搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转角石墨烯体系的拓扑特性和轨道磁性

刘健鹏 戴希

引用本文:
Citation:

转角石墨烯体系的拓扑特性和轨道磁性

刘健鹏, 戴希

Topological properties and orbital magnetism in twisted graphene systems

Liu Jian-Peng, Dai Xi
PDF
HTML
导出引用
  • 本文介绍了转角双层石墨烯和多层石墨烯中的电子结构、拓扑性质以及轨道磁性. 在转角双层石墨烯中, 由于两层石墨烯之间的相对旋转会形成具有长周期的摩尔条纹. 由转角产生的摩尔势场会在摩尔超元胞中产生方向相反的赝磁场, 与两层的石墨烯中的狄拉克电子耦合, 从而产生赝朗道能级. 而魔角石墨烯中的每个谷和自旋自由度的两条平带就等价于两个具有相反陈数的零赝朗道能级. 这样的赝朗道能级表示可以很自然地解释一系列“魔角”的来源, 也对理解魔角双层石墨烯中观测到的关联绝缘态和量子反常霍尔效应具有重要意义. 本文进一步讨论了转角多层石墨烯, 并发现转角多层石墨烯体系中普遍存在具有非平庸拓扑性质的平带. 这些拓扑平带通常具有非零的谷陈数, 并且在一定近似下可以由一个普适的规律描述. 本文还讨论了转角石墨烯体系中的拓扑平带所具有的轨道磁性. 如果时间反演对称性自发破缺, 转角石墨烯体系会处于一个谷极化的基态. 这样的谷极化基态是一个在摩尔尺度上的轨道磁性态, 在摩尔超胞中具有纳米尺度的环状电流分布. 之前的理论提出在转角双层石墨烯体系中观测到的关联绝缘态的本质就是一种净磁矩为零的“摩尔轨道反铁磁态”. 当体系的$C_{2z}$对称性被氮化硼衬底破坏时, 转角石墨烯中的谷极化基态则变成了一种“摩尔轨道铁磁态”, 它不仅具有(量子)反常霍尔效应, 也具有新奇的磁光效应和非线性光学响应.
    We review and discuss the electronic structures, topological properties and orbital magnetism in twisted bilayer (TBG) and multilayer graphene systems. Moiré pattern is formed in twisted bilayer graphene due to the mutual twist of the two graphene layers. The moiré potential induced by the twist can generate opposite pseudo magnetic fields in the Moiré supercell, which are coupled with the Dirac fermions and generate two sets of pseudo Landau levels with opposite Chern numbers $\pm1$. The two flat bands for each valley each spin of TBG are equivalent to the two zeroth pseudo Landau levels with opposite Chern numbers and opposite sublattice polarizations. Such a pseudo-Landau-level representation has significant implications on the quantum anomalous Hall states observed at integer fillings of the flat bands in TBG at the magic angle. The origin of the magic angle can also be naturally explained by using the pseudo-Landau-level picture. We further discuss twisted multilayer graphene systems, and show that topological flat bands generally exist in the twisted multilayer graphene systems. These topological flat bands have nonzero valley Chern numbers, which can be described by a succinct formula under certain approxmations. These topological flat bands in twisted bilayer and multilayer graphene systems are associated with orbital magnetism. A valley polarized state in the twist graphene system is an orbital magnetic state with nontrivial current-loop pattern in the moiré supercell. The experimentally observed correlated insulating states at $\pm 1/2$ fillings and at charge neutrality point of magic-angle TBG can be valley polarized states, which are associated with compensating current loops and induce staggered orbital magnetizations on the moiré length scale. If $C_{2z}$ symmetry is broken due to the alignment of hexagonal boron nitride substrate, then a valley-polarized ground state would be a moiré orbital ferromagnetic state, which exhibits not only (quantum) anomalous Hall effect, but also novel magneto-optical and nonlinear optical responses.
      通信作者: 刘健鹏, liujp@shanghaitech.edu.cn ; 戴希, daix@ust.hk
    • 基金项目: 香港研究资助局 (批准号: GRF16300918) 资助的课题
      Corresponding author: Liu Jian-Peng, liujp@shanghaitech.edu.cn ; Dai Xi, daix@ust.hk
    • Funds: Project supported by the Hong Kong Research Grants Council Project, China (Grant No. GRF16300918
    [1]

    Lopes dos Santos J M B, Peres N M R, Castro Neto A H 2007 Phys. Rev. Lett. 99 256802Google Scholar

    [2]

    Mele E J 2010 Phys. Rev. B 81 161405Google Scholar

    [3]

    Trambly de Laissardiere G, Mayou D, Magaud L 2010 Nano Lett. 10 804Google Scholar

    [4]

    Bistritzer R, MacDonald A H 2011 Proc. Natl. Acad. Sci. 108 12233Google Scholar

    [5]

    Lopes dos Santos J M B, Peres N M R, Castro Neto A H 2012 Phys. Rev. B 86 155449Google Scholar

    [6]

    San-Jose P, González J, Guinea F 2012 Phys. Rev. Lett. 108 216802Google Scholar

    [7]

    Cao Y, Fatemi V, Demir A, et al. 2018 Nature 556 80Google Scholar

    [8]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [9]

    Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059Google Scholar

    [10]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605Google Scholar

    [11]

    Serlin M, Tschirhart C, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A 2019 Science 367 900

    [12]

    Stepanov P, Das I, Lu X, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H, Lischner J, Levitov L, Efetov D K 2019 arXiv preprint arXiv: 1911.09198

    [13]

    Po H C, Zou L, Vishwanath A, Senthil T 2018 Phys. Rev. X 8 031089

    [14]

    Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K, Fu L 2018 Phys. Rev. X 8 031087

    [15]

    Kang J, Vafek O 2018 Phys. Rev. X 8 031088

    [16]

    Isobe H, Yuan N F Q, Fu L 2018 Phys. Rev. X 8 041041

    [17]

    Xu X Y, Law K T, Lee P A 2018 Phys. Rev. B 98 121406Google Scholar

    [18]

    Huang T, Zhang L, Ma T 2019 Sci. Bull. 64 310Google Scholar

    [19]

    Liu C C, Zhang L D, Chen W Q, Yang F 2018 Phys. Rev. Lett. 121 217001Google Scholar

    [20]

    Rademaker L, Mellado P 2018 Phys. Rev. B 98 235158Google Scholar

    [21]

    Venderbos J W F, Fernandes R M 2018 Phys. Rev. B 98 245103Google Scholar

    [22]

    Kang J, Vafek O 2019 Phys. Rev. Lett. 122 246401Google Scholar

    [23]

    Xie M, MacDonald A H 2020 Phys. Rev. Lett. 124 097601Google Scholar

    [24]

    Jian C M, Xu C 2018 arXiv preprint arXiv: 1810.03610

    [25]

    Bultinck N, Chatterjee S, Zaletel M P 2020 Phys. Rev. Lett. 124 166601Google Scholar

    [26]

    Zhang Y H, Mao D, Senthil T 2019 Phys. Rev. Res. 1 033126Google Scholar

    [27]

    Liu S, Khalaf E, Lee J Y, Vishwanath A 2019 arXiv preprint arXiv: 1905.07409

    [28]

    Wu F, Das Sarma S 2020 Phys. Rev. Lett. 124 046403Google Scholar

    [29]

    Chatterjee S, Bultinck N, Zaletel M P 2020 Phys. Rev. B 101 165141Google Scholar

    [30]

    Alavirad Y, Sau J D 2019 arXiv preprint arXiv: 1907.13633

    [31]

    Cécile R, Dong Z H, Zhang Y H, Senthil T 2020 Phys. Rev. Lett. 124 187601Google Scholar

    [32]

    Bultinck N, Khalaf E, Liu S, Chatterjee S, Vishwanath A, Zaletel M P 2019 arXiv preprent, arXiv: 1911.02045

    [33]

    Angeli M, Tosatti E, Fabrizio M 2019 Phys. Rev. X 9 041010

    [34]

    Zhang Y, Jiang K, Wang Z, Zhang F 2020 arXiv preprint arXiv: 2001.02476

    [35]

    Lu C, Zhang Y, Zhang Y, Zhang M, Liu C C, Gu Z C, Chen W Q, Yang F 2020 arXiv preprint arXiv: 2003.09513

    [36]

    Po H C, Zou L, Senthil T, Vishwanath A 2019 Phys. Rev. B 99 195455Google Scholar

    [37]

    Song Z, Wang Z, Shi W, Li G, Fang C, Bernevig B A 2019 Phys. Rev. Lett. 123 036401Google Scholar

    [38]

    Yuan N F Q, Fu L 2018 Phys. Rev. B 98 045103Google Scholar

    [39]

    Zou L, Po H C, Vishwanath A, Senthil T 2018 Phys. Rev. B 98 085435Google Scholar

    [40]

    Liu J, Dai X 2019 arXiv preprint arXiv: 1911.03760

    [41]

    Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V, Zhang G 2020 Nat. Phys. 16 520Google Scholar

    [42]

    Liu X, Hao Z, Khalaf E, Lee J Y, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2019 arXiv preprint arXiv: 1903.08130

    [43]

    Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2020 Nature 583 215Google Scholar

    [44]

    Chen G, Sharpe A L, Fox E J, et al. 2020 Nature 579 56Google Scholar

    [45]

    Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Jung J, Shi Z, GoldhaberGordon D, Zhang Y, Wang F 2019 Nature 572 215Google Scholar

    [46]

    Chen G, Jiang L, Wu S, et al. 2019 Nat. Phys. 15 237Google Scholar

    [47]

    Zhang Y H, Mao D, Cao Y, Jarillo-Herrero P, Senthil T 2019 Phys. Rev. B 99 075127Google Scholar

    [48]

    Liu J, Ma Z, Gao J, Dai X 2019 Phys. Rev. X 9 031021

    [49]

    Lee J Y, Khalaf E, Liu S, Liu X, Hao Z, Kim P, Vishwanath A 2019 Nat. Commun. 10 5333Google Scholar

    [50]

    Chebrolu N R, Chittari B L, Jung J 2019 Phys. Rev. B 99 235417Google Scholar

    [51]

    Cea T, Walet N R, Guinea F 2019 Nano Lett. 19 8683Google Scholar

    [52]

    Koshino M 2019 Phys. Rev. B 99 235406Google Scholar

    [53]

    Ma Z, Li S, Zheng Y W, Xiao M M, Jiang H, Gao J H, Xie X 2019 arXiv preprint arXiv: 1905.00622

    [54]

    Haddadi F, Wu Q, Kruchkov A J, Yazyev O V 2020 Nano Lett. 20 2410Google Scholar

    [55]

    Li S Y, Zhang Y, Ren Y N, Liu J, Dai X, He L 2019 arXiv preprint arXiv: 1912.13133

    [56]

    Liu J, Dai X 2020 npj Comput. Mater. 6 57Google Scholar

    [57]

    de Gail R, Goerbig M O, Guinea F, Montambaux G, Castro Neto A H 2011 Phys. Rev. B 84 045436Google Scholar

    [58]

    Uchida K, Furuya S, Iwata J I, Oshiyama A 2014 Phys. Rev. B 90 155451Google Scholar

    [59]

    Liu J, Liu J, Dai X 2019 Phys. Rev. B 99 155415Google Scholar

    [60]

    Jung J, Raoux A, Qiao Z, MacDonald A H 2014 Phys. Rev. B 89 205414Google Scholar

    [61]

    Moon P, Koshino M 2014 Phys. Rev. B 90 155406Google Scholar

    [62]

    Zhang Y H, Mao D, Senthil T 2019 arXiv preprint arXiv: 1901.08209

    [63]

    Ahn J, Park S, Yang B J 2019 Phys. Rev. X 9 021013

    [64]

    Yu R, Qi X L, Bernevig A, Fang Z, Dai X 2011 Phys. Rev. B 84 075119Google Scholar

    [65]

    Soluyanov A A, Vanderbilt D 2011 Phys. Rev. B 83 235401Google Scholar

    [66]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [67]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [68]

    Fu L, Kane C L 2007 Phys. Rev. B 76 045302Google Scholar

    [69]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [70]

    Zhang Y H, Senthil T 2019 Phys. Rev. B 99 205150Google Scholar

    [71]

    Chittari B L, Chen G, Zhang Y, Wang F, Jung J 2019 Phys. Rev. Lett. 122 016401Google Scholar

    [72]

    McCann E, Koshino M 2013 Rep. Prog. Phys. 76 056503Google Scholar

    [73]

    Thonhauser T, Ceresoli D, Vanderbilt D, Resta R 2005 Phys. Rev. Lett. 95 137205Google Scholar

    [74]

    Ceresoli D, Thonhauser T, Vanderbilt D, Resta R 2006 Phys. Rev. B 74 024408Google Scholar

    [75]

    Shi J, Vignale G, Xiao D, Niu Q 2007 Phys. Rev. Lett. 99 197202Google Scholar

    [76]

    Choi Y, Kemmer J, Peng Y, et al. 2019 Nat. Phys. 15 1174Google Scholar

    [77]

    Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J, Andrei E Y 2019 Nature 573 91Google Scholar

    [78]

    Nagaosa N, Sinova J, Onoda S, MacDonald A, Ong N 2010 Rev. Mod. Phys. 82 1539Google Scholar

    [79]

    Fukumura T, Toyosaki H, Ueno K, Nakano M, Yamasaki T, Kawasaki M 2007 Jpn. J. Appl. Phys. 46 L642Google Scholar

    [80]

    Sarma S D, Pinczuk A 2008 Perspectives in Quantum Hall Effects: Novel Quantum Liquids in Low-dimensional Semiconductor Structures (Hoboken: John Wiley & Sons)

    [81]

    Wu F, Lovorn T, Tutuc E, Martin I, MacDonald A H 2019 Phys. Rev. Lett. 122 086402Google Scholar

    [82]

    Wu F, Lovorn T, Tutuc E, MacDonald A H 2018 Phys. Rev. Lett. 121 026402Google Scholar

    [83]

    Wang L, Shih E M, Ghiotto A, et al. 2019 arXiv preprint arXiv: 1910.12147

    [84]

    Regan E C, Wang D, Jin C, et al. 2020 Nature 579 359Google Scholar

    [85]

    An L, Cai X, Huang M, Wu Z, Lin J, Ying Z, Ye Z, Feng X, Wang N 2019 arXiv preprint arXiv: 1907.03966

    [86]

    Zhang Y, Yuan N F, Fu L 2019 arXiv preprint arXiv: 1910.14061

    [87]

    Lian B, Liu Z, Zhang Y, Wang J 2020 Phys. Rev. Lett. 124 126402Google Scholar

    [88]

    Hejazi K, Luo Z X, Balents L 2020 Proc. Natl. Acad. Sci. 117 10721Google Scholar

  • 图 1  (a)转角双层石墨烯的摩尔条纹示意图, 插图展示两层石墨烯在不同区域层间距离的褶皱起伏; (b) 转角双层-双层石墨烯体系的示意图; (c)转角石墨烯体系的摩尔布里渊区示意图

    Fig. 1.  (a) Schematic illustration of the moiré pattern in twisted bilayer graphene, the inserted shows the wrinkles of the graphene for different layer distances; (b) schematic illustration of twisted double bilayer graphene system; (c) moiré Brillouin zone of twisted graphene systems.

    图 2  (a)转角双层石墨烯在魔角时的能带; (b)转角双层石墨烯中K谷两条平带的威尔逊圈 (以$2{\text{π}}$为单位)

    Fig. 2.  (a) Band structures of twisted bilayer graphene at the magic angle; (b)Wilson loops of the two flat bands from the K valley of twisted bilayer graphene (in $2{\text{π}}$).

    图 3  (a) 转角双层-双层石墨烯在$1.24 ^{\circ}$时的能带; (b) AB-AB堆垛的转角双层-双层石墨烯在$1.24 ^{\circ}$K谷第一个导带陈数随转角$\theta$和垂直偏压$U_{\rm{d}}$的变化

    Fig. 3.  (a) Band structures of twisted double bilayer graphene at $\theta=1.24^{\circ}$; (b) the Chern number of the first conduction band for the K valley of AB-AB stacked twist-ed double bilayer graphene vs. the twist angle $\theta$ and vertical potential drop $U_{\rm{d}}$.

    图 4  魔角双层石墨烯平带对应的实空间电流密度分布 (a) K谷, $\varDelta_{\rm M}=0$; (b) $K'$谷, $\varDelta_{\rm M}=0$; (c) K谷, $\varDelta_{\rm M}=15\, {\rm{meV}}$; (d) $K'$谷, $\varDelta_{\rm M}=15\, {\rm{meV}}$, 图中黑色箭头代表电流方向, 颜色编码表示电流诱导的磁场强度, 单位为T

    Fig. 4.  Real-space current-density distribution contributed by the flat bands of magic-angle twisted bilayer graphene: (a) K valley, $\varDelta_{\rm M}=0$; (b) $K'$ valley, $\varDelta_{\rm M}=0$; (c) K valley, $\varDelta_{\rm M}=15\, {\rm{meV}}$; (d) $K'$ valley, $\varDelta_{\rm M}=15\, {\rm{meV}}$. The black arrows indicate the dire-ctions of the current density, and the color coding indicates the magnetic field induced by the current in unites of Tesla.

    图 5  (a)转角双层石墨烯在魔角时K谷平带贡献的轨道磁矩($M_ {\rm {orb}}$)随化学势 ($\varepsilon_{\rm{F}}$)的变化; (b)转角双层-双层石墨烯在$\theta=1.24^ {\circ}$K谷平带贡献的轨道磁矩随化学势的变化

    Fig. 5.  (a) The orbital magnetization contributed by the flat bands of the K valley of twisted bilayer graphene at the magic angle; (b) the orbital magnetization contributed by the flat bands of K valley for twisted double bilayer graphene at $\theta=1.24^{\circ}$.

    表 1  由赝朗道能级图像推算出的魔角

    Table 1.  Magic angles derived from the pseudo Landau-level picture.

    n12345
    文献[4]1.05°0.50°0.35°0.24°0.20°
    (7)式1.05°0.52°0.35°0.26°0.21°
    下载: 导出CSV
    Baidu
  • [1]

    Lopes dos Santos J M B, Peres N M R, Castro Neto A H 2007 Phys. Rev. Lett. 99 256802Google Scholar

    [2]

    Mele E J 2010 Phys. Rev. B 81 161405Google Scholar

    [3]

    Trambly de Laissardiere G, Mayou D, Magaud L 2010 Nano Lett. 10 804Google Scholar

    [4]

    Bistritzer R, MacDonald A H 2011 Proc. Natl. Acad. Sci. 108 12233Google Scholar

    [5]

    Lopes dos Santos J M B, Peres N M R, Castro Neto A H 2012 Phys. Rev. B 86 155449Google Scholar

    [6]

    San-Jose P, González J, Guinea F 2012 Phys. Rev. Lett. 108 216802Google Scholar

    [7]

    Cao Y, Fatemi V, Demir A, et al. 2018 Nature 556 80Google Scholar

    [8]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [9]

    Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059Google Scholar

    [10]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605Google Scholar

    [11]

    Serlin M, Tschirhart C, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A 2019 Science 367 900

    [12]

    Stepanov P, Das I, Lu X, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H, Lischner J, Levitov L, Efetov D K 2019 arXiv preprint arXiv: 1911.09198

    [13]

    Po H C, Zou L, Vishwanath A, Senthil T 2018 Phys. Rev. X 8 031089

    [14]

    Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K, Fu L 2018 Phys. Rev. X 8 031087

    [15]

    Kang J, Vafek O 2018 Phys. Rev. X 8 031088

    [16]

    Isobe H, Yuan N F Q, Fu L 2018 Phys. Rev. X 8 041041

    [17]

    Xu X Y, Law K T, Lee P A 2018 Phys. Rev. B 98 121406Google Scholar

    [18]

    Huang T, Zhang L, Ma T 2019 Sci. Bull. 64 310Google Scholar

    [19]

    Liu C C, Zhang L D, Chen W Q, Yang F 2018 Phys. Rev. Lett. 121 217001Google Scholar

    [20]

    Rademaker L, Mellado P 2018 Phys. Rev. B 98 235158Google Scholar

    [21]

    Venderbos J W F, Fernandes R M 2018 Phys. Rev. B 98 245103Google Scholar

    [22]

    Kang J, Vafek O 2019 Phys. Rev. Lett. 122 246401Google Scholar

    [23]

    Xie M, MacDonald A H 2020 Phys. Rev. Lett. 124 097601Google Scholar

    [24]

    Jian C M, Xu C 2018 arXiv preprint arXiv: 1810.03610

    [25]

    Bultinck N, Chatterjee S, Zaletel M P 2020 Phys. Rev. Lett. 124 166601Google Scholar

    [26]

    Zhang Y H, Mao D, Senthil T 2019 Phys. Rev. Res. 1 033126Google Scholar

    [27]

    Liu S, Khalaf E, Lee J Y, Vishwanath A 2019 arXiv preprint arXiv: 1905.07409

    [28]

    Wu F, Das Sarma S 2020 Phys. Rev. Lett. 124 046403Google Scholar

    [29]

    Chatterjee S, Bultinck N, Zaletel M P 2020 Phys. Rev. B 101 165141Google Scholar

    [30]

    Alavirad Y, Sau J D 2019 arXiv preprint arXiv: 1907.13633

    [31]

    Cécile R, Dong Z H, Zhang Y H, Senthil T 2020 Phys. Rev. Lett. 124 187601Google Scholar

    [32]

    Bultinck N, Khalaf E, Liu S, Chatterjee S, Vishwanath A, Zaletel M P 2019 arXiv preprent, arXiv: 1911.02045

    [33]

    Angeli M, Tosatti E, Fabrizio M 2019 Phys. Rev. X 9 041010

    [34]

    Zhang Y, Jiang K, Wang Z, Zhang F 2020 arXiv preprint arXiv: 2001.02476

    [35]

    Lu C, Zhang Y, Zhang Y, Zhang M, Liu C C, Gu Z C, Chen W Q, Yang F 2020 arXiv preprint arXiv: 2003.09513

    [36]

    Po H C, Zou L, Senthil T, Vishwanath A 2019 Phys. Rev. B 99 195455Google Scholar

    [37]

    Song Z, Wang Z, Shi W, Li G, Fang C, Bernevig B A 2019 Phys. Rev. Lett. 123 036401Google Scholar

    [38]

    Yuan N F Q, Fu L 2018 Phys. Rev. B 98 045103Google Scholar

    [39]

    Zou L, Po H C, Vishwanath A, Senthil T 2018 Phys. Rev. B 98 085435Google Scholar

    [40]

    Liu J, Dai X 2019 arXiv preprint arXiv: 1911.03760

    [41]

    Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V, Zhang G 2020 Nat. Phys. 16 520Google Scholar

    [42]

    Liu X, Hao Z, Khalaf E, Lee J Y, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2019 arXiv preprint arXiv: 1903.08130

    [43]

    Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2020 Nature 583 215Google Scholar

    [44]

    Chen G, Sharpe A L, Fox E J, et al. 2020 Nature 579 56Google Scholar

    [45]

    Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Jung J, Shi Z, GoldhaberGordon D, Zhang Y, Wang F 2019 Nature 572 215Google Scholar

    [46]

    Chen G, Jiang L, Wu S, et al. 2019 Nat. Phys. 15 237Google Scholar

    [47]

    Zhang Y H, Mao D, Cao Y, Jarillo-Herrero P, Senthil T 2019 Phys. Rev. B 99 075127Google Scholar

    [48]

    Liu J, Ma Z, Gao J, Dai X 2019 Phys. Rev. X 9 031021

    [49]

    Lee J Y, Khalaf E, Liu S, Liu X, Hao Z, Kim P, Vishwanath A 2019 Nat. Commun. 10 5333Google Scholar

    [50]

    Chebrolu N R, Chittari B L, Jung J 2019 Phys. Rev. B 99 235417Google Scholar

    [51]

    Cea T, Walet N R, Guinea F 2019 Nano Lett. 19 8683Google Scholar

    [52]

    Koshino M 2019 Phys. Rev. B 99 235406Google Scholar

    [53]

    Ma Z, Li S, Zheng Y W, Xiao M M, Jiang H, Gao J H, Xie X 2019 arXiv preprint arXiv: 1905.00622

    [54]

    Haddadi F, Wu Q, Kruchkov A J, Yazyev O V 2020 Nano Lett. 20 2410Google Scholar

    [55]

    Li S Y, Zhang Y, Ren Y N, Liu J, Dai X, He L 2019 arXiv preprint arXiv: 1912.13133

    [56]

    Liu J, Dai X 2020 npj Comput. Mater. 6 57Google Scholar

    [57]

    de Gail R, Goerbig M O, Guinea F, Montambaux G, Castro Neto A H 2011 Phys. Rev. B 84 045436Google Scholar

    [58]

    Uchida K, Furuya S, Iwata J I, Oshiyama A 2014 Phys. Rev. B 90 155451Google Scholar

    [59]

    Liu J, Liu J, Dai X 2019 Phys. Rev. B 99 155415Google Scholar

    [60]

    Jung J, Raoux A, Qiao Z, MacDonald A H 2014 Phys. Rev. B 89 205414Google Scholar

    [61]

    Moon P, Koshino M 2014 Phys. Rev. B 90 155406Google Scholar

    [62]

    Zhang Y H, Mao D, Senthil T 2019 arXiv preprint arXiv: 1901.08209

    [63]

    Ahn J, Park S, Yang B J 2019 Phys. Rev. X 9 021013

    [64]

    Yu R, Qi X L, Bernevig A, Fang Z, Dai X 2011 Phys. Rev. B 84 075119Google Scholar

    [65]

    Soluyanov A A, Vanderbilt D 2011 Phys. Rev. B 83 235401Google Scholar

    [66]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [67]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [68]

    Fu L, Kane C L 2007 Phys. Rev. B 76 045302Google Scholar

    [69]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [70]

    Zhang Y H, Senthil T 2019 Phys. Rev. B 99 205150Google Scholar

    [71]

    Chittari B L, Chen G, Zhang Y, Wang F, Jung J 2019 Phys. Rev. Lett. 122 016401Google Scholar

    [72]

    McCann E, Koshino M 2013 Rep. Prog. Phys. 76 056503Google Scholar

    [73]

    Thonhauser T, Ceresoli D, Vanderbilt D, Resta R 2005 Phys. Rev. Lett. 95 137205Google Scholar

    [74]

    Ceresoli D, Thonhauser T, Vanderbilt D, Resta R 2006 Phys. Rev. B 74 024408Google Scholar

    [75]

    Shi J, Vignale G, Xiao D, Niu Q 2007 Phys. Rev. Lett. 99 197202Google Scholar

    [76]

    Choi Y, Kemmer J, Peng Y, et al. 2019 Nat. Phys. 15 1174Google Scholar

    [77]

    Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J, Andrei E Y 2019 Nature 573 91Google Scholar

    [78]

    Nagaosa N, Sinova J, Onoda S, MacDonald A, Ong N 2010 Rev. Mod. Phys. 82 1539Google Scholar

    [79]

    Fukumura T, Toyosaki H, Ueno K, Nakano M, Yamasaki T, Kawasaki M 2007 Jpn. J. Appl. Phys. 46 L642Google Scholar

    [80]

    Sarma S D, Pinczuk A 2008 Perspectives in Quantum Hall Effects: Novel Quantum Liquids in Low-dimensional Semiconductor Structures (Hoboken: John Wiley & Sons)

    [81]

    Wu F, Lovorn T, Tutuc E, Martin I, MacDonald A H 2019 Phys. Rev. Lett. 122 086402Google Scholar

    [82]

    Wu F, Lovorn T, Tutuc E, MacDonald A H 2018 Phys. Rev. Lett. 121 026402Google Scholar

    [83]

    Wang L, Shih E M, Ghiotto A, et al. 2019 arXiv preprint arXiv: 1910.12147

    [84]

    Regan E C, Wang D, Jin C, et al. 2020 Nature 579 359Google Scholar

    [85]

    An L, Cai X, Huang M, Wu Z, Lin J, Ying Z, Ye Z, Feng X, Wang N 2019 arXiv preprint arXiv: 1907.03966

    [86]

    Zhang Y, Yuan N F, Fu L 2019 arXiv preprint arXiv: 1910.14061

    [87]

    Lian B, Liu Z, Zhang Y, Wang J 2020 Phys. Rev. Lett. 124 126402Google Scholar

    [88]

    Hejazi K, Luo Z X, Balents L 2020 Proc. Natl. Acad. Sci. 117 10721Google Scholar

  • [1] 秦志杰, 张惠晴, 张广平, 任俊峰, 王传奎, 胡贵超, 邱帅. 通过边缘修饰在非磁性石墨烯基单分子结中引入自旋的理论研究.  , 2023, 72(13): 138504. doi: 10.7498/aps.72.20230267
    [2] 王欢, 何春娟, 徐升, 王义炎, 曾祥雨, 林浚发, 王小艳, 巩静, 马小平, 韩坤, 王乙婷, 夏天龙. 拓扑半金属及磁性拓扑材料的单晶生长.  , 2023, 72(3): 038103. doi: 10.7498/aps.72.20221574
    [3] 刘义俊, 陈以威, 朱雨剑, 黄焱, 安冬冬, 李庆鑫, 甘祺康, 朱旺, 宋珺威, 王开元, 魏凌楠, 宗其军, 刘硕涵, 李世伟, 刘芝, 张琪, 徐瑛海, 曹新宇, 杨奥, 王浩林, 杨冰, Andy Shen, 于葛亮, 王雷. 转角双层-双层石墨烯中同位旋极化的C = 4陈绝缘态.  , 2023, 72(14): 147303. doi: 10.7498/aps.72.20230497
    [4] 白占斌, 王锐, 周亚洲, 吴天如, 葛建雷, 李晶, 秦宇远, 费付聪, 曹路, 王学锋, 王欣然, 张帅, 孙力玲, 宋友, 宋凤麒. 石墨烯中选择性增强Kane-Mele型自旋-轨道相互作用.  , 2022, 71(6): 067202. doi: 10.7498/aps.71.20211815
    [5] 郑玉强, 王世勇. 低维石墨烯体系中的离域磁性.  , 2022, 71(18): 188101. doi: 10.7498/aps.71.20220895
    [6] 白占斌, 王锐, 周亚洲, Tianru Wu(吴天如), 葛建雷, 李晶, 秦宇远, 费付聪, 曹路, 王学锋, 王欣然, 张帅, 孙力玲, 宋友, 宋凤麒. 石墨烯中选择性增强Kane-Mele型自旋轨道相互作用.  , 2021, (): . doi: 10.7498/aps.70.20211815
    [7] 蔡潇潇, 罗国语, 李志强, 贺言. 转角双层石墨烯在应变下的光电导率.  , 2021, 70(18): 187301. doi: 10.7498/aps.70.20210110
    [8] 刘雨亭, 贺文宇, 刘军伟, 邵启明. 二维材料中贝里曲率诱导的磁性响应.  , 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [9] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理:第一原理计算.  , 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [10] 郗翔, 叶康平, 伍瑞新. 偏置磁场方向对磁性光子晶体能带结构的影响及其在构建拓扑边界态中的作用.  , 2020, 69(15): 154102. doi: 10.7498/aps.69.20200198
    [11] 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展.  , 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [12] 张华林, 孙琳, 王鼎. 含单排线缺陷锯齿型石墨烯纳米带的电磁性质.  , 2016, 65(1): 016101. doi: 10.7498/aps.65.016101
    [13] 陈东海, 杨谋, 段后建, 王瑞强. 自旋轨道耦合作用下石墨烯pn结的电子输运性质.  , 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [14] 徐雷, 戴振宏, 隋鹏飞, 王伟田, 孙玉明. 双空位掺杂氟化石墨烯的电子性质和磁性.  , 2014, 63(18): 186101. doi: 10.7498/aps.63.186101
    [15] 高潭华. 外来原子替代碳的氟化石墨烯的磁性和电子性质.  , 2014, 63(4): 046102. doi: 10.7498/aps.63.046102
    [16] 金峰, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带能带结构及透射特性的扭曲效应.  , 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [17] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响.  , 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [18] 高双红, 任兆玉, 郭平, 郑继明, 杜恭贺, 万丽娟, 郑琳琳. 石墨烯量子点的磁性及激发态性质.  , 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [19] 王雪梅, 刘红. 锯齿型石墨烯纳米带的能带研究.  , 2011, 60(4): 047102. doi: 10.7498/aps.60.047102
    [20] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性.  , 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
计量
  • 文章访问数:  16800
  • PDF下载量:  1407
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-07
  • 修回日期:  2020-06-19
  • 上网日期:  2020-07-10
  • 刊出日期:  2020-07-20

/

返回文章
返回
Baidu
map