搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自组织结构的控制: 从平衡过程到非平衡过程

石燕 张天辉

引用本文:
Citation:

自组织结构的控制: 从平衡过程到非平衡过程

石燕, 张天辉

Control of self-organization: From equilibrium to non-equilibrium

Shi Yan, Zhang Tian-Hui
PDF
HTML
导出引用
  • 自组织是自然界广泛存在的一种自发从无序到有序的转变过程. 从晶体的生长到生物功能结构的形成, 自组织过程的影响和作用无处不在. 生物功能结构通常是具有多尺度特征的复合结构. 其中纳米结构的形貌及其空间排列方式对生物功能的实现起着关键作用. 功能结构有两大类: 平衡结构和非平衡结构. 本文总结了功能结构和人工仿生结构的最新进展. 研究发现, 虽然物理科学和材料科学在有关静态平衡功能结构的研究上取得了令人激动的进展, 但在如何实现具有响应和适应性的动态非平衡功能结构上, 仍然面临着挑战. 本文认为, 远离平衡态的活性体系在周期性驱动力的反复激发和训练下, 有可能演化出非平衡的动态结构. 这为实现具有自适应和自修复功能的非平衡结构提供了一种可能途径.
    Self-organization represents a ubiquitous transition from disorder to order. It plays a critical role in forming crystalline materials and functional structures in biology. Functional structures are generally hybrid on a multiple scale in which nano-structures are often organized in a specific way such that they can perform functions. There are two typical functional structures: static equilibrium structures and dynamic non-equilibrium structures. In this review, recent advances in understanding and mimicking functional structures are summarized. Although great advances have been achieved, it is still a big challenge to realize dynamic non-equilibrium structures. In this case, we suggest that the controlling of self-organization in active systems may be a route toward interactive and adaptive structures.
      通信作者: 张天辉, zhangtianhui@suda.edu.cn
    • 基金项目: 国家级-国家自然科学基金(11674235)
      Corresponding author: Zhang Tian-Hui, zhangtianhui@suda.edu.cn
    [1]

    Zhao S, Kang L, Shen Y, Wang X, Asghar M A, Lin Z, Xu Y, Zeng S, Hong M, Luo J 2016 J. Am. Chem. Soc. 138 2961Google Scholar

    [2]

    Chen W, Jiang A, Wang G 2003 J. Cryst. Growth 256 383Google Scholar

    [3]

    Shi G, Wang Y, Zhang F, Zhang B, Yang Z, Hou X, Pan S, Poeppelmeier K R 2017 J. Am. Chem. Soc. 139 10645Google Scholar

    [4]

    Libonati F, Buehler M J 2017 Adv. Eng. Mater. 19 1600787Google Scholar

    [5]

    Kraus T, Brodoceanu D, Pazos-Perez N, Fery A 2013 Adv. Funct. Mater. 23 4529Google Scholar

    [6]

    Zhang G, Zhang J, Xie G, Liu Z, Shao H 2006 Small 2 1440Google Scholar

    [7]

    Yan Y Y, Gao N, Barthlott W 2011 Adv. Colloid Interface Sci. 169 80Google Scholar

    [8]

    Aizenberg J, Tkachenko A, Weiner S, Addadi L, Hendler G 2001 Nature 412 819Google Scholar

    [9]

    Stavenga D G, Foletti S, Palasantzas G, Arikawa K 2006 Proc. R. Soc. B-Biol. Sci. 273 661Google Scholar

    [10]

    Zhang X, Zhang J, Ren Z, Li X, Zhang X, Zhu D, Wang T, Tian T, Yang B 2009 Langmuir 25 7375Google Scholar

    [11]

    Tsai H J, Lee Y L 2007 Langmuir 23 12687Google Scholar

    [12]

    Lee K, Wagermaier W, Masic A, Kommareddy K P, Bennet M, Manjubala I, Lee S W, Park S B, Cölfen H, Fratzl P 2012 Nat. Commun. 3 725Google Scholar

    [13]

    Li Y, Sasaki T, Shimizu Y, Koshizaki N 2008 J. Am. Chem. Soc. 130 14755Google Scholar

    [14]

    Wegst U G K, Bai H, Saiz E, Tomsia A P, Ritchie R O 2015 Nat. Mater. 14 23Google Scholar

    [15]

    Morikawa J, Ryu M, Seniutinas G, Balčytis A, Maximova K, Wang X, Zamengo M, Ivanova E P, Juodkazis S 2016 Langmuir 32 4698Google Scholar

    [16]

    Zhu J, Hsu C M, Yu Z, Fan S, Cui Y 2010 Nano Lett. 10 1979Google Scholar

    [17]

    Nishimoto S, Bhushan B 2013 RSC Adv. 3 671Google Scholar

    [18]

    Armstrong E, O'Dwyer C 2015 J. Mater. Chem. C 3 6109Google Scholar

    [19]

    Seeboth A, Lötzsch D, Ruhmann R, Muehling O 2014 Chem. Rev. 114 3037Google Scholar

    [20]

    Saranathan V, Forster J D, Noh H, Liew S F, Mochrie S G J, Cao H, Dufresne E R, Prum R O 2012 J. R. Soc. Interface 9 2563Google Scholar

    [21]

    Wong S, Kitaev V, Ozin G A 2003 J. Am. Chem. Soc. 125 15589Google Scholar

    [22]

    Jiang P, Prasad T, McFarland M J, Colvin V L 2006 Appl. Phys. Lett. 89 011908Google Scholar

    [23]

    Teyssier J, Saenko S V, van der Marel D, Milinkovitch M C 2015 Nat. Commun. 6 6368Google Scholar

    [24]

    Clapham D E, Runnels L W, Strübing C 2001 Nat. Rev. Neurosci. 2 387

    [25]

    Nicolson G L 2014 Biochim. Biophys. Acta-Biomembr. 1838 1451Google Scholar

    [26]

    Richter F M 1978 J. Fluid Mech. 89 553Google Scholar

    [27]

    Liu Y, Mollaeian K, Ren J 2018 Electronics 7

    [28]

    Mohammed J S, Murphy W L 2009 Adv. Mater. 21 2361Google Scholar

    [29]

    Cui Y, Li D, Bai H 2017 Ind. Eng. Chem. Res. 56 4887Google Scholar

    [30]

    Roy N, Bruchmann B, Lehn J M 2015 Chem. Soc. Rev. 44 3786Google Scholar

    [31]

    Grzybowski B A, Fitzner K, Paczesny J, Granick S 2017 Chem. Soc. Rev. 46 5647Google Scholar

    [32]

    Zhang J, Guo J, Mou F, Guan J 2018 Micromachines 9 88Google Scholar

    [33]

    Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M, Simha R A 2013 Rev. Mod. Phys. 85 1143Google Scholar

    [34]

    Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O 1995 Phys. Rev. Lett. 75 1226Google Scholar

    [35]

    Zhang H P, Be’er A, Florin E L, Swinney H L 2010 Proc. Natl. Acad. Sci. USA 107 13626Google Scholar

    [36]

    Chen C, Liu S, Shi X Q, Chaté H, Wu Y 2017 Nature 542 210Google Scholar

    [37]

    Vedula S R K, Leong M C, Lai T L, Hersen P, Kabla A J, Lim C T, Ladoux B 2012 Proc. Nat. Acad. Sci. USA 109 12974Google Scholar

    [38]

    Minati G (Urbani Ulivi L Ed.) 2019 The Systemic Turn in Human and Natural Sciences: A Rock in The Pond (Cham: Springer International Publishing) pp1−39

    [39]

    Rubenstein M, Cornejo A, Nagpal R 2014 Science 345 795Google Scholar

    [40]

    Wang W, Duan W, Ahmed S, Sen A, Mallouk T E 2015 Acc. Chem. Res. 48 1938Google Scholar

    [41]

    Zhang J, Luijten E, Grzybowski B A, Granick S 2017 Chem. Soc. Rev. 46 5551Google Scholar

    [42]

    Tretiakov K V, Szleifer I, Grzybowski B A 2013 Angew. Chem., Int. Ed. 52 10304Google Scholar

    [43]

    Snezhko A, Aranson I S 2011 Nat. Mater. 10 698Google Scholar

    [44]

    Bricard A, Caussin J B, Desreumaux N, Dauchot O, Bartolo D 2013 Nature 503 95Google Scholar

    [45]

    Palacci J, Sacanna S, Steinberg A P, Pine D J, Chaikin P M 2013 Science 339 936Google Scholar

    [46]

    Narayan V, Ramaswamy S, Menon N 2007 Science 317 105Google Scholar

    [47]

    Wang W, Duan W, Sen A, Mallouk T E 2013 Proc. Nat. Acad. Sci. USA 110 17744Google Scholar

    [48]

    Wioland H, Woodhouse F G, Dunkel J, Kessler J O, Goldstein R E 2013 Phys. Rev. Lett. 110 268102Google Scholar

    [49]

    Bricard A, Caussin J-B, Das D, Savoie C, Chikkadi V, Shitara K, Chepizhko O, Peruani F, Saintillan D, Bartolo D 2015 Nat. Commun. 6 7470Google Scholar

    [50]

    Morin A, Bartolo D 2018 Phys. Rev. X 8 021037

    [51]

    Lin Z, Gao C, Chen M, Lin X, He Q 2018 Curr. Opin. Colloid Interface Sci. 35 51Google Scholar

    [52]

    Snezhko A 2011 J. Phys. Condes. Matter 23 153101Google Scholar

    [53]

    Belkin M, Glatz A, Snezhko A, Aranson I S 2010 Phys. Rev. E 82 015301Google Scholar

    [54]

    Gangwal S, Cayre O J, Velev O D 2008 Langmuir 24 13312Google Scholar

    [55]

    Bizon C, Shattuck M D, Swift J B, McCormick W D, Swinney H L 1998 Phys. Rev. Lett. 80 57Google Scholar

    [56]

    Eshuis P, van der Weele K, van der Meer D, Bos R, Lohse D 2007 Phys. Fluids 19 123301Google Scholar

    [57]

    Zhang J, Hess P W, Kyprianidis A, Becker P, Lee A, Smith J, Pagano G, Potirniche I D, Potter A C, Vishwanath A, Yao N Y, Monroe C 2017 Nature 543 217Google Scholar

    [58]

    Sacha K, Zakrzewski J 2017 Rep. Prog. Phys. 81 016401

  • 图 1  人工晶体 (a) K3Ba3Li2Al4B6O20F单晶[1]; (b) NH4B4O6F晶体[3]

    Fig. 1.  Artificial crystals: (a) Single crystal of K3Ba3Li2Al4B6O20F[1]; (b) crystal of NH4B4O6F[3].

    图 2  (a) 从蛋白分子的纳米结构到宏观多孔结构, 骨骼具有的多级分层结构使其具有很强的韧性和抗撞击特性[4]; (b)−(e) 生物体中的微纳米和 (b' )−(e') 人工仿生结构[5]: (b) 蝉翼的抗反射结构[6]; (c) 芋头超疏水的叶子[7]; (d) 阳遂足科动物皮肤中的透镜结构[8]; (e) 孔雀蝶眼角膜中的乳头阵列[9]; (b' ) 抗反射硅锥阵列[10]; (c' ) 超疏水树莓状结构[11]; (d' ) 碳酸钙的微透镜结构(插图为放大图)[12]; (e' ) 超亲水自净二氧化钛纳米柱阵列[13]

    Fig. 2.  (a) From the nanoscale of protein molecules to the macroscopic scale of physiology, the hierarchical structure of bone has significant characters of strong toughness and impact resistance[4]; structures found on surfaces of plants and animals (b)−(e) and biomimetic, particle-based microstructures (b' )−(e' )[5]: (b) the antireflective wings of a cicada[6]; (c) the superhydrophobic leaves of taro[7]; (d) lenses in the peripheral layer of the dorsal arm plate of a brittle star[8]; (e) the corneal nipple arrays of a peacock butterfly[9]; (b' ) antireflective silicon cone arrays[10]; (c' ) superhydrophobic, raspberry-like arrangements[11]; (d' ) micro-lenses from calcium carbonate (that show the magnified letter “A” here)[12]; (e' )superhydrophilic, self-cleaning titania nanocolumns[13].

    图 3  结构色与光子晶体 (a) 大闪蝶及其蓝色翅膀中的纳米结构(即生物光子晶体)的扫描电子显微镜(scanning electron microscopy, SEM)图; (b) 孔雀羽毛及其蓝色部分的二维纳米结构的透射电子显微镜(transmission electron microscopy, TEM)图; (c) 大紫蛱蝶的翅膀及其白色部分的三维微观结构的SEM图[18]; (d) 从左到右分别是一维、二维、三维的光子晶体结构示意图[19]

    Fig. 3.  Structure color and photonic crystals: (a) The blue iridescence and SEM image of the 1D structure of the Morpho butterfly; (b) multi-coloured peacock feather and TEM image of transverse cross section of the 2D structure of the blue area of a wing; (c) wing of the male Sasakia Charonda butterfly and SEM image of the 3D structure of the white iridescent area[18]; (d) schematic drawings of the structures of 1D, 2D, and 3D photonic crystals[19].

    图 4  人工结构色 (a)直径为850 nm的二氧化硅大颗粒形成的二元胶体晶体薄膜的SEM图像[21]; (b) 直径为150 nm的聚苯乙烯小颗粒形成的二元胶体晶体薄膜的SEM图像[21]; (c) 二氧化硅微球形成的二维胶体晶体; (d) 白光照射下, 晶圆级尺寸的胶体晶体(图(c))薄膜呈现出的结构色[22]

    Fig. 4.  Artificial structure color: (a) SEM images of binary opal films formed by large 850 nm silica spheres packed in interstices[21]; (b) SEM images of binary opal films formed by small 150 nm polystyrene latex spheres packed in interstices[21]; (c) SEM image of two-dimensional colloidal crystal formed by silica microspheres; (d) wafer-scale colloidal crystal film shown in figure (c)[22].

    图 5  活性结构 (a) 豹变色龙在受到外部刺激时, 通过调控皮肤表面的微纳米结构, 会发生可逆色变; (b) 豹变色龙皮肤中光子晶体的微观结构图像及其三维面心立方结构模型(两个方向), 标尺为20 μm[23]; (c) 细胞膜是由磷脂分子构成的双层膜结构, 具有很强的形变和适应能力[25]

    Fig. 5.  Active structure: (a) Reversible color change is shown for the leopard chameleon exposed to external stimuli (white arrow) through adjustments of micro-nano structures on skin surface; (b) TEM images of guanine nanocrystals in S-iridophores in the excited state and three-dimensional model of an FCC (face-centered cubic) lattice (shown in two orientations). Scale bar: 20 μm[23]; (c) cell membrane is a double-layer membrane structure composed of phospholipid molecules, which is highly deformable and adaptable[25]

    图 6  自然界中的非平衡自组织结构 (a) Benard对流花纹[26]; (b) 细胞骨架[27]

    Fig. 6.  Non-equilibrium self-organizations in nature: (a) The formation of Bernard convection pattern[26]; (b) cytoske-leton[27]

    图 7  自然界和胶体体系中的集体运动 (a) 鱼群; (b)鸟群[32]; (c) 细菌菌落[33]; (d) 圆形受限边界内自驱动胶体的涡旋运动, 箭头表示粒子的瞬时速度的方向[49]; (e) 环形腔内自驱动胶体的定向集体运动, 箭头表示粒子瞬时速度方向[50]

    Fig. 7.  Collective motions in natural and colloidal systems: (a) Schooling of fishes; (b) flocking of birds[32]; (c) swimming bacillus subtilis bacteria[33]; (d) a roller vortex with circular restricted boundary. The blue vectors represent instantaneous speed of the rollers[49]; (e) directed collective motion of colloidal rollers. The blue arrows represent the instantaneous particle velocities[50].

    图 8  自驱动胶体体系中的动态结构 (a) 垂直交变磁场中, 尺寸可变的多节蛇形结构[53]; (b) 蓝光照射下粒子自组装形成活性晶体; (c) 关闭光源后, 晶体溶解[32]; (d)交变电场中, Janus粒子在不同粒子浓度条件下形成的交错链(56 V·cm–1 at 40 kHz); (e)交变电场中, Janus粒子在不同粒子浓度条件下形成的密集交错链(27 V·cm–1 at 40 kHz)[54]

    Fig. 8.  Dynamic self-assembly in the colloidal systems: (a) Self-assembled multi-segment snake-like structures generated by a vertical alternating magnetic field. The size of the segments is determined by the magnetic field frequency[53]; (b) living crystals assembled from a homogeneous distribution under illumination by blue light; (c) living crystals melt by thermal diffusion when light is extinguished[32]; (d) optical micrographs of staggered chains (56 V·cm–1 at 40 kHz) of Janus particles in an alternating-electric field[54]; (e) optical micrographs of concentrated staggered chains (27 V·cm–1 at 40 kHz) of Janus particles in an alternating-electric field[54].

    图 9  (a)−(h) 振动颗粒表面形成的形态各异的斑图, 实验和模拟结果对比(Γ为加速度, $ f^* $为约化振动频率)[55]

    Fig. 9.  (a)−(h) Spot diagrams of vibration granular surface forms: Experiment and simulation results (Γ is acceleration and $ f^* $ is frequency)[55].

    Baidu
  • [1]

    Zhao S, Kang L, Shen Y, Wang X, Asghar M A, Lin Z, Xu Y, Zeng S, Hong M, Luo J 2016 J. Am. Chem. Soc. 138 2961Google Scholar

    [2]

    Chen W, Jiang A, Wang G 2003 J. Cryst. Growth 256 383Google Scholar

    [3]

    Shi G, Wang Y, Zhang F, Zhang B, Yang Z, Hou X, Pan S, Poeppelmeier K R 2017 J. Am. Chem. Soc. 139 10645Google Scholar

    [4]

    Libonati F, Buehler M J 2017 Adv. Eng. Mater. 19 1600787Google Scholar

    [5]

    Kraus T, Brodoceanu D, Pazos-Perez N, Fery A 2013 Adv. Funct. Mater. 23 4529Google Scholar

    [6]

    Zhang G, Zhang J, Xie G, Liu Z, Shao H 2006 Small 2 1440Google Scholar

    [7]

    Yan Y Y, Gao N, Barthlott W 2011 Adv. Colloid Interface Sci. 169 80Google Scholar

    [8]

    Aizenberg J, Tkachenko A, Weiner S, Addadi L, Hendler G 2001 Nature 412 819Google Scholar

    [9]

    Stavenga D G, Foletti S, Palasantzas G, Arikawa K 2006 Proc. R. Soc. B-Biol. Sci. 273 661Google Scholar

    [10]

    Zhang X, Zhang J, Ren Z, Li X, Zhang X, Zhu D, Wang T, Tian T, Yang B 2009 Langmuir 25 7375Google Scholar

    [11]

    Tsai H J, Lee Y L 2007 Langmuir 23 12687Google Scholar

    [12]

    Lee K, Wagermaier W, Masic A, Kommareddy K P, Bennet M, Manjubala I, Lee S W, Park S B, Cölfen H, Fratzl P 2012 Nat. Commun. 3 725Google Scholar

    [13]

    Li Y, Sasaki T, Shimizu Y, Koshizaki N 2008 J. Am. Chem. Soc. 130 14755Google Scholar

    [14]

    Wegst U G K, Bai H, Saiz E, Tomsia A P, Ritchie R O 2015 Nat. Mater. 14 23Google Scholar

    [15]

    Morikawa J, Ryu M, Seniutinas G, Balčytis A, Maximova K, Wang X, Zamengo M, Ivanova E P, Juodkazis S 2016 Langmuir 32 4698Google Scholar

    [16]

    Zhu J, Hsu C M, Yu Z, Fan S, Cui Y 2010 Nano Lett. 10 1979Google Scholar

    [17]

    Nishimoto S, Bhushan B 2013 RSC Adv. 3 671Google Scholar

    [18]

    Armstrong E, O'Dwyer C 2015 J. Mater. Chem. C 3 6109Google Scholar

    [19]

    Seeboth A, Lötzsch D, Ruhmann R, Muehling O 2014 Chem. Rev. 114 3037Google Scholar

    [20]

    Saranathan V, Forster J D, Noh H, Liew S F, Mochrie S G J, Cao H, Dufresne E R, Prum R O 2012 J. R. Soc. Interface 9 2563Google Scholar

    [21]

    Wong S, Kitaev V, Ozin G A 2003 J. Am. Chem. Soc. 125 15589Google Scholar

    [22]

    Jiang P, Prasad T, McFarland M J, Colvin V L 2006 Appl. Phys. Lett. 89 011908Google Scholar

    [23]

    Teyssier J, Saenko S V, van der Marel D, Milinkovitch M C 2015 Nat. Commun. 6 6368Google Scholar

    [24]

    Clapham D E, Runnels L W, Strübing C 2001 Nat. Rev. Neurosci. 2 387

    [25]

    Nicolson G L 2014 Biochim. Biophys. Acta-Biomembr. 1838 1451Google Scholar

    [26]

    Richter F M 1978 J. Fluid Mech. 89 553Google Scholar

    [27]

    Liu Y, Mollaeian K, Ren J 2018 Electronics 7

    [28]

    Mohammed J S, Murphy W L 2009 Adv. Mater. 21 2361Google Scholar

    [29]

    Cui Y, Li D, Bai H 2017 Ind. Eng. Chem. Res. 56 4887Google Scholar

    [30]

    Roy N, Bruchmann B, Lehn J M 2015 Chem. Soc. Rev. 44 3786Google Scholar

    [31]

    Grzybowski B A, Fitzner K, Paczesny J, Granick S 2017 Chem. Soc. Rev. 46 5647Google Scholar

    [32]

    Zhang J, Guo J, Mou F, Guan J 2018 Micromachines 9 88Google Scholar

    [33]

    Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M, Simha R A 2013 Rev. Mod. Phys. 85 1143Google Scholar

    [34]

    Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O 1995 Phys. Rev. Lett. 75 1226Google Scholar

    [35]

    Zhang H P, Be’er A, Florin E L, Swinney H L 2010 Proc. Natl. Acad. Sci. USA 107 13626Google Scholar

    [36]

    Chen C, Liu S, Shi X Q, Chaté H, Wu Y 2017 Nature 542 210Google Scholar

    [37]

    Vedula S R K, Leong M C, Lai T L, Hersen P, Kabla A J, Lim C T, Ladoux B 2012 Proc. Nat. Acad. Sci. USA 109 12974Google Scholar

    [38]

    Minati G (Urbani Ulivi L Ed.) 2019 The Systemic Turn in Human and Natural Sciences: A Rock in The Pond (Cham: Springer International Publishing) pp1−39

    [39]

    Rubenstein M, Cornejo A, Nagpal R 2014 Science 345 795Google Scholar

    [40]

    Wang W, Duan W, Ahmed S, Sen A, Mallouk T E 2015 Acc. Chem. Res. 48 1938Google Scholar

    [41]

    Zhang J, Luijten E, Grzybowski B A, Granick S 2017 Chem. Soc. Rev. 46 5551Google Scholar

    [42]

    Tretiakov K V, Szleifer I, Grzybowski B A 2013 Angew. Chem., Int. Ed. 52 10304Google Scholar

    [43]

    Snezhko A, Aranson I S 2011 Nat. Mater. 10 698Google Scholar

    [44]

    Bricard A, Caussin J B, Desreumaux N, Dauchot O, Bartolo D 2013 Nature 503 95Google Scholar

    [45]

    Palacci J, Sacanna S, Steinberg A P, Pine D J, Chaikin P M 2013 Science 339 936Google Scholar

    [46]

    Narayan V, Ramaswamy S, Menon N 2007 Science 317 105Google Scholar

    [47]

    Wang W, Duan W, Sen A, Mallouk T E 2013 Proc. Nat. Acad. Sci. USA 110 17744Google Scholar

    [48]

    Wioland H, Woodhouse F G, Dunkel J, Kessler J O, Goldstein R E 2013 Phys. Rev. Lett. 110 268102Google Scholar

    [49]

    Bricard A, Caussin J-B, Das D, Savoie C, Chikkadi V, Shitara K, Chepizhko O, Peruani F, Saintillan D, Bartolo D 2015 Nat. Commun. 6 7470Google Scholar

    [50]

    Morin A, Bartolo D 2018 Phys. Rev. X 8 021037

    [51]

    Lin Z, Gao C, Chen M, Lin X, He Q 2018 Curr. Opin. Colloid Interface Sci. 35 51Google Scholar

    [52]

    Snezhko A 2011 J. Phys. Condes. Matter 23 153101Google Scholar

    [53]

    Belkin M, Glatz A, Snezhko A, Aranson I S 2010 Phys. Rev. E 82 015301Google Scholar

    [54]

    Gangwal S, Cayre O J, Velev O D 2008 Langmuir 24 13312Google Scholar

    [55]

    Bizon C, Shattuck M D, Swift J B, McCormick W D, Swinney H L 1998 Phys. Rev. Lett. 80 57Google Scholar

    [56]

    Eshuis P, van der Weele K, van der Meer D, Bos R, Lohse D 2007 Phys. Fluids 19 123301Google Scholar

    [57]

    Zhang J, Hess P W, Kyprianidis A, Becker P, Lee A, Smith J, Pagano G, Potirniche I D, Potter A C, Vishwanath A, Yao N Y, Monroe C 2017 Nature 543 217Google Scholar

    [58]

    Sacha K, Zakrzewski J 2017 Rep. Prog. Phys. 81 016401

  • [1] 吴晓娲, 秦四清, 薛雷, 杨百存, 张珂. 孕震断层锁固段累积损伤导致失稳的自组织-临界行为特征.  , 2018, 67(20): 206401. doi: 10.7498/aps.67.20180614
    [2] 孙保安, 王利峰, 邵建华. 非晶力学流变的自组织临界行为.  , 2017, 66(17): 178103. doi: 10.7498/aps.66.178103
    [3] 彭娜娜, 霍燕燕, 周侃, 贾鑫, 潘佳, 孙真荣, 贾天卿. 飞秒激光诱导自组织纳米周期结构及其光学特性的研究进展.  , 2013, 62(9): 094201. doi: 10.7498/aps.62.094201
    [4] 朱国强, Jean-Pierre Boeuf, 李进贤. 压强与功率对高气压空气微波放电自组织结构影响的数值研究.  , 2012, 61(23): 235202. doi: 10.7498/aps.61.235202
    [5] 张洪欣, 李姗, 张金玲, 刘雯, 吕英华. 基于蘑菇型结构的双入射超宽带复合媒质材料设计与分析.  , 2012, 61(5): 054101. doi: 10.7498/aps.61.054101
    [6] 田雪雁, 赵谡玲, 徐征, 姚江峰, 张福俊, 贾全杰, 陈雨, 龚伟, 樊星. 高分子有机场效应晶体管中退火引起的自组织微观结构变化的研究.  , 2011, 60(5): 057201. doi: 10.7498/aps.60.057201
    [7] 白克钊, 陈瑞熊, 刘慕仁, 孔令江, 郑容森. 平面环行交叉路口交通流的研究.  , 2009, 58(7): 4500-4505. doi: 10.7498/aps.58.4500
    [8] 葛桂贤, 曹海滨, 井群, 罗有华. 密度泛函理论研究H2与Rhn(n=1—8)团簇的相互作用.  , 2009, 58(12): 8236-8242. doi: 10.7498/aps.58.8236
    [9] 葛桂贤, 杨增强, 曹海滨. 密度泛函理论研究CO与Nin(n=1—6)团簇的相互作用.  , 2009, 58(9): 6128-6133. doi: 10.7498/aps.58.6128
    [10] 韩 亮, 赵玉清, 张海波. 非平衡磁控溅射系统磁场的半解析法.  , 2008, 57(2): 996-1000. doi: 10.7498/aps.57.996
    [11] 张文铸, 袁 坚, 俞 哲, 徐赞新, 山秀明. 基于元胞自动机的无线传感网络整体行为研究.  , 2008, 57(11): 6896-6900. doi: 10.7498/aps.57.6896
    [12] 方 健, 乔 明, 李肇基. 电荷非平衡super junction结构电场分布.  , 2006, 55(7): 3656-3663. doi: 10.7498/aps.55.3656
    [13] 刘玉敏, 俞重远, 杨红波, 黄永箴. InAs/GaAs透镜形量子点超晶格材料的纵向和横向周期对应变场分布的影响.  , 2006, 55(10): 5023-5029. doi: 10.7498/aps.55.5023
    [14] 刘 蕾, 徐升华, 刘 捷, 段 俐, 孙祉伟, 刘忍肖, 董 鹏. 带电胶体粒子结晶过程的实验研究.  , 2006, 55(11): 6168-6174. doi: 10.7498/aps.55.6168
    [15] 张永炬, 余森江. 准自由支撑铝薄膜中有序表面结构的自组织生长.  , 2005, 54(10): 4867-4873. doi: 10.7498/aps.54.4867
    [16] 李良新, 胡勇华. 可用于红外探测器的自组织量子线及其带间和子带间光学跃迁.  , 2005, 54(2): 848-856. doi: 10.7498/aps.54.848
    [17] 贺亚峰, 董丽芳, 刘富成, 范伟丽. 介质阻挡放电中的局域态六边形结构.  , 2005, 54(9): 4236-4239. doi: 10.7498/aps.54.4236
    [18] 董丽芳, 李雪辰, 尹增谦, 王龙. 大气压介质阻挡放电中的自组织斑图结构.  , 2002, 51(10): 2296-2301. doi: 10.7498/aps.51.2296
    [19] 何声太, 姚建年, 汪裕萍, 江鹏, 时东霞, 解思深, 庞世瑾, 高鸿钧. 银纳米粒子自组织二维有序阵列.  , 2001, 50(4): 765-768. doi: 10.7498/aps.50.765
    [20] 周光召, 苏肇冰. 非平衡耗散系统定常态的Goldstone模.  , 1980, 29(5): 618-634. doi: 10.7498/aps.29.618
计量
  • 文章访问数:  13032
  • PDF下载量:  466
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-28
  • 修回日期:  2020-04-22
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-07-20

/

返回文章
返回
Baidu
map