-
光学加密技术因其并行处理、大容量和低功耗等优势在信息安全领域发挥着巨大的应用潜力。其中,偏振作为光的一个重要自由度,基于偏振操控和复用的光学加密技术受到广泛研究。然而当前基于像素化或交错式超表面设计的偏振操控方法,仍面临制备难度大及相邻单元结构间耦合引起串扰等问题,复用通道数量受限。本文提出了一种基于矢量焦点超构透镜的纵向可变、级联偏振结构加密新方法。该方法采用几何相位调控原理,通过相同结构尺寸但不同旋向的TiO2纳米柱的定制和排列,实现超构透镜所需的单相位轮廓,在纵向多个焦平面上生成多个矢量焦点,并重构级联的偏振结构。这里任意两个级联的偏振结构被编码相互正交的偏振旋转角,随着入射线偏振光的偏振方向发生变化,偏振结构上的偏振分布随之动态变化,因此,不同偏振方向的透射光强度分布也被动态调制,可实现十通道信息加密。只有通过正确的密钥(入射波长、入射偏振态、出射光偏振态和观察位置)才能解码加密信息。该方法结合了超构透镜的多焦点偏振旋转、偏振结构设计及纵向、级联控制,提升了信息容量和安全性,在光学信息显示、加密和防伪等领域具有重要的应用潜力。Optical encryption technologies show significant application potential in information security due to their advantages of parallel processing, large capacity, and low power consumption. Polarization, as an important degree of freedom of light, has attracted extensive research interest in optical encryption through polarization manipulation and multiplexing. However, current polarization control methods based on pixelated or interleaved metasurfaces still face significant challenges, including fabrication complexity and inevitable crosstalk resulting from coupling between the neighboring structures, which limit the number of achievable multiplexing channels. In this work, we propose a novel encryption approach based on longitudinally tunable, and cascaded polarization structures enabled by metalenses with vectorial foci. The intensity distributions on different observation planes are simulated using the Fresnel–Kirchhoff diffraction integral. Based on the geometric phase principle, the designed metalens consisting of TiO2 nanopillars with identical dimensions but spatially variant orientation angles, can generate multiple vectorial foci at distinct observation planes and reconstructs cascaded polarization structures. Here, any two cascaded polarization structures are encoded with mutually orthogonal polarization rotation angles. As the polarization direction of incident linearly polarized light changes, the polarization distribution encoded on the polarization structures can be dynamically modulated, consequently enabling ten-channel information encryption through polarizationdependent intensity redistribution. The encrypted information can only be decoded using the correct keys (incident wavelength, incident polarization state, output light polarization state, and observation position). This method integrates polarization rotation, polarization structure design, and longitudinal/cascaded control, significantly enhancing information capacity and security. It holds promising applications across diverse domains including optical display, encryption, and anti-counterfeiting.
-
Keywords:
- metalens /
- dielectric metasurface /
- polarization manipulation /
- optical encryption
-
[1] Matoba O, Nomura T, Perez C E, Millan M S, Javidi B 2009 Proc. IEEE 971128
[2] Chen W, Javidi B, Chen X D 2014 Adv. Opt. Photonics 6120
[3] Liu S, Guo C L, Sheridan J T 2014 Opt. Laser Technol. 57327
[4] Jiao S M, Zhou C Y, Shi Y S, Zou W B, Li X 2019 Opt. Laser Technol. 109370
[5] Liu S, Liu X, Yuan J, Bao J 2021 Res. (Wash D C) 20217897849
[6] Yue F, Zhang C, Zang X, Wen D, Gerardot B, Zhang S, Chen X 2018 Light Sci. Appl. 717129
[7] Zhang C, Dong F, Intaravanne Y, Zang X, Xu L, Song Z, Zheng G, Wang W, Chu W, Chen X 2019 Phys. Rev. Appl. 12034028
[8] Intaravanne Y, Chen X Z 2020 Nanophotonics 91003
[9] Zhao R Z, Li X, Geng G Z, Li X W, Li J J, Wang Y T, Huang L L 2023 Nanophotonics 12155
[10] Yu N F, Patrice G, Mikhail A K,,Aieta F,Tetienne J P, Capasso F, and Gaburro Zeno 2011 Science 334333
[11] Yu N F, Capasso F 2014 Nat. Rev. Mater. 13139
[12] Chen W T, Alexander Y Zhu, Capasso F 2020 Nat. Rev. Mater. 5604-620
[13] Yang R, Yu Q Q, Pan Y, Chen S, Li Z Y 2022 Opto-Electronic Engineering 49220177
[14] Zheludev N I, Kivshar Y S 2012 Nature Materials 11917
[15] Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N, Kivshar Y S 2015 Laser Photonic Rev. 9195
[16] Yu N F, Genevet P, Kats M A, Nanfang Yu, Patrice Genevet, Mikhail A. Kats, Francesco Aieta 2011 Science 334333
[17] Zhao R Z, Li X, Geng G Z, Li X W, Li J J, Wang Y T, Huang L L 2023 Nanophotonics 12155
[18] Fan Q B,Mingze L, Cheng Z, Zhu W, Wang Y l, Lin P, Yan F, Chen L, Lezec H J 2020 Phys. Rev. Lett. 125267402
[19] Li Z, Liu W, Cheng H, Choi D Y, Chen S, Tian J 2019 Adv. Opt. Mater. 71900260
[20] Bao Y, Yu Y, Xu H, Guo C, Li J, Sun S, Zhou Z K, Qiu C W, Wang X H 2019 Light. Sci. Appl. 895
[21] Li Z F, Premaratne M, Zhu W R 2020 Nanophotonics 93687
[22] Overvig A,Yu N, Alù A 2021 Adv. Photonics 3026002
[23] Schlickriede C, Waterman N, Reineke B, Georgi P, Li G, Zhang S, Zentgraf 2018 Adv. Mater. 301703843
[24] Mueller J B, Rubin N A, Devlin R C, Devlin, Groever B和Capasso Federico 2017 Phys. Rev. Lett. 118113901
[25] Ding F, Chang B, Wei Q, Huang L L, Guan X,Sergey B I 2020 Laser Photon. Rev. 142000116
[26] Intaravanne Y, Ansari M A, Ahmed H, Chen X Z 2023 Optical Mater. 122203097
[27] Song Q, Khadir S, Vézian S, Vézian X, Damilano B, Mierry P D, Chenot S, Brandli V, Genevet P 2021 Sci. Adv. 71112
[28] Fan Q, Liu M, Zhang C, Zhu W, Wang Y, Lin P, Yan F, Chen L, Lezec H J, Lu Y, Agrawal A, Xu T 2020 Phys. Rev. Lett. 125267402
[29] Zang X, Ding H, Intaravanne Y, Chen L, Peng Y, Xie J, Ke Q H, Balakin A V, Shkurinov A P, Chen X, Zhu Y, Zhuang S 2019 Laser Photon. Rev. 131900182
[30] Ansari M A, Ahmed H, Li Y, Wang G, Callaghan J E, Wang R, Downing J, Chen X 2024 Light. Sci. Appl. 13224
[31] Sun P, Liu B, Liu X, Zhang S, Shen D, Zhang Z 2023 Opt. Lett. 483083
[32] Kim I, Jang J, Kim G, Lee J, Badloe T, Mun J, Rho J 2021 Nat. Commun. 123614
[33] Wang G, Ahmed H, Ansari M A, Li Y, Zhang C, Tian H, Li L, Chen X 2024 Laser Photonics Rev. 182400323
[34] Ahmed H, Ansari M A, Li Y, Zentgraf T, Mehmood M Q, Chen X 2023 Nat. Commun. 143915
[35] Lin D, Fan P, Hasman E, Brongersma M L, Bron G 2014 Science 345298
[36] Li H, Xu W, Xu H, Song C, Tan Q, Yao J 2024 J. Opt. 26035102
[37] Xu Y, Xu Q, Zhang X, Feng X, Lu Y, Zhang X, Kang M, Han J, Zhang W 2022 Adv. Funct. Mater. 322207269
[38] Yan L, Zhu W, Karim M F, Cai H, Gu A Y, Shen Z, Chong P H J, Tsai D P, Kwong D L, Qiu C W, Liu A Q 2018 Adv. Opt. Mater. 61800728
[39] Ren R Y, Li Z L, Deng L G, Shan X, Dai Q, Guan Z Q, Zheng G X, Yu S H 2021 Nanophotonics 102903
[40] Cao Y, Tang L L, Li J Q, Lee C K, Dong Z G 2022 Nanophotonics 113365
[41] Zang X, Ding H, Intaravanne Y, Chen L, Peng Y, Xie J, Ke Q, Balakin A V, Shkurinov A P, Chen X, Zhu Y, Zhuang S 2019 Laser Photonics Rev. 131900182
[42] Wang R, Han J, Liu J, Tian H, Sun W, Li L, Chen X 2020 Opt. Lett. 453506
[43] Wang R, Intaravanne Y, Li S, Han J, Chen S, Liu J, Zhang S, Li L, Chen X 2021 Nano Lett. 212081
[44] Intaravanne Y, Wang R, Ahmed H, Ming Y, Zheng Y, Zhou Z K, Li Z, Chen S, Zhang S, Chen X 2022 Light Sci. Appl. 11302
[45] Li Y, Muhammad A A, Hammad A, Wang R, Wang G C, and Chen X Z 2023 Sci. Adv. 9 eadj6675
[46] Zhao R, Sain B, Wei Q, Tang C C, Li X W, Thomas Weiss, Huang L L, Wang Y T, Zentgraf T 2018 Light Sci. Appl. 795
[47] Song Q H, Baroni A, Sawant R, Peinan N, Brandli V, Chenot S, Vézian S, Damilano B, Mierry P, Khadi S, Ferrand P 2020 Nat. Commun. 112651
[48] Song Q H, Baroni A, Sawant R, Peinan N, Brandli V, Chenot S, Vézian S, Damilano B, Mierry P, Khadi S, Ferrand P 2020. Adv. Mater. 34 e2103192
[49] Wen D D, Cadusch J J, Meng J, Crozier K B 2021 Nano Lett. 211735
[50] Zang X, Ding H, Intaravanne Y, Chen L, Peng Y, Xie J, Ke Q H, Balaki n A V, Alexander P S, Chen X Z, Zhu Y M, Zhuang S L 2019 Laser P hotonics Rev. 131900182
[51] Wang R, Intaravanne Y, Li S, Han J, Chen S, Liu J, Zhang S, Li L, Chen X 2021 Nano Lett. 212081
[52] Li Y, Muhammad A A, Hammad A, Wang R X, Wang G C, Chen X Z 2023 Sci. Adv. 9 eadj6675
[53] Ning M H, Zhong H Z, Gu Z, Zhang L E, Qu N, Jun D, Li T, Li L 2025 Nanophotonics 14495
[54] Cao Y, Tang L, Li J, Lee C k, Dong Z G 2023 Small 192206319
[55] Kim H, Jung J, Shin J 2024 Adv. Mater. 362406717
[56] Wang R, Han J, Liu J, Tian H, Sun W M, Li Li, Chen X Z 2020 Opt. Express 453506
[57] Zhang Y, Liu W, Gao J, Yang X 2018 Adv. Opt. Mater. 61701228.
[58] Xia T, Xie Z W, Yuan X C J 2023 Chin. J. Lasers 50212(in Chinese) [夏天, 谢振威, 袁小聪2023中国激光50212]
计量
- 文章访问数: 10
- PDF下载量: 0
- 被引次数: 0