搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于矢量焦点超构透镜的偏振结构及高安全性光学加密

赵帅富 钟发成 于群星 杨天 邵立 于占军 李艳

引用本文:
Citation:

基于矢量焦点超构透镜的偏振结构及高安全性光学加密

赵帅富, 钟发成, 于群星, 杨天, 邵立, 于占军, 李艳

Polarization structures generated through Metalenses with vectorial foci for high-security optical encryption

ZHAO Shuaifu, ZHONG Facheng, YU Qunxing, YANG Tian, SHAO Li, YU Zhanjun, LI Yan
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 光学加密技术因其并行处理、大容量和低功耗等优势在信息安全领域发挥着巨大的应用潜力。其中,偏振作为光的一个重要自由度,基于偏振操控和复用的光学加密技术受到广泛研究。然而当前基于像素化或交错式超表面设计的偏振操控方法,仍面临制备难度大及相邻单元结构间耦合引起串扰等问题,复用通道数量受限。本文提出了一种基于矢量焦点超构透镜的纵向可变、级联偏振结构加密新方法。该方法采用几何相位调控原理,通过相同结构尺寸但不同旋向的TiO2纳米柱的定制和排列,实现超构透镜所需的单相位轮廓,在纵向多个焦平面上生成多个矢量焦点,并重构级联的偏振结构。这里任意两个级联的偏振结构被编码相互正交的偏振旋转角,随着入射线偏振光的偏振方向发生变化,偏振结构上的偏振分布随之动态变化,因此,不同偏振方向的透射光强度分布也被动态调制,可实现十通道信息加密。只有通过正确的密钥(入射波长、入射偏振态、出射光偏振态和观察位置)才能解码加密信息。该方法结合了超构透镜的多焦点偏振旋转、偏振结构设计及纵向、级联控制,提升了信息容量和安全性,在光学信息显示、加密和防伪等领域具有重要的应用潜力。
    Optical encryption technologies show significant application potential in information security due to their advantages of parallel processing, large capacity, and low power consumption. Polarization, as an important degree of freedom of light, has attracted extensive research interest in optical encryption through polarization manipulation and multiplexing. However, current polarization control methods based on pixelated or interleaved metasurfaces still face significant challenges, including fabrication complexity and inevitable crosstalk resulting from coupling between the neighboring structures, which limit the number of achievable multiplexing channels. In this work, we propose a novel encryption approach based on longitudinally tunable, and cascaded polarization structures enabled by metalenses with vectorial foci. The intensity distributions on different observation planes are simulated using the Fresnel–Kirchhoff diffraction integral. Based on the geometric phase principle, the designed metalens consisting of TiO2 nanopillars with identical dimensions but spatially variant orientation angles, can generate multiple vectorial foci at distinct observation planes and reconstructs cascaded polarization structures. Here, any two cascaded polarization structures are encoded with mutually orthogonal polarization rotation angles. As the polarization direction of incident linearly polarized light changes, the polarization distribution encoded on the polarization structures can be dynamically modulated, consequently enabling ten-channel information encryption through polarizationdependent intensity redistribution. The encrypted information can only be decoded using the correct keys (incident wavelength, incident polarization state, output light polarization state, and observation position). This method integrates polarization rotation, polarization structure design, and longitudinal/cascaded control, significantly enhancing information capacity and security. It holds promising applications across diverse domains including optical display, encryption, and anti-counterfeiting.
  • [1]

    Matoba O, Nomura T, Perez C E, Millan M S, Javidi B 2009 Proc. IEEE 971128

    [2]

    Chen W, Javidi B, Chen X D 2014 Adv. Opt. Photonics 6120

    [3]

    Liu S, Guo C L, Sheridan J T 2014 Opt. Laser Technol. 57327

    [4]

    Jiao S M, Zhou C Y, Shi Y S, Zou W B, Li X 2019 Opt. Laser Technol. 109370

    [5]

    Liu S, Liu X, Yuan J, Bao J 2021 Res. (Wash D C) 20217897849

    [6]

    Yue F, Zhang C, Zang X, Wen D, Gerardot B, Zhang S, Chen X 2018 Light Sci. Appl. 717129

    [7]

    Zhang C, Dong F, Intaravanne Y, Zang X, Xu L, Song Z, Zheng G, Wang W, Chu W, Chen X 2019 Phys. Rev. Appl. 12034028

    [8]

    Intaravanne Y, Chen X Z 2020 Nanophotonics 91003

    [9]

    Zhao R Z, Li X, Geng G Z, Li X W, Li J J, Wang Y T, Huang L L 2023 Nanophotonics 12155

    [10]

    Yu N F, Patrice G, Mikhail A K,,Aieta F,Tetienne J P, Capasso F, and Gaburro Zeno 2011 Science 334333

    [11]

    Yu N F, Capasso F 2014 Nat. Rev. Mater. 13139

    [12]

    Chen W T, Alexander Y Zhu, Capasso F 2020 Nat. Rev. Mater. 5604-620

    [13]

    Yang R, Yu Q Q, Pan Y, Chen S, Li Z Y 2022 Opto-Electronic Engineering 49220177

    [14]

    Zheludev N I, Kivshar Y S 2012 Nature Materials 11917

    [15]

    Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N, Kivshar Y S 2015 Laser Photonic Rev. 9195

    [16]

    Yu N F, Genevet P, Kats M A, Nanfang Yu, Patrice Genevet, Mikhail A. Kats, Francesco Aieta 2011 Science 334333

    [17]

    Zhao R Z, Li X, Geng G Z, Li X W, Li J J, Wang Y T, Huang L L 2023 Nanophotonics 12155

    [18]

    Fan Q B,Mingze L, Cheng Z, Zhu W, Wang Y l, Lin P, Yan F, Chen L, Lezec H  J 2020 Phys. Rev. Lett. 125267402

    [19]

    Li Z, Liu W, Cheng H, Choi D Y, Chen S, Tian J 2019 Adv. Opt. Mater. 71900260

    [20]

    Bao Y, Yu Y, Xu H, Guo C, Li J, Sun S, Zhou Z K, Qiu C W, Wang X H 2019 Light. Sci. Appl. 895

    [21]

    Li Z F, Premaratne M, Zhu W R 2020 Nanophotonics 93687

    [22]

    Overvig A,Yu N, Alù A 2021 Adv. Photonics 3026002

    [23]

    Schlickriede C, Waterman N, Reineke B, Georgi P, Li G, Zhang S, Zentgraf 2018 Adv. Mater. 301703843

    [24]

    Mueller J B, Rubin N A, Devlin R C, Devlin, Groever B和Capasso Federico 2017 Phys. Rev. Lett. 118113901

    [25]

    Ding F, Chang B, Wei Q, Huang L L, Guan X,Sergey B I 2020 Laser Photon. Rev. 142000116

    [26]

    Intaravanne Y, Ansari M A, Ahmed H, Chen X Z 2023 Optical Mater. 122203097

    [27]

    Song Q, Khadir S, Vézian S, Vézian X, Damilano B, Mierry P D, Chenot S, Brandli V, Genevet P 2021 Sci. Adv. 71112

    [28]

    Fan Q, Liu M, Zhang C, Zhu W, Wang Y, Lin P, Yan F, Chen L, Lezec H J, Lu Y, Agrawal A, Xu T 2020 Phys. Rev. Lett. 125267402

    [29]

    Zang X, Ding H, Intaravanne Y, Chen L, Peng Y, Xie J, Ke Q H, Balakin A V, Shkurinov A P, Chen X, Zhu Y, Zhuang S 2019 Laser Photon. Rev. 131900182

    [30]

    Ansari M A, Ahmed H, Li Y, Wang G, Callaghan J E, Wang R, Downing J, Chen X 2024 Light. Sci. Appl. 13224

    [31]

    Sun P, Liu B, Liu X, Zhang S, Shen D, Zhang Z 2023 Opt. Lett. 483083

    [32]

    Kim I, Jang J, Kim G, Lee J, Badloe T, Mun J, Rho J 2021 Nat. Commun. 123614

    [33]

    Wang G, Ahmed H, Ansari M A, Li Y, Zhang C, Tian H, Li L, Chen X 2024 Laser Photonics Rev. 182400323

    [34]

    Ahmed H, Ansari M A, Li Y, Zentgraf T, Mehmood M Q, Chen X 2023 Nat. Commun. 143915

    [35]

    Lin D, Fan P, Hasman E, Brongersma M L, Bron G 2014 Science 345298

    [36]

    Li H, Xu W, Xu H, Song C, Tan Q, Yao J 2024 J. Opt. 26035102

    [37]

    Xu Y, Xu Q, Zhang X, Feng X, Lu Y, Zhang X, Kang M, Han J, Zhang W 2022 Adv. Funct. Mater. 322207269

    [38]

    Yan L, Zhu W, Karim M F, Cai H, Gu A Y, Shen Z, Chong P H J, Tsai D P, Kwong D L, Qiu C W, Liu A Q 2018 Adv. Opt. Mater. 61800728

    [39]

    Ren R Y, Li Z L, Deng L G, Shan X, Dai Q, Guan Z Q, Zheng G X, Yu S H 2021 Nanophotonics 102903

    [40]

    Cao Y, Tang L L, Li J Q, Lee C K, Dong Z G 2022 Nanophotonics 113365

    [41]

    Zang X, Ding H, Intaravanne Y, Chen L, Peng Y, Xie J, Ke Q, Balakin A V, Shkurinov A P, Chen X, Zhu Y, Zhuang S 2019 Laser Photonics Rev. 131900182

    [42]

    Wang R, Han J, Liu J, Tian H, Sun W, Li L, Chen X 2020 Opt. Lett. 453506

    [43]

    Wang R, Intaravanne Y, Li S, Han J, Chen S, Liu J, Zhang S, Li L, Chen X 2021 Nano Lett. 212081

    [44]

    Intaravanne Y, Wang R, Ahmed H, Ming Y, Zheng Y, Zhou Z K, Li Z, Chen S, Zhang S, Chen X 2022 Light Sci. Appl. 11302

    [45]

    Li Y, Muhammad A A, Hammad A, Wang R, Wang G C, and Chen X Z 2023 Sci. Adv. 9 eadj6675

    [46]

    Zhao R, Sain B, Wei Q, Tang C C, Li X W, Thomas Weiss, Huang L L, Wang Y T, Zentgraf T 2018 Light Sci. Appl. 795

    [47]

    Song Q H, Baroni A, Sawant R, Peinan N, Brandli V, Chenot S, Vézian S, Damilano B, Mierry P, Khadi S, Ferrand P 2020 Nat. Commun. 112651

    [48]

    Song Q H, Baroni A, Sawant R, Peinan N, Brandli V, Chenot S, Vézian S, Damilano B, Mierry P, Khadi S, Ferrand P 2020. Adv. Mater. 34 e2103192

    [49]

    Wen D D, Cadusch J J, Meng J, Crozier K B 2021 Nano Lett. 211735

    [50]

    Zang X, Ding H, Intaravanne Y, Chen L, Peng Y, Xie J, Ke Q H, Balaki n A V, Alexander P S, Chen X Z, Zhu Y M, Zhuang S L 2019 Laser P hotonics Rev. 131900182

    [51]

    Wang R, Intaravanne Y, Li S, Han J, Chen S, Liu J, Zhang S, Li L, Chen X 2021 Nano Lett. 212081

    [52]

    Li Y, Muhammad A A, Hammad A, Wang R X, Wang G C, Chen X Z 2023 Sci. Adv. 9 eadj6675

    [53]

    Ning M H, Zhong H Z, Gu Z, Zhang L E, Qu N, Jun D, Li T, Li L 2025 Nanophotonics 14495

    [54]

    Cao Y, Tang L, Li J, Lee C k, Dong Z G 2023 Small 192206319

    [55]

    Kim H, Jung J, Shin J 2024 Adv. Mater. 362406717

    [56]

    Wang R, Han J, Liu J, Tian H, Sun W M, Li Li, Chen X Z 2020 Opt. Express 453506

    [57]

    Zhang Y, Liu W, Gao J, Yang X 2018 Adv. Opt. Mater. 61701228.

    [58]

    Xia T, Xie Z W, Yuan X C J 2023 Chin. J. Lasers 50212(in Chinese) [夏天, 谢振威, 袁小聪2023中国激光50212]

  • [1] 张胜蓝, 田喜敏, 许军伟, 徐亚宁, 李亮, 刘杰龙. 基于超构表面多通大容量完美矢量涡旋光束的产生及调控研究.  , doi: 10.7498/aps.74.20241725
    [2] 许一帆, 邓烨, 佟琬婷, 王海峰, 王学运, 赵俊明, 姜田, 张升康, 陈克, 冯一军. 可重构超构表面实现L波段波束动态调控及信息调制.  , doi: 10.7498/aps.74.20241668
    [3] 刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛. 基于准连续域束缚态的全介质超构表面双参数传感器.  , doi: 10.7498/aps.73.20231514
    [4] 李豪, 庞永强, 屈冰玥, 郑江山, 徐卓. 光学透明超表面透镜及其无线通信效率增强.  , doi: 10.7498/aps.73.20240464
    [5] 高越, 余博丞, 郭瑞, 曹燕燕, 徐亚东. 基于相位梯度超构光栅的光学超构笼子.  , doi: 10.7498/aps.72.20221696
    [6] 刘有海, 秦天翔, 王英策, 亢兴旺, 刘君, 吴佳琛, 曹良才. 简单光学成像技术及其研究进展.  , doi: 10.7498/aps.72.20230092
    [7] 宋睿睿, 邓钦玲, 周绍林. 基于相变与悬链线连续相位调控的超构光子开关.  , doi: 10.7498/aps.71.20211538
    [8] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态.  , doi: 10.7498/aps.71.20220801
    [9] 徐昭, 周昕, 白星, 李聪, 陈洁, 倪洋. 基于深度学习的相位截断傅里叶变换非对称加密系统攻击方法.  , doi: 10.7498/aps.70.20202075
    [10] 李军依, 叶玉儿, 凌晨, 李林, 刘泱, 夏勇. 超透镜聚焦光环的产生及其在冷分子光学囚禁中的应用.  , doi: 10.7498/aps.70.20210443
    [11] 盛冲, 刘辉, 祝世宁. 光学超构材料芯片上类比引力的研究进展.  , doi: 10.7498/aps.69.20200183
    [12] 吴丰, 郭志伟, 吴家驹, 江海涛, 杜桂强. 含双曲超构材料的复合周期结构的带隙调控及应用.  , doi: 10.7498/aps.69.20200084
    [13] 光学超构材料专题编者按.  , doi: 10.7498/aps.69.150101
    [14] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控.  , doi: 10.7498/aps.69.20200453
    [15] 许祥馨, 常军, 武楚晗, 宋大林. 基于双随机相位编码的局部混合光学加密系统.  , doi: 10.7498/aps.69.20200478
    [16] 马明宇, 吴晗, 陈卓. 金属开口环谐振器超构分子中二次谐波偏振态的调控.  , doi: 10.7498/aps.68.20190837
    [17] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控.  , doi: 10.7498/aps.67.20180125
    [18] 龙洋, 任捷, 江海涛, 孙勇, 陈鸿. 超构材料中的光学量子自旋霍尔效应.  , doi: 10.7498/aps.66.227803
    [19] 邓俊鸿, 李贵新. 非线性光学超构表面.  , doi: 10.7498/aps.66.147803
    [20] 肖啸, 张志友, 肖志刚, 许德富, 邓迟. 银层超透镜光学传递函数的研究.  , doi: 10.7498/aps.61.114201
计量
  • 文章访问数:  10
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-01

/

返回文章
返回
Baidu
map