-
通过设计一定的单元结构, 可以实现超宽带人工电磁材料. 基于蘑菇型金属结构, 提出了一种同时具有左右手通带无缝结合的超宽带双入射型复合媒质材料结构单元. 该结构由嵌入到介质板的两个反向对称的蘑菇型金属结构组成, 能够同时引发电谐振和磁谐振而得到左手通带. 通过利用CST软件仿真、等效电磁参数提取、折射率计算以及建立等效磁谐振电路模型等方法, 分析验证了该结构的双入射特性和左手特性. 仿真结果表明, 在电磁波垂直于介质板和平行于介质板入射两种情况下, 在X波段均表现出左手通带特性, 并具有1 GHz以上的左手带宽. 当电磁波垂直于介质板入射时, 在7.2 GHz9.3 GHz频段为右手通带, 在9.3 GHz11 GHz频段为左手通带; 当电磁波平行于介质板入射时, 在7.0 GHz9.0 GHz频段为右手通带, 在9.0 GHz10 GHz频段为左手通带. 在两种情况下分别于9.3 GHz与9.0 GHz处得到了零折射率, 从而构造了一种正-零-负复合媒质材料, 实现了具有3 GHz带宽的双入射超宽带平衡结构.An ultra-wide band metamaterial may be achieved via the design of some structures. A metamaterial unit supporting two-dimensional (2D) incident electromagnetic (EM) wave is proposed based on the mushroom type-structures, which has an ultra-wide band with seamlessly combined band of right-handed and left-handed pass-bands. This unit is designed by setting two reverse symmetrical mushroom-shaped strips on each side of the dielectric substrate respectively, and the electric resonance and the magnetic resonance could be excited simultaneously. With CST software, the right-handed and left-handed properties are analyzed and verified by means of spectrum analysis, effective parameters of permittivity, permeability and index of refraction extracted from S parameters, and equivalent magnetic resonance circuits. The results show that the structure can present left-handed properties with 1 GHz left-handed pass-band in X waveband, either EM wave is incident in the direction perpendicular or parallel to the plane of the substrate. When the EM wave is incident in the direction perpendicular to the substrate, the right-handed and the left-handed pass-bands appear at 7.2 GHz9.3 GHz and 9.3 GHz11 GHz respectively; while when the EM wave is incident in the direction parallel to the substrate, the right-handed and the left-handed pass-bands appear at 7.0 GH9.0 GHz and 9.0 GHz10 GHz respectively. It also shows that the zero indexes of refraction occur at 9.3 GHz and 9.0 GHz in the tow instances above. So that a plus-zero-negative metamaterial is constructed and a 2D incident balanced-structure with an ultra-wide band of 3 GHz is achieved.
-
Keywords:
- mushroom-shaped structure /
- left-handed material /
- two-dimensional incidence /
- balanced-structure
[1] Veselago V G 1968 Sov. Phys . Usp. 10 509
[2] Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev.Lett. 76 4773
[3] Smith D R, Vier D C, Padilla W J 1999 Appl. Phys. Lett. 75 1425
[4] Shi H Y, Jiang Y Y, Sun X D, Guo R H, Zhao Y P 2005 Chin.Phys. 14 1571
[5] Jiang T, Chen Y, Feng Y J 2006 Chin. Phys. 15 1154
[6] Zhang H X, Bao Y F, Lu Y H, Chen T M, Wang H X 2008 Chin.Phys. B 17 164
[7] Zhuo S C, Yan C C 2010 Acta Phys. Sin. 59 360 (in Chinese) [卓士创, 闫长春 2010 59 360]
[8] Zang H X, Zhao L, Lu Y H 2009 J. Nonlinear Opt. Phys. Mater.18 441
[9] Zang H X, Zhao L, Lu Y H 2010 Chin. J. Phys. 48 103
[10] Sulaiman A A, Nasaruddin A S, Jusoh M 2010 Eur. J. Sci. Res.44 493
[11] Grzegorczyk T M, Moss C D, Lu Jie, Chen X D, Pacheco Jr J,Kong J A 2005 IEEE Trans. Microwave Theory Tech. 53 2956
[12] Chen H S, Ran L X, Huangfu J T, Zhang X M, Chen K S 2004Phys. Rev. E 70 057605
[13] Ran L, Huangfu J, Chen H, Li Y, Zhang X, Chen K, Kong J A2004 Phys. Rev. B 70 073102
[14] Liu Y H, Luo C R, Zhao X P 2007 Acta Phys. Sin. 56 5883 (inChinese) [刘亚红, 罗春荣, 赵晓鹏 2007 56 5883]
[15] Zhou J F, Zhang L, Tuttle G, Koschny T, Soukoulis C M 2006Phys. Rev. B 73 041101
[16] Zhang S, Qu S B, Ma H, Xie F, Xu Z 2009 Acta Phys. Sin. 583961 (in Chinese) [张松, 屈绍波, 马华, 谢峰, 徐卓 2009 58 3961]
[17] Mary A, Rodrigo S G, Garcia-Vidal F J, Martin-Moreno L 2008Phys. Rev. Lett. 101 103902
[18] Menzel C, Paul T, Rockstuhl C, Pertsch T, Tretyakov S, Lederer F2010 Phys. Rev. B 81 035320
[19] Wang H X, Lü Y H, Zhang H X 2011 Acta Phys. Sin. 60 034101(in Chinese) [王海侠, 吕英华, 张洪欣 2011 60 034101]
[20] Ziolkowski R W 2003 IEEE Trans. Ante. Prop. 51 1516
-
[1] Veselago V G 1968 Sov. Phys . Usp. 10 509
[2] Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev.Lett. 76 4773
[3] Smith D R, Vier D C, Padilla W J 1999 Appl. Phys. Lett. 75 1425
[4] Shi H Y, Jiang Y Y, Sun X D, Guo R H, Zhao Y P 2005 Chin.Phys. 14 1571
[5] Jiang T, Chen Y, Feng Y J 2006 Chin. Phys. 15 1154
[6] Zhang H X, Bao Y F, Lu Y H, Chen T M, Wang H X 2008 Chin.Phys. B 17 164
[7] Zhuo S C, Yan C C 2010 Acta Phys. Sin. 59 360 (in Chinese) [卓士创, 闫长春 2010 59 360]
[8] Zang H X, Zhao L, Lu Y H 2009 J. Nonlinear Opt. Phys. Mater.18 441
[9] Zang H X, Zhao L, Lu Y H 2010 Chin. J. Phys. 48 103
[10] Sulaiman A A, Nasaruddin A S, Jusoh M 2010 Eur. J. Sci. Res.44 493
[11] Grzegorczyk T M, Moss C D, Lu Jie, Chen X D, Pacheco Jr J,Kong J A 2005 IEEE Trans. Microwave Theory Tech. 53 2956
[12] Chen H S, Ran L X, Huangfu J T, Zhang X M, Chen K S 2004Phys. Rev. E 70 057605
[13] Ran L, Huangfu J, Chen H, Li Y, Zhang X, Chen K, Kong J A2004 Phys. Rev. B 70 073102
[14] Liu Y H, Luo C R, Zhao X P 2007 Acta Phys. Sin. 56 5883 (inChinese) [刘亚红, 罗春荣, 赵晓鹏 2007 56 5883]
[15] Zhou J F, Zhang L, Tuttle G, Koschny T, Soukoulis C M 2006Phys. Rev. B 73 041101
[16] Zhang S, Qu S B, Ma H, Xie F, Xu Z 2009 Acta Phys. Sin. 583961 (in Chinese) [张松, 屈绍波, 马华, 谢峰, 徐卓 2009 58 3961]
[17] Mary A, Rodrigo S G, Garcia-Vidal F J, Martin-Moreno L 2008Phys. Rev. Lett. 101 103902
[18] Menzel C, Paul T, Rockstuhl C, Pertsch T, Tretyakov S, Lederer F2010 Phys. Rev. B 81 035320
[19] Wang H X, Lü Y H, Zhang H X 2011 Acta Phys. Sin. 60 034101(in Chinese) [王海侠, 吕英华, 张洪欣 2011 60 034101]
[20] Ziolkowski R W 2003 IEEE Trans. Ante. Prop. 51 1516
计量
- 文章访问数: 6917
- PDF下载量: 874
- 被引次数: 0