-
光学超构材料是一种人工设计的微结构材料, 它的出现打破了传统材料设计思维的局域性, 为在微纳尺度上人为调控电磁波提供了新的范式, 实现了具有超越自然界常规材料的光学性质. 尤其是超构材料具有将光和电磁辐射耦合到亚波长尺度的能力, 满足了高速发展的现代科学技术对光学元器件的高性能、微型化以及集成化的新要求. 因此, 基于超构材料的光子芯片带来很多令人鼓舞的应用, 如突破衍射极限的完美成像、多功能的集成光学器件等. 更有意思的是, 超构材料光子芯片还可以用来模拟一些广义相对论的现象, 尤其是探索一些尚未被实验证实的与引力相关的现象. 本文从不同类型的超构材料芯片出发, 简要介绍了在光学超构材料芯片上开展的类比引力的研究, 最后对其发展现状、优势与面临的挑战进行了相应的总结与展望.Optical metamaterial is a kind of artificially designed microstructured material. Its occurrence breaks the localization of traditional material design thinking and provides a new paradigm for artificially controlling electromagnetic waves on a micro-nano scale, especially realizes optical properties beyond conventional materials in nature. Furthermore, metamaterial has the ability to couple electromagnetic waves into the sub-wavelength regime, meeting the high-speed development of modern science and technology, which puts forward new requirements for high performance, miniaturization and integration of optical components. Therefore, optical chips based on metamaterials bring many encouraging applications such as in perfect imaging that breaks through the diffraction limit, multifunctional integrated optics, etc. In addition, metamaterial photonic chips can also simulate some phenomena in general relativity, especially exploring some phenomena that have not been experimentally proven. This review paper briefly introduces the study of analogical gravitation based on different kinds of photonic chips on the basis of metamaterials. In the end, there present the summary and outlook about the current development, advantages and challenges of this field.
-
Keywords:
- optical metamaterials /
- optical chips /
- analogical gravitation
[1] Veselago V G 1968 Soviet Phys. Uspekhi-Ussr 10 509
Google Scholar
[2] Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075
Google Scholar
[3] Shelby R A, Smith D R, Schultz S 2001 Science 292 77
Google Scholar
[4] Pendry J B 2000 Phys. Rev. Lett. 85 3966
Google Scholar
[5] Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534
Google Scholar
[6] Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686
Google Scholar
[7] Pendry J B, Schurig D, Smith D R 2006 Science 312 1780
Google Scholar
[8] Leonhardt U 2006 Science 312 1777
Google Scholar
[9] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
Google Scholar
[10] Li J, Pendry J B 2008 Phys. Rev. Lett. 101 203901
Google Scholar
[11] Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366
Google Scholar
[12] Ma H F, Cui T J 2010 Nat. Commun. 1 21
Google Scholar
[13] Valentine J, Li J, Zentgraf T, Bartal G, Zhang X 2009 Nat. Mater. 8 568
Google Scholar
[14] Gabrielli L H, Cardenas J, Poitras C B, Lipson M 2009 Nat. Photonics 3 461
Google Scholar
[15] Lee J H, Blair J, Tamma V A, Wu Q, Rhee S J, Summers C J, Park W 2009 Opt. Express 17 12922
Google Scholar
[16] Zhang B, Luo Y, Liu X, Barbastathis G 2011 Phys. Rev. Lett. 106 033901
Google Scholar
[17] Chen X, Luo Y, Zhang J, Jiang K, Pendry J B, Zhang S 2011 Nat. Commun. 2 176
Google Scholar
[18] Chen H S, Zheng B, Shen L, Wang H, Zhang X, Zheludev N I, Zhang B 2013 Nat. Commun. 4 2652
Google Scholar
[19] Zhang S, Genov D A, Sun C, Zhang X 2008 Phys. Rev. Lett. 100 123002
Google Scholar
[20] Farhat M, Guenneau S, Enoch S 2009 Phys. Rev. Lett. 103 024301
Google Scholar
[21] Zhang S, Xia C, Fang N 2011 Phys. Rev. Lett. 106 024301
Google Scholar
[22] Popa B I, Zigoneanu L, Cummer S A 2011 Phys. Rev. Lett. 106 253901
Google Scholar
[23] Cummer S A, Schurig D 2007 New J. Phys. 9 45
Google Scholar
[24] Chen H, Chan C T 2007 Appl. Phys. Lett. 91 183518
Google Scholar
[25] Leonhardt U 2013 Nature 498 440
Google Scholar
[26] Xu H, Shi X, Gao F, Sun H, Zhang B 2014 Phys. Rev. Lett. 112 054301
Google Scholar
[27] Liu Y, Jiang W, He S, Ma Y 2014 Opt. Express 22 17006
Google Scholar
[28] Ma Y G, Ong C K, Tyc T, Leonhardt U 2009 Nat. Mater. 8 639
Google Scholar
[29] Chen H Y, Chan C T 2007 Appl. Phys. Lett. 90 241105
Google Scholar
[30] Lai Y, Ng J, Chen H Y, Han D, Xiao J, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 253902
Google Scholar
[31] Liu F, Liang Z, Li J 2013 Phys. Rev. Lett. 111 033901
Google Scholar
[32] Liu F, Li J 2015 Phys. Rev. Lett. 114 103902
Google Scholar
[33] Chen H Y, Chan C T, Sheng P 2010 Nat. Mater. 9 387
Google Scholar
[34] Rahm M, Roberts D A, Pendry J B, Smith D R 2008 Opt. Express 16 11555
Google Scholar
[35] Roberts D A, Rahm M, Pendry J B, Smith D R 2008 Appl. Phys. Lett. 93 251111
Google Scholar
[36] Huidobro P A, Nesterov M L, Martin-Moreno L, Garcia-Vidal F J 2010 Nano Lett. 10 1985
Google Scholar
[37] Liu Y, Zentgraf T, Bartal G, Zhang X 2010 Nano Lett. 10 1991
Google Scholar
[38] Zentgraf T, Liu Y, Mikkelsen M H, Valentine J, Zhang X 2011 Nat. Nanotechnol. 6 151
Google Scholar
[39] Zentgraf T, Valentine J, Tapia N, Li J, Zhang X 2010 Adv. Mater. 22 2561
Google Scholar
[40] Hawking S W 1974 Nature 248 30
Google Scholar
[41] Unruh W G 1981 Phys. Rev. Lett. 46 1351
Google Scholar
[42] Nation P D, Blencowe M P, Rimberg A J, Buks E 2009 Phys. Rev. Lett. 103 087004
Google Scholar
[43] Giovanazzi S 2005 Phys. Rev. Lett. 94 061302
Google Scholar
[44] Jacobson T A, Volovik G E 1998 Phys. Rev. D 58 064021
Google Scholar
[45] Garay L J, Anglin J R, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 85 4643
Google Scholar
[46] de Nova J R M, Golubkov K, Kolobov V I, Steinhauer J 2019 Nature 569 688
Google Scholar
[47] Hu J, Feng L, Zhang Z, Chin C 2019 Nat. Phys. 15 785
Google Scholar
[48] Horstmann B, Reznik B, Fagnocchi S, Cirac J I 2010 Phys. Rev. Lett. 104 250403
Google Scholar
[49] Philbin T G, Kuklewicz C, Robertson S, Hill S, Konig F, Leonhardt U 2008 Science 319 1367
Google Scholar
[50] Drori J, Rosenberg Y, Bermudez D, Silberberg Y, Leonhardt U 2019 Phys. Rev. Lett. 122 010404
Google Scholar
[51] Belgiorno F, Cacciatori S L, Clerici M, Gorini V, Ortenzi G, Rizzi L, Rubino E, Sala V G, Faccio D 2010 Phys. Rev. Lett. 105 203901
Google Scholar
[52] Yu H, Hu J 2015 Chin. Sci. Bull. 60 2697
Google Scholar
[53] Bekenstein R, Schley R, Mutzafi M, Rotschild C, Segev M 2015 Nat. Phys. 11 872
Google Scholar
[54] Roger T, Maitland C, Wilson K, Westerberg N, Vocke D, Wright E M, Faccio D 2016 Nat. Commun. 7 13492
Google Scholar
[55] Smolyaninov I I, Narimanov E E 2010 Phys. Rev. Lett. 105 067402
Google Scholar
[56] Smolyaninov I I, Hwang E, Narimanov E 2012 Phys. Rev. B 85 235122
Google Scholar
[57] Smolyaninov I I, Hung Y J 2011 J. Opt. Soc. Am. B: Opt. Phys. 28 1591
Google Scholar
[58] Smolyaninov I I, Hung Y J, Hwang E 2012 Phys. Lett. A 376 2575
Google Scholar
[59] Greenleaf A, Kurylev Y, Lassas M, Uhlmann G 2007 Phys. Rev. Lett. 99 183901
Google Scholar
[60] Narimanov E E, Kildishev A V 2009 Appl. Phys. Lett. 95 041106
Google Scholar
[61] Cheng Q, Cui T J, Jiang W X, Cai B G 2010 New J. Phys. 12 063006
Google Scholar
[62] Genov D A, Zhang S, Zhang X 2009 Nat. Phys. 5 687
Google Scholar
[63] Chen H Y, Miao R X, Li M 2010 Opt. Express 18 15183
Google Scholar
[64] Li M, Miao R X, Pang Y 2010 Opt. Express 18 9026
Google Scholar
[65] Li M, Miao R X, Pang Y 2010 Phys. Lett. B 689 55
Google Scholar
[66] Mackay T G, Lakhtakia A 2014 IEEE Trans. Antennas Propag. 62 6149
Google Scholar
[67] Ginis V, Tassin P, Craps B, Veretennicoff I 2010 Opt. Express 18 5350
Google Scholar
[68] Hu J, Yu H 2018 Phys. Lett. B 777 346
Google Scholar
[69] Smolyaninov I I, Smolyaninova V N, Kildishev A V, Shalaev V M 2009 Phys. Rev. Lett. 102 213901
Google Scholar
[70] Stockman M I 2004 Phys. Rev. Lett. 93 137404
Google Scholar
[71] Choi H, Pile D F P, Nam S, Bartal G, Zhang X 2009 Opt. Express 17 7519
Google Scholar
[72] Choo H, Kim M K, Staffaroni M, Seok T J, Bokor J, Cabrini S, Schuck P J, Wu M C, Yablonovitch E 2012 Nat. Photonics 6 838
[73] Cang H, Salandrino A, Wang Y, Zhang X 2015 Nat. Commun. 6 7942
Google Scholar
[74] Pendry J B, Aubry A, Smith D R, Maier S A 2012 Science 337 549
Google Scholar
[75] Aubry A, Lei D Y, Fernandez-Dominguez A I, Sonnefraud Y, Maier S A, Pendry J B 2010 Nano Lett. 10 2574
Google Scholar
[76] Fernandez-Dominguez A I, Maier S A, Pendry J B 2010 Phys. Rev. Lett. 105 266807
Google Scholar
[77] Pendry J B, Fernandez-Dominguez A I, Luo Y, Zhao R 2013 Nat. Phys. 9 518
Google Scholar
[78] Pendry J B, Huidobro P A, Luo Y, Galiffi E 2017 Science 358 915
Google Scholar
[79] Sheng C, Liu H, Zhu S, Genov D A 2016 Sci. Rep. 6 23514
Google Scholar
[80] Sheng C, Liu H, Wang Y, Zhu S N, Genov D A 2013 Nat. Photonics 7 902
Google Scholar
[81] Sheng C, Bekenstein R, Liu H, Zhu S, Segev M 2016 Nat. Commun. 7 10747
Google Scholar
[82] Wang X, Liu H, Sheng C, Zhu S 2018 J. Opt. 20 024015
Google Scholar
[83] Wang X, Chen H, Liu H, Xu L, Sheng C, Zhu S 2017 Phys. Rev. Lett. 119 033902
Google Scholar
[84] Wang Y, Sheng C, Liu H, Zheng Y J, Zhu C, Wang S M, Zhu S N 2012 Opt. Express 20 13006
Google Scholar
[85] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
Google Scholar
[86] Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009
Google Scholar
[87] Yu N, Capasso F 2014 Nat. Mater. 13 139
Google Scholar
[88] Wang S, Wu P C, Su V C, Lai Y C, Chu C H, Chen J W, Lu S H, Chen J, Xu B, Kuan C H, Li T, Zhu S, Tsai D P 2017 Nat. Commun. 8 187
Google Scholar
[89] Jiang S C, Xiong X, Hu Y S, Hu Y H, Ma G B, Peng R W, Sun C, Wang M 2014 Phys. Rev. X 4 021026
[90] Zheng G, Muehlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308
Google Scholar
[91] Li L, Cui T J, Ji W, Liu S, Ding J, Wan X, Li Y B, Jiang M, Qiu C W, Zhang S 2017 Nat. Commun. 8 197
Google Scholar
[92] Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310
Google Scholar
[93] Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426
Google Scholar
[94] Liu Y, Zhang X 2013 Appl. Phys. Lett. 103 141101
Google Scholar
[95] High A A, Devlin R C, Dibos A, Polking M, Wild D S, Perczel J, de Leon N P, Lukin M D, Park H 2015 Nature 522 192
Google Scholar
[96] Gomez-Diaz J S, Tymchenko M, Alu A 2015 Phys. Rev. Lett. 114 233901
Google Scholar
[97] Xu Y, Gu C, Hou B, Lai Y, Li J, Chen H 2013 Nat. Commun. 4 2561
Google Scholar
[98] Li Z, Kim M H, Wang C, Han Z, Shrestha S, Overvig A C, Lu M, Stein A, Agarwal A M, Loncar M, Yu N 2017 Nat. Nanotechnol. 12 675
Google Scholar
[99] Sheng C, Liu H, Zhu S 2019 Sci. Bull. 64 793
Google Scholar
[100] Sheng C, Liu H, Chen H, Zhu S 2018 Nat. Commun. 9 4271
Google Scholar
[101] Zhong F, Li J, Liu H, Zhu S 2018 Phys. Rev. Lett. 120 243901
Google Scholar
[102] Dacosta R C T 1981 Phys. Rev. A 23 1982
Google Scholar
[103] Batz S, Peschel U 2008 Phys. Rev. A 78 043821
Google Scholar
[104] Batz S, Peschel U 2010 Phys. Rev. A 81 053806
Google Scholar
[105] Schultheiss V H, Batz S, Szameit A, Dreisow F, Nolte S, Tuennermann A, Longhi S, Peschel U 2010 Phys. Rev. Lett. 105 143901
Google Scholar
[106] Schultheiss V H, Batz S, Peschel U 2016 Nat. Photonics 10 106
Google Scholar
[107] Bekenstein R, Nemirovsky J, Kaminer I, Segev M 2014 Phys. Rev. X 4 011038
[108] Patsyk A, Bandres M A, Bekenstein R, Segev M 2018 Phys. Rev. X 8 011001
[109] Xu L, Wang X, Tyc T, Sheng C, Zhu S, Liu H, Chen H 2019 Photonics Res. 7 1266
Google Scholar
[110] Xu L, He R, Yao K, Chen J M, Sheng C, Chen Y, Cai G, Zhu S, Liu H, Chen H 2019 Phys. Rev. Appl. 11 034072
Google Scholar
[111] Bekenstein R, Kabessa Y, Sharabi Y, Tal O, Engheta N, Eisenstein G, Agranat A J, Segev M 2017 Nat. Photonics 11 664
Google Scholar
[112] Xu C, Wang L G 2019 New J. Phys. 21 113013
Google Scholar
[113] Zhu J, Liu Y, Liang Z, Chen T, Li J 2018 Phys. Rev. Lett. 121 234301
Google Scholar
[114] Libster-Hershko A, Shiloh R, Arie A 2019 Optica 6 115
Google Scholar
[115] Szameit A, Nolte S 2010 J. Phys. B: At. Mol. Opt. Phys. 43 163001
Google Scholar
[116] Morandotti R, Peschel U, Aitchison J S, Eisenberg H S, Silberberg K 1999 Phys. Rev. Lett. 83 4756
Google Scholar
[117] Pertsch T, Dannberg P, Elflein W, Brauer A, Lederer F 1999 Phys. Rev. Lett. 83 4752
Google Scholar
[118] Chiodo N, Della V G, Osellame R, Longhi S, Cerullo G, Ramponi R, Laporta P 2006 Opt. Lett. 31 1651
Google Scholar
[119] Block A, Etrich C, Limboeck T, Bleckmann F, Soergel E, Rockstuhl C, Linden S 2014 Nat. Commun. 5 3843
Google Scholar
[120] Dreisow F, Szameit A, Heinrich M, Pertsch T, Nolte S, Tuennermann A, Longhi S 2009 Phys. Rev. Lett. 102 076802
Google Scholar
[121] Trompeter H, Pertsch T, Lederer F, Michaelis D, Streppel U, Brauer A, Peschel U 2006 Phys. Rev. Lett. 96 023901
Google Scholar
[122] Lahini Y, Avidan A, Pozzi F, Sorel M, Morandotti R, Christodoulides D N, Silberberg Y 2008 Phys. Rev. Lett. 100 013906
Google Scholar
[123] Martin L, di Giuseppe G, Perez-Leija A, Keil R, Dreisow F, Heinrich M, Nolte S, Szameit A, Abouraddy A F, Christodoulides D N, Saleh B E A 2011 Opt. Express 19 13636
Google Scholar
[124] Bromberg Y, Lahini Y, Morandotti R, Silberberg Y 2009 Phys. Rev. Lett. 102 253904
Google Scholar
[125] Tang H, Lin X F, Feng Z, Chen J Y, Gao J, Sun K, Wang C Y, Lai P C, Xu X Y, Wang Y, Qiao L F, Yang A L, Jin X M 2018 Sci. Adv. 4 eaat3174
Google Scholar
[126] Dreisow F, Heinrich M, Keil R, Tuennermann A, Nolte S, Longhi S, Szameit A 2010 Phys. Rev. Lett. 105 143902
Google Scholar
[127] Dreisow F, Longhi S, Nolte S, Tuennermann A, Szameit A 2012 Phys. Rev. Lett. 109 110401
Google Scholar
[128] Zeuner J M, Efremidis N K, Keil R, Dreisow F, Christodoulides D N, Tuennermann A, Nolte S, Szameit A 2012 Phys. Rev. Lett. 109 023602
Google Scholar
[129] Keil R, Noh C, Rai A, Stuetzer S, Nolte S, Angelakis D G, Szameit A 2015 Optica 2 454
Google Scholar
[130] Marini A, Longhi S, Biancalana F 2014 Phys. Rev. Lett. 113 150401
Google Scholar
[131] Koke C, Noh C, Angelakis D G 2016 Ann. Phys. 374 162
Google Scholar
[132] Lustig E, Cohen M I, Bekenstein R, Harari G, Bandres M A, Segev M 2017 Phys. Rev. A 96 041804
Google Scholar
[133] Wang Y, Sheng C, Lu Y, Gao J, Chang Y, Pang X, Yang T, Zhu S, Liu H, Jin X 2020 Natl. Sci. Rev. DOI: 10.1093/nsr/nwaa111
-
图 1 (a) 绝热变化的波导实现的隐身斗篷; (b) 绝热变化的透镜实现打破衍射极限的远场成像; (c) 金属微球夹在金属/介质/金属的三明治结构之间实现黑洞的模拟; (d) 具有奇异点的金属结构对表面等离激元的纳米聚焦; (e) 具有一些奇异点表面等离激元结构模拟紧致空间
Fig. 1. (a) Tapered waveguide acting as an optical cloak; (b) far-field imaging with breaking diffraction limitation using plasmonic lens with adiabatic change structure; nanofocusing using tapered plasmonic waveguides; (c) the emulation of black hole using a silver microsphere sandwiched by a metal-insulator-metal structure; (d) nanofocusing using metallic nanoparticle with structure singularity; (e) a transformation compacts three dimensions into two dimensions.
图 2 (a) 引力透镜的效应的示意图; (b) 在渐变的介质波导芯片中模拟黑洞的引力透镜效应的示意图; (c) 人工黑洞对光子的捕获; (d) 爱因斯坦环的示意图; (e) 渐变的介质波导芯片中模拟爱因斯坦环的示意图; (f) 模拟爱因斯坦环的实验结果图; (g) 在黎曼曲面上光线的传播; (h)共形Talbot效应的实验结果; (i)利用共形Talbot效应演示的数字编码的传输
Fig. 2. (a) The schematic of gravitational lensing effect; (b) the emulation of the gravitational lensing of the black hole using adiabatic change dielectric waveguides on a photonic chip; (c) the light trapping of an artificial black hole; (d) the schematic of Einstein ring; (e) the emulation of Einstein ring using adiabatic change dielectric waveguides on a photonic chip; (f) the experiment result of the emulation of Einstein ring; (g) the light propagation on Riemann’s space; (h) the experimental result of conformal Talbot effect; (i) digital coding using the conformal Talbot effect.
图 3 (a1)−(a3) 皮肤隐身衣, 其中(a1) 利用超表面实现皮肤隐身衣的示意图, (a2)有隐身衣时的效果, (a3) 没有隐身衣时的效果; (b1), (b2) 渐变超表面实现电磁波从远场到近场的高效转换, 其中(b1) 渐变超表面波导的示意图; (b2) 近场扫描的实验结果; (c1)−(c5) 超表面波导对表面等离激元的高效调控, 其中(c1) 超表面的表面等离激元波导的示意图, (c2) 超表面的表面等离激元波导的样品图, (c3)−(c5) 在超表面的表面等离激元波导上实现正折射、零折射、负折射; (d1), (d2) 石墨烯超表面实现表面等离激元色散的拓扑相变, 其中(d1) 石墨烯超表面对电导率的调控, (d2) 石墨烯超表面实现表面等离激元色散; (e1)−(e3)超表面波导实现不对称的电磁传输, 其中(e1)超表面波导的示意图, (e2)实验样品图, (e3)实验结果; (f1), (f2) 超表面波导实现电磁模式的转换, 其中(f1) 渐变超表面波导示意图; (f2)电磁模式转换的实验结果
Fig. 3. (a1)−(a3) Skin cloaking: (a1) Schematic of skin cloaking using metasurfaces; (a2) the reflection case with skin cloaking; (a3) the reflection case without skin cloaking. (b1), (b2) A gradient-index metasurface used to convert a freely propagating wave to a surface wave: (b1) Schematic picture describing the near-field scanning technique; (b2) the experimental result using near-field scanning. (c1)−(c5) Metasurface waveguide for manipulating surface plasmons: (c1) Schematic illustration of a metasurface made of periodic metallic gratings; (c2) a scanning electron microscope image of a device; (c3)−(c5) images of SPP refraction at metasurface waveguides. (d1), (d2) Topological transitions for surface plasmon propagation using grapheme metasurface: (d1) Effective conductivity tensor of the uniaxial metasurface waveguide; (d2) isofrequency contours of grapheme metasurface waveguides. (e1)−(e3) The asymmetric propagation of electromagnetic waves using metasurface waveguide: (e1) Schematic diagram of a metasurface waveguide; (e2) the fabricated sample; (e3) the experimental result. (f1), (f2) The manipulation of waveguide modes using a metasurface waveguide: (f1) Schematic of a working device; (f2) the experimental result demonstrates mode converts.
图 4 (a) 由超表面波导构造的负质量密度宇宙弦的示意图; (b) 由超表面波导构造的正质量密度宇宙弦的示意图; (c)负质量密度宇宙弦对电磁波散射的实验结果图; (d)正质量密度宇宙弦对电磁波散射的实验结果图; (e) 由超表面波导模拟加速空间中的粒子运动与轫致辐射的示意图; (f) 实验样品照片; (g) 实验测量的等离激元波束
Fig. 4. (a) Schematic of cosmic string with negative mass density using metasurace waveguides; (b) the electromagnetic scattering in the spacetime of cosmic string with positive mass density; (c) the experimental results to emulate negative cosmic string; (d) the experimental results to emulate positive cosmic string; (e) the schematic of mimicking Bremsstrahlung radiation of moving particles; (f) the scanning electron microscope image of a sample; (g) the experimental result of surface plasmon rays.
图 5 (a) 在球面上电磁波导的传播; (b) 在马鞍面上电磁波导的传播; (c) 加速波包在球面上远离测地线的传播; (d) 在马鞍面上电磁波导传播的干涉; (e) 电磁波在Flamm形曲面传播的示意图; (f) 空间曲率对弯曲波导衍射的影响; (g) 弯曲曲面上的测地线透镜; (h) 实验制备的旋转锥形结构; (i), (j) 旋转锥形结构对曲面上电磁波的散射
Fig. 5. (a) Propagating electromagnetic waves on a sphere waveguide; (b) the propagating electromagnetic waves on a saddle waveguide; (c) the observation of accelerating wave packets on a sphere waveguide; (d) the interference of electromagnetic waves on a sphere waveguide; (e) schematic of the coupling scheme of the light to the paraboloid waveguide; (f) curvature effects on diffraction; (g) the geodesic lens on a curved space; (h) the side view of experimental cone structure; (i), (j) the experimental results of electromagnetic waves scattered by the cone structure.
图 6 (a1)−(a4) 一维双组元波导阵列模拟广义相对论的Zitterbewegung效应, 其中(a1) 波导阵列的示意图, (a2) 波导阵列的色散, (a3) 实验结果图, (a4) 理论模拟图; (b1)−(b4) 一维弯曲的双组元波导阵列模拟正负粒子对的产生, 其中(b1) 波导阵列的示意图, (b2) 波导阵列的色散, (b3) 实验结果图, (b4) 理论模拟图; (c1), (c2) 波导阵列模拟Majorana费米子, 其中(c1) 波导阵列的示意图, (c2) 实验结果图; (d1)−(d3) 两层垂直放置的双组元的波导阵列模拟中微子振荡, 其中(d1) 波导阵列的示意图; (d2) 波导阵列耦合系数的设置; (d3) 实验结果图
Fig. 6. (a1)−(a4) Simulation of relativistic zitterbewegung using the one dimensional binary waveguide system: (a1) Schematic of the one dimensional binary waveguide system; (a2) the dispersion relation of the waveguide; (a3) the experimental results; (a4) the simulation results. (b1)−(b4) Simulation of pair production in vacuum using the curved waveguides: (b1) Schematic of the one dimensional curved waveguide; (b2) the dispersion relation of the waveguide; (b3) the experimental results; (b4) the simulation results. (c1), (c2) Simulation of Majorana fermions: (c1) Schematic of the waveguide system; (c2) the experimental results. (d1)−(d3) Simulation of neutrino oscillations: (d1) Schematic of two vertically displaced binary waveguides; (d2) transverse section of the structure; (d3) the experimental results.
图 7 (a) 弯曲曲面上的波导阵列; (b) 弯曲的曲率对波导阵列中电磁波演化的影响; (c) 黑洞视界附近正负能量粒子对的产生的示意图; (d) 飞秒直写波导阵列的样品图; (e) 实验结果图; (f) 正负能量粒子对的演化
Fig. 7. (a) Waveguide sites on the curved space; (b) the waveguide evolutions related with curvature of space; (c) the schematic of pair production near the event horizon of black hole; (d) a sample fabricated by femtosecond direct writing method; (e) the experimental result; (f) the evolution of the pair production.
-
[1] Veselago V G 1968 Soviet Phys. Uspekhi-Ussr 10 509
Google Scholar
[2] Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075
Google Scholar
[3] Shelby R A, Smith D R, Schultz S 2001 Science 292 77
Google Scholar
[4] Pendry J B 2000 Phys. Rev. Lett. 85 3966
Google Scholar
[5] Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534
Google Scholar
[6] Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686
Google Scholar
[7] Pendry J B, Schurig D, Smith D R 2006 Science 312 1780
Google Scholar
[8] Leonhardt U 2006 Science 312 1777
Google Scholar
[9] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
Google Scholar
[10] Li J, Pendry J B 2008 Phys. Rev. Lett. 101 203901
Google Scholar
[11] Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366
Google Scholar
[12] Ma H F, Cui T J 2010 Nat. Commun. 1 21
Google Scholar
[13] Valentine J, Li J, Zentgraf T, Bartal G, Zhang X 2009 Nat. Mater. 8 568
Google Scholar
[14] Gabrielli L H, Cardenas J, Poitras C B, Lipson M 2009 Nat. Photonics 3 461
Google Scholar
[15] Lee J H, Blair J, Tamma V A, Wu Q, Rhee S J, Summers C J, Park W 2009 Opt. Express 17 12922
Google Scholar
[16] Zhang B, Luo Y, Liu X, Barbastathis G 2011 Phys. Rev. Lett. 106 033901
Google Scholar
[17] Chen X, Luo Y, Zhang J, Jiang K, Pendry J B, Zhang S 2011 Nat. Commun. 2 176
Google Scholar
[18] Chen H S, Zheng B, Shen L, Wang H, Zhang X, Zheludev N I, Zhang B 2013 Nat. Commun. 4 2652
Google Scholar
[19] Zhang S, Genov D A, Sun C, Zhang X 2008 Phys. Rev. Lett. 100 123002
Google Scholar
[20] Farhat M, Guenneau S, Enoch S 2009 Phys. Rev. Lett. 103 024301
Google Scholar
[21] Zhang S, Xia C, Fang N 2011 Phys. Rev. Lett. 106 024301
Google Scholar
[22] Popa B I, Zigoneanu L, Cummer S A 2011 Phys. Rev. Lett. 106 253901
Google Scholar
[23] Cummer S A, Schurig D 2007 New J. Phys. 9 45
Google Scholar
[24] Chen H, Chan C T 2007 Appl. Phys. Lett. 91 183518
Google Scholar
[25] Leonhardt U 2013 Nature 498 440
Google Scholar
[26] Xu H, Shi X, Gao F, Sun H, Zhang B 2014 Phys. Rev. Lett. 112 054301
Google Scholar
[27] Liu Y, Jiang W, He S, Ma Y 2014 Opt. Express 22 17006
Google Scholar
[28] Ma Y G, Ong C K, Tyc T, Leonhardt U 2009 Nat. Mater. 8 639
Google Scholar
[29] Chen H Y, Chan C T 2007 Appl. Phys. Lett. 90 241105
Google Scholar
[30] Lai Y, Ng J, Chen H Y, Han D, Xiao J, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 253902
Google Scholar
[31] Liu F, Liang Z, Li J 2013 Phys. Rev. Lett. 111 033901
Google Scholar
[32] Liu F, Li J 2015 Phys. Rev. Lett. 114 103902
Google Scholar
[33] Chen H Y, Chan C T, Sheng P 2010 Nat. Mater. 9 387
Google Scholar
[34] Rahm M, Roberts D A, Pendry J B, Smith D R 2008 Opt. Express 16 11555
Google Scholar
[35] Roberts D A, Rahm M, Pendry J B, Smith D R 2008 Appl. Phys. Lett. 93 251111
Google Scholar
[36] Huidobro P A, Nesterov M L, Martin-Moreno L, Garcia-Vidal F J 2010 Nano Lett. 10 1985
Google Scholar
[37] Liu Y, Zentgraf T, Bartal G, Zhang X 2010 Nano Lett. 10 1991
Google Scholar
[38] Zentgraf T, Liu Y, Mikkelsen M H, Valentine J, Zhang X 2011 Nat. Nanotechnol. 6 151
Google Scholar
[39] Zentgraf T, Valentine J, Tapia N, Li J, Zhang X 2010 Adv. Mater. 22 2561
Google Scholar
[40] Hawking S W 1974 Nature 248 30
Google Scholar
[41] Unruh W G 1981 Phys. Rev. Lett. 46 1351
Google Scholar
[42] Nation P D, Blencowe M P, Rimberg A J, Buks E 2009 Phys. Rev. Lett. 103 087004
Google Scholar
[43] Giovanazzi S 2005 Phys. Rev. Lett. 94 061302
Google Scholar
[44] Jacobson T A, Volovik G E 1998 Phys. Rev. D 58 064021
Google Scholar
[45] Garay L J, Anglin J R, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 85 4643
Google Scholar
[46] de Nova J R M, Golubkov K, Kolobov V I, Steinhauer J 2019 Nature 569 688
Google Scholar
[47] Hu J, Feng L, Zhang Z, Chin C 2019 Nat. Phys. 15 785
Google Scholar
[48] Horstmann B, Reznik B, Fagnocchi S, Cirac J I 2010 Phys. Rev. Lett. 104 250403
Google Scholar
[49] Philbin T G, Kuklewicz C, Robertson S, Hill S, Konig F, Leonhardt U 2008 Science 319 1367
Google Scholar
[50] Drori J, Rosenberg Y, Bermudez D, Silberberg Y, Leonhardt U 2019 Phys. Rev. Lett. 122 010404
Google Scholar
[51] Belgiorno F, Cacciatori S L, Clerici M, Gorini V, Ortenzi G, Rizzi L, Rubino E, Sala V G, Faccio D 2010 Phys. Rev. Lett. 105 203901
Google Scholar
[52] Yu H, Hu J 2015 Chin. Sci. Bull. 60 2697
Google Scholar
[53] Bekenstein R, Schley R, Mutzafi M, Rotschild C, Segev M 2015 Nat. Phys. 11 872
Google Scholar
[54] Roger T, Maitland C, Wilson K, Westerberg N, Vocke D, Wright E M, Faccio D 2016 Nat. Commun. 7 13492
Google Scholar
[55] Smolyaninov I I, Narimanov E E 2010 Phys. Rev. Lett. 105 067402
Google Scholar
[56] Smolyaninov I I, Hwang E, Narimanov E 2012 Phys. Rev. B 85 235122
Google Scholar
[57] Smolyaninov I I, Hung Y J 2011 J. Opt. Soc. Am. B: Opt. Phys. 28 1591
Google Scholar
[58] Smolyaninov I I, Hung Y J, Hwang E 2012 Phys. Lett. A 376 2575
Google Scholar
[59] Greenleaf A, Kurylev Y, Lassas M, Uhlmann G 2007 Phys. Rev. Lett. 99 183901
Google Scholar
[60] Narimanov E E, Kildishev A V 2009 Appl. Phys. Lett. 95 041106
Google Scholar
[61] Cheng Q, Cui T J, Jiang W X, Cai B G 2010 New J. Phys. 12 063006
Google Scholar
[62] Genov D A, Zhang S, Zhang X 2009 Nat. Phys. 5 687
Google Scholar
[63] Chen H Y, Miao R X, Li M 2010 Opt. Express 18 15183
Google Scholar
[64] Li M, Miao R X, Pang Y 2010 Opt. Express 18 9026
Google Scholar
[65] Li M, Miao R X, Pang Y 2010 Phys. Lett. B 689 55
Google Scholar
[66] Mackay T G, Lakhtakia A 2014 IEEE Trans. Antennas Propag. 62 6149
Google Scholar
[67] Ginis V, Tassin P, Craps B, Veretennicoff I 2010 Opt. Express 18 5350
Google Scholar
[68] Hu J, Yu H 2018 Phys. Lett. B 777 346
Google Scholar
[69] Smolyaninov I I, Smolyaninova V N, Kildishev A V, Shalaev V M 2009 Phys. Rev. Lett. 102 213901
Google Scholar
[70] Stockman M I 2004 Phys. Rev. Lett. 93 137404
Google Scholar
[71] Choi H, Pile D F P, Nam S, Bartal G, Zhang X 2009 Opt. Express 17 7519
Google Scholar
[72] Choo H, Kim M K, Staffaroni M, Seok T J, Bokor J, Cabrini S, Schuck P J, Wu M C, Yablonovitch E 2012 Nat. Photonics 6 838
[73] Cang H, Salandrino A, Wang Y, Zhang X 2015 Nat. Commun. 6 7942
Google Scholar
[74] Pendry J B, Aubry A, Smith D R, Maier S A 2012 Science 337 549
Google Scholar
[75] Aubry A, Lei D Y, Fernandez-Dominguez A I, Sonnefraud Y, Maier S A, Pendry J B 2010 Nano Lett. 10 2574
Google Scholar
[76] Fernandez-Dominguez A I, Maier S A, Pendry J B 2010 Phys. Rev. Lett. 105 266807
Google Scholar
[77] Pendry J B, Fernandez-Dominguez A I, Luo Y, Zhao R 2013 Nat. Phys. 9 518
Google Scholar
[78] Pendry J B, Huidobro P A, Luo Y, Galiffi E 2017 Science 358 915
Google Scholar
[79] Sheng C, Liu H, Zhu S, Genov D A 2016 Sci. Rep. 6 23514
Google Scholar
[80] Sheng C, Liu H, Wang Y, Zhu S N, Genov D A 2013 Nat. Photonics 7 902
Google Scholar
[81] Sheng C, Bekenstein R, Liu H, Zhu S, Segev M 2016 Nat. Commun. 7 10747
Google Scholar
[82] Wang X, Liu H, Sheng C, Zhu S 2018 J. Opt. 20 024015
Google Scholar
[83] Wang X, Chen H, Liu H, Xu L, Sheng C, Zhu S 2017 Phys. Rev. Lett. 119 033902
Google Scholar
[84] Wang Y, Sheng C, Liu H, Zheng Y J, Zhu C, Wang S M, Zhu S N 2012 Opt. Express 20 13006
Google Scholar
[85] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
Google Scholar
[86] Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009
Google Scholar
[87] Yu N, Capasso F 2014 Nat. Mater. 13 139
Google Scholar
[88] Wang S, Wu P C, Su V C, Lai Y C, Chu C H, Chen J W, Lu S H, Chen J, Xu B, Kuan C H, Li T, Zhu S, Tsai D P 2017 Nat. Commun. 8 187
Google Scholar
[89] Jiang S C, Xiong X, Hu Y S, Hu Y H, Ma G B, Peng R W, Sun C, Wang M 2014 Phys. Rev. X 4 021026
[90] Zheng G, Muehlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308
Google Scholar
[91] Li L, Cui T J, Ji W, Liu S, Ding J, Wan X, Li Y B, Jiang M, Qiu C W, Zhang S 2017 Nat. Commun. 8 197
Google Scholar
[92] Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310
Google Scholar
[93] Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426
Google Scholar
[94] Liu Y, Zhang X 2013 Appl. Phys. Lett. 103 141101
Google Scholar
[95] High A A, Devlin R C, Dibos A, Polking M, Wild D S, Perczel J, de Leon N P, Lukin M D, Park H 2015 Nature 522 192
Google Scholar
[96] Gomez-Diaz J S, Tymchenko M, Alu A 2015 Phys. Rev. Lett. 114 233901
Google Scholar
[97] Xu Y, Gu C, Hou B, Lai Y, Li J, Chen H 2013 Nat. Commun. 4 2561
Google Scholar
[98] Li Z, Kim M H, Wang C, Han Z, Shrestha S, Overvig A C, Lu M, Stein A, Agarwal A M, Loncar M, Yu N 2017 Nat. Nanotechnol. 12 675
Google Scholar
[99] Sheng C, Liu H, Zhu S 2019 Sci. Bull. 64 793
Google Scholar
[100] Sheng C, Liu H, Chen H, Zhu S 2018 Nat. Commun. 9 4271
Google Scholar
[101] Zhong F, Li J, Liu H, Zhu S 2018 Phys. Rev. Lett. 120 243901
Google Scholar
[102] Dacosta R C T 1981 Phys. Rev. A 23 1982
Google Scholar
[103] Batz S, Peschel U 2008 Phys. Rev. A 78 043821
Google Scholar
[104] Batz S, Peschel U 2010 Phys. Rev. A 81 053806
Google Scholar
[105] Schultheiss V H, Batz S, Szameit A, Dreisow F, Nolte S, Tuennermann A, Longhi S, Peschel U 2010 Phys. Rev. Lett. 105 143901
Google Scholar
[106] Schultheiss V H, Batz S, Peschel U 2016 Nat. Photonics 10 106
Google Scholar
[107] Bekenstein R, Nemirovsky J, Kaminer I, Segev M 2014 Phys. Rev. X 4 011038
[108] Patsyk A, Bandres M A, Bekenstein R, Segev M 2018 Phys. Rev. X 8 011001
[109] Xu L, Wang X, Tyc T, Sheng C, Zhu S, Liu H, Chen H 2019 Photonics Res. 7 1266
Google Scholar
[110] Xu L, He R, Yao K, Chen J M, Sheng C, Chen Y, Cai G, Zhu S, Liu H, Chen H 2019 Phys. Rev. Appl. 11 034072
Google Scholar
[111] Bekenstein R, Kabessa Y, Sharabi Y, Tal O, Engheta N, Eisenstein G, Agranat A J, Segev M 2017 Nat. Photonics 11 664
Google Scholar
[112] Xu C, Wang L G 2019 New J. Phys. 21 113013
Google Scholar
[113] Zhu J, Liu Y, Liang Z, Chen T, Li J 2018 Phys. Rev. Lett. 121 234301
Google Scholar
[114] Libster-Hershko A, Shiloh R, Arie A 2019 Optica 6 115
Google Scholar
[115] Szameit A, Nolte S 2010 J. Phys. B: At. Mol. Opt. Phys. 43 163001
Google Scholar
[116] Morandotti R, Peschel U, Aitchison J S, Eisenberg H S, Silberberg K 1999 Phys. Rev. Lett. 83 4756
Google Scholar
[117] Pertsch T, Dannberg P, Elflein W, Brauer A, Lederer F 1999 Phys. Rev. Lett. 83 4752
Google Scholar
[118] Chiodo N, Della V G, Osellame R, Longhi S, Cerullo G, Ramponi R, Laporta P 2006 Opt. Lett. 31 1651
Google Scholar
[119] Block A, Etrich C, Limboeck T, Bleckmann F, Soergel E, Rockstuhl C, Linden S 2014 Nat. Commun. 5 3843
Google Scholar
[120] Dreisow F, Szameit A, Heinrich M, Pertsch T, Nolte S, Tuennermann A, Longhi S 2009 Phys. Rev. Lett. 102 076802
Google Scholar
[121] Trompeter H, Pertsch T, Lederer F, Michaelis D, Streppel U, Brauer A, Peschel U 2006 Phys. Rev. Lett. 96 023901
Google Scholar
[122] Lahini Y, Avidan A, Pozzi F, Sorel M, Morandotti R, Christodoulides D N, Silberberg Y 2008 Phys. Rev. Lett. 100 013906
Google Scholar
[123] Martin L, di Giuseppe G, Perez-Leija A, Keil R, Dreisow F, Heinrich M, Nolte S, Szameit A, Abouraddy A F, Christodoulides D N, Saleh B E A 2011 Opt. Express 19 13636
Google Scholar
[124] Bromberg Y, Lahini Y, Morandotti R, Silberberg Y 2009 Phys. Rev. Lett. 102 253904
Google Scholar
[125] Tang H, Lin X F, Feng Z, Chen J Y, Gao J, Sun K, Wang C Y, Lai P C, Xu X Y, Wang Y, Qiao L F, Yang A L, Jin X M 2018 Sci. Adv. 4 eaat3174
Google Scholar
[126] Dreisow F, Heinrich M, Keil R, Tuennermann A, Nolte S, Longhi S, Szameit A 2010 Phys. Rev. Lett. 105 143902
Google Scholar
[127] Dreisow F, Longhi S, Nolte S, Tuennermann A, Szameit A 2012 Phys. Rev. Lett. 109 110401
Google Scholar
[128] Zeuner J M, Efremidis N K, Keil R, Dreisow F, Christodoulides D N, Tuennermann A, Nolte S, Szameit A 2012 Phys. Rev. Lett. 109 023602
Google Scholar
[129] Keil R, Noh C, Rai A, Stuetzer S, Nolte S, Angelakis D G, Szameit A 2015 Optica 2 454
Google Scholar
[130] Marini A, Longhi S, Biancalana F 2014 Phys. Rev. Lett. 113 150401
Google Scholar
[131] Koke C, Noh C, Angelakis D G 2016 Ann. Phys. 374 162
Google Scholar
[132] Lustig E, Cohen M I, Bekenstein R, Harari G, Bandres M A, Segev M 2017 Phys. Rev. A 96 041804
Google Scholar
[133] Wang Y, Sheng C, Lu Y, Gao J, Chang Y, Pang X, Yang T, Zhu S, Liu H, Jin X 2020 Natl. Sci. Rev. DOI: 10.1093/nsr/nwaa111
计量
- 文章访问数: 8993
- PDF下载量: 363
- 被引次数: 0