-
本文介绍了转角双层石墨烯和多层石墨烯中的电子结构、拓扑性质以及轨道磁性. 在转角双层石墨烯中, 由于两层石墨烯之间的相对旋转会形成具有长周期的摩尔条纹. 由转角产生的摩尔势场会在摩尔超元胞中产生方向相反的赝磁场, 与两层的石墨烯中的狄拉克电子耦合, 从而产生赝朗道能级. 而魔角石墨烯中的每个谷和自旋自由度的两条平带就等价于两个具有相反陈数的零赝朗道能级. 这样的赝朗道能级表示可以很自然地解释一系列“魔角”的来源, 也对理解魔角双层石墨烯中观测到的关联绝缘态和量子反常霍尔效应具有重要意义. 本文进一步讨论了转角多层石墨烯, 并发现转角多层石墨烯体系中普遍存在具有非平庸拓扑性质的平带. 这些拓扑平带通常具有非零的谷陈数, 并且在一定近似下可以由一个普适的规律描述. 本文还讨论了转角石墨烯体系中的拓扑平带所具有的轨道磁性. 如果时间反演对称性自发破缺, 转角石墨烯体系会处于一个谷极化的基态. 这样的谷极化基态是一个在摩尔尺度上的轨道磁性态, 在摩尔超胞中具有纳米尺度的环状电流分布. 之前的理论提出在转角双层石墨烯体系中观测到的关联绝缘态的本质就是一种净磁矩为零的“摩尔轨道反铁磁态”. 当体系的
$C_{2z}$ 对称性被氮化硼衬底破坏时, 转角石墨烯中的谷极化基态则变成了一种“摩尔轨道铁磁态”, 它不仅具有(量子)反常霍尔效应, 也具有新奇的磁光效应和非线性光学响应.We review and discuss the electronic structures, topological properties and orbital magnetism in twisted bilayer (TBG) and multilayer graphene systems. Moiré pattern is formed in twisted bilayer graphene due to the mutual twist of the two graphene layers. The moiré potential induced by the twist can generate opposite pseudo magnetic fields in the Moiré supercell, which are coupled with the Dirac fermions and generate two sets of pseudo Landau levels with opposite Chern numbers$\pm1$ . The two flat bands for each valley each spin of TBG are equivalent to the two zeroth pseudo Landau levels with opposite Chern numbers and opposite sublattice polarizations. Such a pseudo-Landau-level representation has significant implications on the quantum anomalous Hall states observed at integer fillings of the flat bands in TBG at the magic angle. The origin of the magic angle can also be naturally explained by using the pseudo-Landau-level picture. We further discuss twisted multilayer graphene systems, and show that topological flat bands generally exist in the twisted multilayer graphene systems. These topological flat bands have nonzero valley Chern numbers, which can be described by a succinct formula under certain approxmations. These topological flat bands in twisted bilayer and multilayer graphene systems are associated with orbital magnetism. A valley polarized state in the twist graphene system is an orbital magnetic state with nontrivial current-loop pattern in the moiré supercell. The experimentally observed correlated insulating states at$\pm 1/2$ fillings and at charge neutrality point of magic-angle TBG can be valley polarized states, which are associated with compensating current loops and induce staggered orbital magnetizations on the moiré length scale. If$C_{2z}$ symmetry is broken due to the alignment of hexagonal boron nitride substrate, then a valley-polarized ground state would be a moiré orbital ferromagnetic state, which exhibits not only (quantum) anomalous Hall effect, but also novel magneto-optical and nonlinear optical responses.-
Keywords:
- twisted graphene systems /
- band topology /
- orbital magnetism
[1] Lopes dos Santos J M B, Peres N M R, Castro Neto A H 2007 Phys. Rev. Lett. 99 256802
Google Scholar
[2] Mele E J 2010 Phys. Rev. B 81 161405
Google Scholar
[3] Trambly de Laissardiere G, Mayou D, Magaud L 2010 Nano Lett. 10 804
Google Scholar
[4] Bistritzer R, MacDonald A H 2011 Proc. Natl. Acad. Sci. 108 12233
Google Scholar
[5] Lopes dos Santos J M B, Peres N M R, Castro Neto A H 2012 Phys. Rev. B 86 155449
Google Scholar
[6] San-Jose P, González J, Guinea F 2012 Phys. Rev. Lett. 108 216802
Google Scholar
[7] Cao Y, Fatemi V, Demir A, et al. 2018 Nature 556 80
Google Scholar
[8] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43
Google Scholar
[9] Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059
Google Scholar
[10] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605
Google Scholar
[11] Serlin M, Tschirhart C, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A 2019 Science 367 900
[12] Stepanov P, Das I, Lu X, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H, Lischner J, Levitov L, Efetov D K 2019 arXiv preprint arXiv: 1911.09198
[13] Po H C, Zou L, Vishwanath A, Senthil T 2018 Phys. Rev. X 8 031089
[14] Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K, Fu L 2018 Phys. Rev. X 8 031087
[15] Kang J, Vafek O 2018 Phys. Rev. X 8 031088
[16] Isobe H, Yuan N F Q, Fu L 2018 Phys. Rev. X 8 041041
[17] Xu X Y, Law K T, Lee P A 2018 Phys. Rev. B 98 121406
Google Scholar
[18] Huang T, Zhang L, Ma T 2019 Sci. Bull. 64 310
Google Scholar
[19] Liu C C, Zhang L D, Chen W Q, Yang F 2018 Phys. Rev. Lett. 121 217001
Google Scholar
[20] Rademaker L, Mellado P 2018 Phys. Rev. B 98 235158
Google Scholar
[21] Venderbos J W F, Fernandes R M 2018 Phys. Rev. B 98 245103
Google Scholar
[22] Kang J, Vafek O 2019 Phys. Rev. Lett. 122 246401
Google Scholar
[23] Xie M, MacDonald A H 2020 Phys. Rev. Lett. 124 097601
Google Scholar
[24] Jian C M, Xu C 2018 arXiv preprint arXiv: 1810.03610
[25] Bultinck N, Chatterjee S, Zaletel M P 2020 Phys. Rev. Lett. 124 166601
Google Scholar
[26] Zhang Y H, Mao D, Senthil T 2019 Phys. Rev. Res. 1 033126
Google Scholar
[27] Liu S, Khalaf E, Lee J Y, Vishwanath A 2019 arXiv preprint arXiv: 1905.07409
[28] Wu F, Das Sarma S 2020 Phys. Rev. Lett. 124 046403
Google Scholar
[29] Chatterjee S, Bultinck N, Zaletel M P 2020 Phys. Rev. B 101 165141
Google Scholar
[30] Alavirad Y, Sau J D 2019 arXiv preprint arXiv: 1907.13633
[31] Cécile R, Dong Z H, Zhang Y H, Senthil T 2020 Phys. Rev. Lett. 124 187601
Google Scholar
[32] Bultinck N, Khalaf E, Liu S, Chatterjee S, Vishwanath A, Zaletel M P 2019 arXiv preprent, arXiv: 1911.02045
[33] Angeli M, Tosatti E, Fabrizio M 2019 Phys. Rev. X 9 041010
[34] Zhang Y, Jiang K, Wang Z, Zhang F 2020 arXiv preprint arXiv: 2001.02476
[35] Lu C, Zhang Y, Zhang Y, Zhang M, Liu C C, Gu Z C, Chen W Q, Yang F 2020 arXiv preprint arXiv: 2003.09513
[36] Po H C, Zou L, Senthil T, Vishwanath A 2019 Phys. Rev. B 99 195455
Google Scholar
[37] Song Z, Wang Z, Shi W, Li G, Fang C, Bernevig B A 2019 Phys. Rev. Lett. 123 036401
Google Scholar
[38] Yuan N F Q, Fu L 2018 Phys. Rev. B 98 045103
Google Scholar
[39] Zou L, Po H C, Vishwanath A, Senthil T 2018 Phys. Rev. B 98 085435
Google Scholar
[40] Liu J, Dai X 2019 arXiv preprint arXiv: 1911.03760
[41] Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V, Zhang G 2020 Nat. Phys. 16 520
Google Scholar
[42] Liu X, Hao Z, Khalaf E, Lee J Y, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2019 arXiv preprint arXiv: 1903.08130
[43] Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2020 Nature 583 215
Google Scholar
[44] Chen G, Sharpe A L, Fox E J, et al. 2020 Nature 579 56
Google Scholar
[45] Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Jung J, Shi Z, GoldhaberGordon D, Zhang Y, Wang F 2019 Nature 572 215
Google Scholar
[46] Chen G, Jiang L, Wu S, et al. 2019 Nat. Phys. 15 237
Google Scholar
[47] Zhang Y H, Mao D, Cao Y, Jarillo-Herrero P, Senthil T 2019 Phys. Rev. B 99 075127
Google Scholar
[48] Liu J, Ma Z, Gao J, Dai X 2019 Phys. Rev. X 9 031021
[49] Lee J Y, Khalaf E, Liu S, Liu X, Hao Z, Kim P, Vishwanath A 2019 Nat. Commun. 10 5333
Google Scholar
[50] Chebrolu N R, Chittari B L, Jung J 2019 Phys. Rev. B 99 235417
Google Scholar
[51] Cea T, Walet N R, Guinea F 2019 Nano Lett. 19 8683
Google Scholar
[52] Koshino M 2019 Phys. Rev. B 99 235406
Google Scholar
[53] Ma Z, Li S, Zheng Y W, Xiao M M, Jiang H, Gao J H, Xie X 2019 arXiv preprint arXiv: 1905.00622
[54] Haddadi F, Wu Q, Kruchkov A J, Yazyev O V 2020 Nano Lett. 20 2410
Google Scholar
[55] Li S Y, Zhang Y, Ren Y N, Liu J, Dai X, He L 2019 arXiv preprint arXiv: 1912.13133
[56] Liu J, Dai X 2020 npj Comput. Mater. 6 57
Google Scholar
[57] de Gail R, Goerbig M O, Guinea F, Montambaux G, Castro Neto A H 2011 Phys. Rev. B 84 045436
Google Scholar
[58] Uchida K, Furuya S, Iwata J I, Oshiyama A 2014 Phys. Rev. B 90 155451
Google Scholar
[59] Liu J, Liu J, Dai X 2019 Phys. Rev. B 99 155415
Google Scholar
[60] Jung J, Raoux A, Qiao Z, MacDonald A H 2014 Phys. Rev. B 89 205414
Google Scholar
[61] Moon P, Koshino M 2014 Phys. Rev. B 90 155406
Google Scholar
[62] Zhang Y H, Mao D, Senthil T 2019 arXiv preprint arXiv: 1901.08209
[63] Ahn J, Park S, Yang B J 2019 Phys. Rev. X 9 021013
[64] Yu R, Qi X L, Bernevig A, Fang Z, Dai X 2011 Phys. Rev. B 84 075119
Google Scholar
[65] Soluyanov A A, Vanderbilt D 2011 Phys. Rev. B 83 235401
Google Scholar
[66] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802
Google Scholar
[67] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801
Google Scholar
[68] Fu L, Kane C L 2007 Phys. Rev. B 76 045302
Google Scholar
[69] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
Google Scholar
[70] Zhang Y H, Senthil T 2019 Phys. Rev. B 99 205150
Google Scholar
[71] Chittari B L, Chen G, Zhang Y, Wang F, Jung J 2019 Phys. Rev. Lett. 122 016401
Google Scholar
[72] McCann E, Koshino M 2013 Rep. Prog. Phys. 76 056503
Google Scholar
[73] Thonhauser T, Ceresoli D, Vanderbilt D, Resta R 2005 Phys. Rev. Lett. 95 137205
Google Scholar
[74] Ceresoli D, Thonhauser T, Vanderbilt D, Resta R 2006 Phys. Rev. B 74 024408
Google Scholar
[75] Shi J, Vignale G, Xiao D, Niu Q 2007 Phys. Rev. Lett. 99 197202
Google Scholar
[76] Choi Y, Kemmer J, Peng Y, et al. 2019 Nat. Phys. 15 1174
Google Scholar
[77] Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J, Andrei E Y 2019 Nature 573 91
Google Scholar
[78] Nagaosa N, Sinova J, Onoda S, MacDonald A, Ong N 2010 Rev. Mod. Phys. 82 1539
Google Scholar
[79] Fukumura T, Toyosaki H, Ueno K, Nakano M, Yamasaki T, Kawasaki M 2007 Jpn. J. Appl. Phys. 46 L642
Google Scholar
[80] Sarma S D, Pinczuk A 2008 Perspectives in Quantum Hall Effects: Novel Quantum Liquids in Low-dimensional Semiconductor Structures (Hoboken: John Wiley & Sons)
[81] Wu F, Lovorn T, Tutuc E, Martin I, MacDonald A H 2019 Phys. Rev. Lett. 122 086402
Google Scholar
[82] Wu F, Lovorn T, Tutuc E, MacDonald A H 2018 Phys. Rev. Lett. 121 026402
Google Scholar
[83] Wang L, Shih E M, Ghiotto A, et al. 2019 arXiv preprint arXiv: 1910.12147
[84] Regan E C, Wang D, Jin C, et al. 2020 Nature 579 359
Google Scholar
[85] An L, Cai X, Huang M, Wu Z, Lin J, Ying Z, Ye Z, Feng X, Wang N 2019 arXiv preprint arXiv: 1907.03966
[86] Zhang Y, Yuan N F, Fu L 2019 arXiv preprint arXiv: 1910.14061
[87] Lian B, Liu Z, Zhang Y, Wang J 2020 Phys. Rev. Lett. 124 126402
Google Scholar
[88] Hejazi K, Luo Z X, Balents L 2020 Proc. Natl. Acad. Sci. 117 10721
Google Scholar
-
图 1 (a)转角双层石墨烯的摩尔条纹示意图, 插图展示两层石墨烯在不同区域层间距离的褶皱起伏; (b) 转角双层-双层石墨烯体系的示意图; (c)转角石墨烯体系的摩尔布里渊区示意图
Fig. 1. (a) Schematic illustration of the moiré pattern in twisted bilayer graphene, the inserted shows the wrinkles of the graphene for different layer distances; (b) schematic illustration of twisted double bilayer graphene system; (c) moiré Brillouin zone of twisted graphene systems.
图 3 (a) 转角双层-双层石墨烯在
$1.24 ^{\circ}$ 时的能带; (b) AB-AB堆垛的转角双层-双层石墨烯在$1.24 ^{\circ}$ 时K谷第一个导带陈数随转角$\theta$ 和垂直偏压$U_{\rm{d}}$ 的变化Fig. 3. (a) Band structures of twisted double bilayer graphene at
$\theta=1.24^{\circ}$ ; (b) the Chern number of the first conduction band for the K valley of AB-AB stacked twist-ed double bilayer graphene vs. the twist angle$\theta$ and vertical potential drop$U_{\rm{d}}$ .图 4 魔角双层石墨烯平带对应的实空间电流密度分布 (a) K谷,
$\varDelta_{\rm M}=0$ ; (b)$K'$ 谷,$\varDelta_{\rm M}=0$ ; (c) K谷,$\varDelta_{\rm M}=15\, {\rm{meV}}$ ; (d)$K'$ 谷,$\varDelta_{\rm M}=15\, {\rm{meV}}$ , 图中黑色箭头代表电流方向, 颜色编码表示电流诱导的磁场强度, 单位为TFig. 4. Real-space current-density distribution contributed by the flat bands of magic-angle twisted bilayer graphene: (a) K valley,
$\varDelta_{\rm M}=0$ ; (b)$K'$ valley,$\varDelta_{\rm M}=0$ ; (c) K valley,$\varDelta_{\rm M}=15\, {\rm{meV}}$ ; (d)$K'$ valley,$\varDelta_{\rm M}=15\, {\rm{meV}}$ . The black arrows indicate the dire-ctions of the current density, and the color coding indicates the magnetic field induced by the current in unites of Tesla.图 5 (a)转角双层石墨烯在魔角时K谷平带贡献的轨道磁矩(
$M_ {\rm {orb}}$ )随化学势 ($\varepsilon_{\rm{F}}$ )的变化; (b)转角双层-双层石墨烯在$\theta=1.24^ {\circ}$ 时K谷平带贡献的轨道磁矩随化学势的变化Fig. 5. (a) The orbital magnetization contributed by the flat bands of the K valley of twisted bilayer graphene at the magic angle; (b) the orbital magnetization contributed by the flat bands of K valley for twisted double bilayer graphene at
$\theta=1.24^{\circ}$ .表 1 由赝朗道能级图像推算出的魔角
Table 1. Magic angles derived from the pseudo Landau-level picture.
-
[1] Lopes dos Santos J M B, Peres N M R, Castro Neto A H 2007 Phys. Rev. Lett. 99 256802
Google Scholar
[2] Mele E J 2010 Phys. Rev. B 81 161405
Google Scholar
[3] Trambly de Laissardiere G, Mayou D, Magaud L 2010 Nano Lett. 10 804
Google Scholar
[4] Bistritzer R, MacDonald A H 2011 Proc. Natl. Acad. Sci. 108 12233
Google Scholar
[5] Lopes dos Santos J M B, Peres N M R, Castro Neto A H 2012 Phys. Rev. B 86 155449
Google Scholar
[6] San-Jose P, González J, Guinea F 2012 Phys. Rev. Lett. 108 216802
Google Scholar
[7] Cao Y, Fatemi V, Demir A, et al. 2018 Nature 556 80
Google Scholar
[8] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43
Google Scholar
[9] Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059
Google Scholar
[10] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605
Google Scholar
[11] Serlin M, Tschirhart C, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A 2019 Science 367 900
[12] Stepanov P, Das I, Lu X, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H, Lischner J, Levitov L, Efetov D K 2019 arXiv preprint arXiv: 1911.09198
[13] Po H C, Zou L, Vishwanath A, Senthil T 2018 Phys. Rev. X 8 031089
[14] Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K, Fu L 2018 Phys. Rev. X 8 031087
[15] Kang J, Vafek O 2018 Phys. Rev. X 8 031088
[16] Isobe H, Yuan N F Q, Fu L 2018 Phys. Rev. X 8 041041
[17] Xu X Y, Law K T, Lee P A 2018 Phys. Rev. B 98 121406
Google Scholar
[18] Huang T, Zhang L, Ma T 2019 Sci. Bull. 64 310
Google Scholar
[19] Liu C C, Zhang L D, Chen W Q, Yang F 2018 Phys. Rev. Lett. 121 217001
Google Scholar
[20] Rademaker L, Mellado P 2018 Phys. Rev. B 98 235158
Google Scholar
[21] Venderbos J W F, Fernandes R M 2018 Phys. Rev. B 98 245103
Google Scholar
[22] Kang J, Vafek O 2019 Phys. Rev. Lett. 122 246401
Google Scholar
[23] Xie M, MacDonald A H 2020 Phys. Rev. Lett. 124 097601
Google Scholar
[24] Jian C M, Xu C 2018 arXiv preprint arXiv: 1810.03610
[25] Bultinck N, Chatterjee S, Zaletel M P 2020 Phys. Rev. Lett. 124 166601
Google Scholar
[26] Zhang Y H, Mao D, Senthil T 2019 Phys. Rev. Res. 1 033126
Google Scholar
[27] Liu S, Khalaf E, Lee J Y, Vishwanath A 2019 arXiv preprint arXiv: 1905.07409
[28] Wu F, Das Sarma S 2020 Phys. Rev. Lett. 124 046403
Google Scholar
[29] Chatterjee S, Bultinck N, Zaletel M P 2020 Phys. Rev. B 101 165141
Google Scholar
[30] Alavirad Y, Sau J D 2019 arXiv preprint arXiv: 1907.13633
[31] Cécile R, Dong Z H, Zhang Y H, Senthil T 2020 Phys. Rev. Lett. 124 187601
Google Scholar
[32] Bultinck N, Khalaf E, Liu S, Chatterjee S, Vishwanath A, Zaletel M P 2019 arXiv preprent, arXiv: 1911.02045
[33] Angeli M, Tosatti E, Fabrizio M 2019 Phys. Rev. X 9 041010
[34] Zhang Y, Jiang K, Wang Z, Zhang F 2020 arXiv preprint arXiv: 2001.02476
[35] Lu C, Zhang Y, Zhang Y, Zhang M, Liu C C, Gu Z C, Chen W Q, Yang F 2020 arXiv preprint arXiv: 2003.09513
[36] Po H C, Zou L, Senthil T, Vishwanath A 2019 Phys. Rev. B 99 195455
Google Scholar
[37] Song Z, Wang Z, Shi W, Li G, Fang C, Bernevig B A 2019 Phys. Rev. Lett. 123 036401
Google Scholar
[38] Yuan N F Q, Fu L 2018 Phys. Rev. B 98 045103
Google Scholar
[39] Zou L, Po H C, Vishwanath A, Senthil T 2018 Phys. Rev. B 98 085435
Google Scholar
[40] Liu J, Dai X 2019 arXiv preprint arXiv: 1911.03760
[41] Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V, Zhang G 2020 Nat. Phys. 16 520
Google Scholar
[42] Liu X, Hao Z, Khalaf E, Lee J Y, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2019 arXiv preprint arXiv: 1903.08130
[43] Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2020 Nature 583 215
Google Scholar
[44] Chen G, Sharpe A L, Fox E J, et al. 2020 Nature 579 56
Google Scholar
[45] Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Jung J, Shi Z, GoldhaberGordon D, Zhang Y, Wang F 2019 Nature 572 215
Google Scholar
[46] Chen G, Jiang L, Wu S, et al. 2019 Nat. Phys. 15 237
Google Scholar
[47] Zhang Y H, Mao D, Cao Y, Jarillo-Herrero P, Senthil T 2019 Phys. Rev. B 99 075127
Google Scholar
[48] Liu J, Ma Z, Gao J, Dai X 2019 Phys. Rev. X 9 031021
[49] Lee J Y, Khalaf E, Liu S, Liu X, Hao Z, Kim P, Vishwanath A 2019 Nat. Commun. 10 5333
Google Scholar
[50] Chebrolu N R, Chittari B L, Jung J 2019 Phys. Rev. B 99 235417
Google Scholar
[51] Cea T, Walet N R, Guinea F 2019 Nano Lett. 19 8683
Google Scholar
[52] Koshino M 2019 Phys. Rev. B 99 235406
Google Scholar
[53] Ma Z, Li S, Zheng Y W, Xiao M M, Jiang H, Gao J H, Xie X 2019 arXiv preprint arXiv: 1905.00622
[54] Haddadi F, Wu Q, Kruchkov A J, Yazyev O V 2020 Nano Lett. 20 2410
Google Scholar
[55] Li S Y, Zhang Y, Ren Y N, Liu J, Dai X, He L 2019 arXiv preprint arXiv: 1912.13133
[56] Liu J, Dai X 2020 npj Comput. Mater. 6 57
Google Scholar
[57] de Gail R, Goerbig M O, Guinea F, Montambaux G, Castro Neto A H 2011 Phys. Rev. B 84 045436
Google Scholar
[58] Uchida K, Furuya S, Iwata J I, Oshiyama A 2014 Phys. Rev. B 90 155451
Google Scholar
[59] Liu J, Liu J, Dai X 2019 Phys. Rev. B 99 155415
Google Scholar
[60] Jung J, Raoux A, Qiao Z, MacDonald A H 2014 Phys. Rev. B 89 205414
Google Scholar
[61] Moon P, Koshino M 2014 Phys. Rev. B 90 155406
Google Scholar
[62] Zhang Y H, Mao D, Senthil T 2019 arXiv preprint arXiv: 1901.08209
[63] Ahn J, Park S, Yang B J 2019 Phys. Rev. X 9 021013
[64] Yu R, Qi X L, Bernevig A, Fang Z, Dai X 2011 Phys. Rev. B 84 075119
Google Scholar
[65] Soluyanov A A, Vanderbilt D 2011 Phys. Rev. B 83 235401
Google Scholar
[66] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802
Google Scholar
[67] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801
Google Scholar
[68] Fu L, Kane C L 2007 Phys. Rev. B 76 045302
Google Scholar
[69] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
Google Scholar
[70] Zhang Y H, Senthil T 2019 Phys. Rev. B 99 205150
Google Scholar
[71] Chittari B L, Chen G, Zhang Y, Wang F, Jung J 2019 Phys. Rev. Lett. 122 016401
Google Scholar
[72] McCann E, Koshino M 2013 Rep. Prog. Phys. 76 056503
Google Scholar
[73] Thonhauser T, Ceresoli D, Vanderbilt D, Resta R 2005 Phys. Rev. Lett. 95 137205
Google Scholar
[74] Ceresoli D, Thonhauser T, Vanderbilt D, Resta R 2006 Phys. Rev. B 74 024408
Google Scholar
[75] Shi J, Vignale G, Xiao D, Niu Q 2007 Phys. Rev. Lett. 99 197202
Google Scholar
[76] Choi Y, Kemmer J, Peng Y, et al. 2019 Nat. Phys. 15 1174
Google Scholar
[77] Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J, Andrei E Y 2019 Nature 573 91
Google Scholar
[78] Nagaosa N, Sinova J, Onoda S, MacDonald A, Ong N 2010 Rev. Mod. Phys. 82 1539
Google Scholar
[79] Fukumura T, Toyosaki H, Ueno K, Nakano M, Yamasaki T, Kawasaki M 2007 Jpn. J. Appl. Phys. 46 L642
Google Scholar
[80] Sarma S D, Pinczuk A 2008 Perspectives in Quantum Hall Effects: Novel Quantum Liquids in Low-dimensional Semiconductor Structures (Hoboken: John Wiley & Sons)
[81] Wu F, Lovorn T, Tutuc E, Martin I, MacDonald A H 2019 Phys. Rev. Lett. 122 086402
Google Scholar
[82] Wu F, Lovorn T, Tutuc E, MacDonald A H 2018 Phys. Rev. Lett. 121 026402
Google Scholar
[83] Wang L, Shih E M, Ghiotto A, et al. 2019 arXiv preprint arXiv: 1910.12147
[84] Regan E C, Wang D, Jin C, et al. 2020 Nature 579 359
Google Scholar
[85] An L, Cai X, Huang M, Wu Z, Lin J, Ying Z, Ye Z, Feng X, Wang N 2019 arXiv preprint arXiv: 1907.03966
[86] Zhang Y, Yuan N F, Fu L 2019 arXiv preprint arXiv: 1910.14061
[87] Lian B, Liu Z, Zhang Y, Wang J 2020 Phys. Rev. Lett. 124 126402
Google Scholar
[88] Hejazi K, Luo Z X, Balents L 2020 Proc. Natl. Acad. Sci. 117 10721
Google Scholar
计量
- 文章访问数: 17858
- PDF下载量: 1464
- 被引次数: 0