang B, Liu J M, Zhou X X, Li Y, Chen S Q, Fan D Y 2020 Acta Phys. Sin. 69 014101
Google Scholar
[51] Folland T G, Fali A, White S T, et al. 2018 Nat. Commun. 9 4371
Google Scholar
[52] Tian J, Luo H, Yang Y, Ding F, Qu Y, Zhao D, Qiu M, Bozhevolnyi S I 2019 Nat. Commun. 10 396
Google Scholar
[53] Wen D, Yue F, Li G, et al. 2015 Nat. Commun. 6 8241
Google Scholar
[54] Maguid E, Yulevich I, Veksler D, Kleiner V, Brongersma M L, Hasman E 2016 Science 352 1202
Google Scholar
计量
- 文章访问数: 11460
- PDF下载量: 398
- 被引次数: 0