搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双磁铁多稳态悬臂梁磁力及势能函数分析

孙帅令 冷永刚 张雨阳 苏徐昆 范胜波

引用本文:
Citation:

双磁铁多稳态悬臂梁磁力及势能函数分析

孙帅令, 冷永刚, 张雨阳, 苏徐昆, 范胜波

Analysis of magnetic force and potential energy function of multi-stable cantilever beam with two magnets

Sun Shuai-Ling, Leng Yong-Gang, Zhang Yu-Yang, Su Xu-Kun, Fan Sheng-Bo
PDF
HTML
导出引用
  • 以永磁铁构成的常规非线性多稳态悬臂梁系统, 若要增加稳态数目, 通常需引入更多的磁铁, 易使系统结构变复杂和参数增多. 本文利用矩形磁铁和环形磁铁的作用, 提出了一种双磁铁构成的多稳态悬臂梁系统. 通过矩形磁铁和环形磁铁之间磁力以及系统势函数的理论分析与实验检验, 证明这种双磁铁悬臂梁系统在不同的磁铁尺寸或磁铁间距下, 可以具有单稳、双稳、三稳和四稳的非线性特征, 为实现由永磁铁构成多稳态悬臂梁系统, 提供了有效简化的设计途径.
    Multi-stable structures are deformable structures that can have large deformations under external excitation. Generally, multi-stable structures have at least two stable points and can jump from one to another. Because multi-stable structures have excellent nonlinear characteristics, they are widely used in many fields. In the field of energy harvesting, multi-stable structures are often obtained by means of cantilever beams. This is because the cantilever beam is simple to make, low in stiffness, and high in sensitivity, and can undergo large deformations under small excitation forces. Besides, by simply sticking magnets on its free end and its outside, various kinds of multi-stable characteristics can be constructed, such as bi-stable characteristics, tri-stable characteristics, quad-stable characteristics, etc. Furthermore, the cantilever beam and the magnet at its end can generally be simplified into an equivalent mass-spring-damping mechanical model, which is convenient for the analysis of system potential function and dynamics.In recent years, many vibration energy harvesters proposed by researchers have adopted the conventional multi-stable cantilever beams, which involve many bi-stable cantilever beams and tri-stable cantilever beams. However, if the cantilever beams need to introduce more stable points, the number of magnets required will also increase accordingly. As a result, the adjustable parameters are continuously increasing, which increases the complexity of structural optimization and the tediousness of dynamic analysis. In order to make up for the shortcomings of conventional multi-stable cantilever beams, in this paper we present a multi-stable cantilever beam with only two magnets, a ring magnet and a rectangular magnet. By changing the size of the rectangular magnet and the distance between the two magnets, this cantilever beam can have mono-stable, bi-stable, tri-stable or quad-stable characteristics. This multi-stable cantilever beam greatly simplifies the complexity of the system design, dynamic analysis, debugging and installation, and provides new ideas and technical methods for the design and application of the vibration energy harvester realized by the multi-stable cantilever beam.In this paper, firstly, the magnetizing current method is used to analyze the magnetic induction intensity of the ring magnet at any point in the three-dimensional coordinate system, and the simulation and experimental results prove its correctness. Secondly, two methods of calculating the position of the rectangular magnet at the free end of the cantilever beam are compared. Thirdly, the magnetic force between the ring magnet and the rectangular magnet is calculated and verified in experiment. Fourthly, the system potential functions under different structural parameters are analyzed and it is found that the change of the number of the stable points of the system is caused by the change of the magnetic force between the two magnets. Finally, the correctness of the number of stable points of the system under different parameters is verified in experiment and by dynamic simulations.
      通信作者: 冷永刚, leng_yg@tju.edu.cn
    • 基金项目: 国家级-国家自然科学基金(51675370)
      Corresponding author: Leng Yong-Gang, leng_yg@tju.edu.cn
    [1]

    Daynes S, Weaver P M 2012 Smart Mater. Struct. 21 105019Google Scholar

    [2]

    Barbarino S, Bilgen O, Ajaj R M, Friswell M I, Inman D J 2011 J. Intel. Mat. Syst. Str. 22 823Google Scholar

    [3]

    姜伟红 2018 硕士学位论文(哈尔滨: 哈尔滨工业大学)

    Jiang W H 2018 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [4]

    Diaconu C G, Weaver P M, Mattioni F 2008 Thin Wall. Struct. 46 689Google Scholar

    [5]

    Daynes S, Nall S J, Weaver P M, Potter K D, Margaris P, Mellor P H 2010 J. Aircraft 47 334Google Scholar

    [6]

    沙山克·普利亚, 丹尼尔·茵曼(黄见秋, 黄庆安, 译) 2010 能量收集技术 (南京: 东南大学出版社) 第 1—4 页

    Priya S, Inman D J (Translated by Huang J Q, Huang Q A) 2010 Energy Harvesting Technologies (Nanjing: Southeast University Press) pp1–4 (in Chinese)

    [7]

    卢有为, 单小彪, 袁江波, 谢涛 2010 机械设计与制造 5 118Google Scholar

    Lu Y W, Shan X B, Yuan J B, Xie T 2010 Machinery Design & Manufacture 5 118Google Scholar

    [8]

    王治平, 刘俊标, 姜楠, 李博 2010 压电与声光 32 763

    Wang Z P, Liu J B, Jiang N, Li B 2010 Piezoelectrics & Acoustooptics 32 763

    [9]

    Challa V R, Prasad M G, Fisher F T 2009 Smart Mater. Struct. 18 095029Google Scholar

    [10]

    陈仲生, 杨拥民 2011 60 074301Google Scholar

    Chen Z S, Yang Y M 2011 Acta Phys. Sin. 60 074301Google Scholar

    [11]

    Podder P, Amann A, Roy S 2015 Sensor Actuat. A-Phys. 227 39Google Scholar

    [12]

    Gao Y J, Leng Y G, Fan S B, Lai Z H 2014 Smart Mater. Struct. 23 095003Google Scholar

    [13]

    Leng Y G, Tan D, Liu J J, Zhang Y Y, Fan S B 2017 J. Sound Vib. 406 146Google Scholar

    [14]

    Zhou S X, Cao J Y, Inman D J, Lin J, Liu S S, Wang Z Z 2014 Appl. Energy 133 33Google Scholar

    [15]

    Deng W, Wang Y 2017 Mech. Syst. Signal Pr. 85 591Google Scholar

    [16]

    Roundy S, Wright P K, Rabaey J 2003 Comput. Commun. 26 1131Google Scholar

    [17]

    DuToit N E, Wardle B L 2005 Integr. Ferroelectri. 45 1126

    [18]

    Roundy S, Wright P K 2004 Smart Mater. Struct. 13 1131Google Scholar

    [19]

    Agashe J S, Arnold D P 2008 J. Phys. D: Appl. Phys. 41 105001Google Scholar

    [20]

    张雨阳, 冷永刚, 谭丹, 刘进军, 范胜波 2017 66 220502Google Scholar

    Zhang Y Y, Leng Y G, Tan D, Liu J J, Fan S B 2017 Acta Phys. Sin. 66 220502Google Scholar

    [21]

    谭丹, 冷永刚, 范胜波, 高毓璣 2015 64 060502Google Scholar

    Tan D, Leng Y G, Fan S B, Gao Y J 2015 Acta Phys. Sin. 64 060502Google Scholar

    [22]

    Tan D, Leng Y G, Gao Y J 2015 Eur. Phys. J.: Spec. Top. 224 2839Google Scholar

  • 图 1  双磁铁多稳态悬臂梁 (a) 三稳状态; (b) 四稳状态

    Fig. 1.  Multi-stable cantilever beam with two magnets: (a) The state concluding three stable points; (b) the state concluding four stable points.

    图 2  空间坐标系及圆形实心磁铁的磁化电流示意图

    Fig. 2.  Schematic diagram of there-dimension coordinate system and magnetizing currents on the surface of the circular magnet.

    图 3  磁感应强度Bi, Bjx的变化关系 (a) Bix的变化, y = 6.0 mm; (b) Bjx的变化, y = 6.0 mm; (c) Bix的变化, y = 10.0 mm; (d) Bjx的变化, y = 10.0 mm

    Fig. 3.  The curves of Bi and Bj varying with x: (a) The curves of Bi varying with x, y = 6.0 mm; (b) the curves of Bj varying with x, y = 6.0 mm; (c) the curves of Bi varying with x, y = 10.0 mm; (d) the curves of Bj varying with x, y = 10.0 mm.

    图 4  磁感应强度测量系统 (a)Bi测量; (b)Bj测量

    Fig. 4.  Magnetic induction intensity measurement system: (a) The measurement of Bi; (b) the measurement of Bj.

    图 5  悬臂梁弯曲状态及其矩形磁铁的坐标位置

    Fig. 5.  The position of the rectangular magnet in coordinate system when the cantilever beam is bent.

    图 6  梁自由端磁铁位置的两种计算方法

    Fig. 6.  Two kinds of calculation of the position of the magnet at the free end of the beam.

    图 7  位移测量系统

    Fig. 7.  Displacement measuring device.

    图 8  矩形磁铁尺寸及磁化电流示意图

    Fig. 8.  Schematic diagram of the size of the rectangular magnet and the magnetizing currents on the surface of the rectangular magnet.

    图 9  Fi, FjxC的变化关系 (a) FixC的变化关系, d = 5.8 mm; (b)FjxC的变化关系, d = 5.8 mm; (c) FixC的变化关系, d = 8.0 mm; (d) FjxC的变化关系, d = 8.0 mm

    Fig. 9.  The curves of Fi and Fj varying with xC: (a) The curves of Fi varying with xC, d = 5.8 mm; (b) the curves of Fj varying with xC, d = 5.8 mm; (c) the curves of Fi varying with xC, d = 8.0 mm; (d) the curves of Fj varying with xC, d = 8.0 mm.

    图 10  磁力测量系统 (a) Fi 测量; (b) Fj测量

    Fig. 10.  Magnetic force measurement system: (a) The measurement of Fi; (b) the measurement of Fj.

    图 11  矩形磁铁(10 mm × 10 mm × 3 mm)与环形磁铁(40 mm (φ1) × 20 mm (φ2) × 3 mm)作用的系统势函数 (a)系统势函数三维图; (b)磁铁间距分别为d = 3 mm, d = 6 mm, d = 20 mm时系统势函数二维图

    Fig. 11.  The system potential function varying with d when the size of the rectangular magnet is 10 mm × 10 mm × 3 mm and the ring magnet is 40 mm (φ1) × 20 mm (φ2) × 3 mm: (a) Three dimensional diagram of system potential function; (b) two dimensional diagram of system potential function when d = 3 mm, d = 6 mm and d = 20 mm.

    图 12  系统势函数随d的变化  (a)矩形磁铁尺寸为 20 mm × 20 mm × 3 mm; (b) 矩形磁铁尺寸为 30 mm × 30 mm × 3 mm

    Fig. 12.  The system potential function varying with d: (a) The size of the rectangular magnet is 20 mm × 20 mm × 3 mm; (b) the size of the rectangular magnet is 30 mm × 30 mm × 3 mm.

    图 13  磁铁间距d = 6 mm, 不同矩形磁铁尺寸与环形磁铁(40 mm(φ1) × 20 mm(φ2) × 3 mm)作用的系统势函数 (a) 系统势函数三维图; (b) 矩形磁铁长度分别为lA = 3 mm, lA = 10 mm, lA = 20 mm, lA = 30 mm, lA = 45 mm时系统势函数二维图

    Fig. 13.  The system potential function varying with lA when d = 6 mm and the size of the ring magnet is 40 mm(φ1) × 20 mm(φ2) × 3 mm: (a) Three dimensional diagram of system potential function; (b) two dimensional diagram of system potential function when lA = 3 mm, lA = 10 mm, lA = 20 mm, lA = 30 mm and lA = 45 mm.

    图 14  (a) lA = 20 mm和lA = 30 mm时, W2W3xC的变化关系;(b) lA = 20 mm和lA = 30 mm时, FixC的变化

    Fig. 14.  (a) The curves of W2 and W3 varying with xC when lA = 20 mm and lA = 30 mm; (b) the curves of Fi varying with xC when lA = 20 mm and lA = 30 mm.

    图 15  三稳结构 (a)中稳态点; (b)上稳态点

    Fig. 15.  The structure concluding three stable points: (a) The middle state point; (b) the upper stable point.

    图 16  四稳结构 (a)上1稳态点; (b)上2稳态点

    Fig. 16.  The structure concluding four stable points: (a) The upper stable point 1; (b) the upper state point 2.

    图 17  三稳振动响应 (a)时域图; (b)相位图

    Fig. 17.  The vibration response of the tri-stable cantilever beam: (a) The time domain chart; (b) the phase chart.

    图 18  四稳振动响应 (a)时域图; (b)相位图

    Fig. 18.  The vibration response of the quad-stable cantilever beam: (a) The time domain chart; (b) the phase chart.

    表 1  悬臂梁、矩形磁铁、环形磁铁的材料和参数

    Table 1.  Materials and parameters of cantilever beam, rectangular magnet, and ring magnet.

    材料参数数值
    悬臂梁材料: 矽钢弹性模量EC/GPa200
    密度ρC/kg·m–37700
    长度lC/mm60
    宽度wC/mm10
    厚度tC/mm0.15
    矩形磁铁材料:
    Nd2Fe14B (牌号N35)
    密度ρA/kg·m–37500
    长度lA/mm10
    宽度wA/mm10
    厚度tA/mm3
    磁化强度MA/A·m–16 × 105
    环形磁铁材料:
    Nd2Fe14B (牌号N35)
    密度ρB/kg·m–37500
    厚度tB/mm3
    外环直径φ1/mm40
    内环直径φ2/mm20
    磁化强度MB/A·m–16 × 105
    真空磁导率μ0/N·A–24π × 10–7
    下载: 导出CSV

    表 2  实验器材及其型号

    Table 2.  Experimental equipments and models.

    实验器材型号
    高斯计BST100
    推拉式测力计HF-5
    激光位移传感器LK-G5001V
    下载: 导出CSV
    Baidu
  • [1]

    Daynes S, Weaver P M 2012 Smart Mater. Struct. 21 105019Google Scholar

    [2]

    Barbarino S, Bilgen O, Ajaj R M, Friswell M I, Inman D J 2011 J. Intel. Mat. Syst. Str. 22 823Google Scholar

    [3]

    姜伟红 2018 硕士学位论文(哈尔滨: 哈尔滨工业大学)

    Jiang W H 2018 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [4]

    Diaconu C G, Weaver P M, Mattioni F 2008 Thin Wall. Struct. 46 689Google Scholar

    [5]

    Daynes S, Nall S J, Weaver P M, Potter K D, Margaris P, Mellor P H 2010 J. Aircraft 47 334Google Scholar

    [6]

    沙山克·普利亚, 丹尼尔·茵曼(黄见秋, 黄庆安, 译) 2010 能量收集技术 (南京: 东南大学出版社) 第 1—4 页

    Priya S, Inman D J (Translated by Huang J Q, Huang Q A) 2010 Energy Harvesting Technologies (Nanjing: Southeast University Press) pp1–4 (in Chinese)

    [7]

    卢有为, 单小彪, 袁江波, 谢涛 2010 机械设计与制造 5 118Google Scholar

    Lu Y W, Shan X B, Yuan J B, Xie T 2010 Machinery Design & Manufacture 5 118Google Scholar

    [8]

    王治平, 刘俊标, 姜楠, 李博 2010 压电与声光 32 763

    Wang Z P, Liu J B, Jiang N, Li B 2010 Piezoelectrics & Acoustooptics 32 763

    [9]

    Challa V R, Prasad M G, Fisher F T 2009 Smart Mater. Struct. 18 095029Google Scholar

    [10]

    陈仲生, 杨拥民 2011 60 074301Google Scholar

    Chen Z S, Yang Y M 2011 Acta Phys. Sin. 60 074301Google Scholar

    [11]

    Podder P, Amann A, Roy S 2015 Sensor Actuat. A-Phys. 227 39Google Scholar

    [12]

    Gao Y J, Leng Y G, Fan S B, Lai Z H 2014 Smart Mater. Struct. 23 095003Google Scholar

    [13]

    Leng Y G, Tan D, Liu J J, Zhang Y Y, Fan S B 2017 J. Sound Vib. 406 146Google Scholar

    [14]

    Zhou S X, Cao J Y, Inman D J, Lin J, Liu S S, Wang Z Z 2014 Appl. Energy 133 33Google Scholar

    [15]

    Deng W, Wang Y 2017 Mech. Syst. Signal Pr. 85 591Google Scholar

    [16]

    Roundy S, Wright P K, Rabaey J 2003 Comput. Commun. 26 1131Google Scholar

    [17]

    DuToit N E, Wardle B L 2005 Integr. Ferroelectri. 45 1126

    [18]

    Roundy S, Wright P K 2004 Smart Mater. Struct. 13 1131Google Scholar

    [19]

    Agashe J S, Arnold D P 2008 J. Phys. D: Appl. Phys. 41 105001Google Scholar

    [20]

    张雨阳, 冷永刚, 谭丹, 刘进军, 范胜波 2017 66 220502Google Scholar

    Zhang Y Y, Leng Y G, Tan D, Liu J J, Fan S B 2017 Acta Phys. Sin. 66 220502Google Scholar

    [21]

    谭丹, 冷永刚, 范胜波, 高毓璣 2015 64 060502Google Scholar

    Tan D, Leng Y G, Fan S B, Gao Y J 2015 Acta Phys. Sin. 64 060502Google Scholar

    [22]

    Tan D, Leng Y G, Gao Y J 2015 Eur. Phys. J.: Spec. Top. 224 2839Google Scholar

  • [1] 欧阳鑫健, 张岩星, 王之龙, 张锋, 陈韦嘉, 庄园, 揭晓, 刘来君, 王大威. 面向铁电相变的机器学习: 基于图卷积神经网络的分子动力学模拟.  , 2024, 73(8): 086301. doi: 10.7498/aps.73.20240156
    [2] 王鹏举, 范俊宇, 苏艳, 赵纪军. 基于机器学习构建的环三亚甲基三硝胺晶体势.  , 2020, 69(23): 238702. doi: 10.7498/aps.69.20200690
    [3] 吴娟娟, 冷永刚, 乔海, 刘进军, 张雨阳. 窄带随机激励双稳压电悬臂梁响应机制与能量采集研究.  , 2018, 67(21): 210502. doi: 10.7498/aps.67.20180072
    [4] 张雨阳, 冷永刚, 谭丹, 刘进军, 范胜波. 基于磁化电流法的双稳压电悬臂梁磁力精确分析.  , 2017, 66(22): 220502. doi: 10.7498/aps.66.220502
    [5] 杜超凡, 章定国. 基于无网格点插值法的旋转悬臂梁的动力学分析.  , 2015, 64(3): 034501. doi: 10.7498/aps.64.034501
    [6] 谭丹, 冷永刚, 范胜波, 高毓璣. 外加磁场压电悬臂梁能量采集系统的磁化电流法磁力研究.  , 2015, 64(6): 060502. doi: 10.7498/aps.64.060502
    [7] 范纪华, 章定国. 旋转柔性悬臂梁动力学的Bezier插值离散方法研究.  , 2014, 63(15): 154501. doi: 10.7498/aps.63.154501
    [8] 高毓璣, 冷永刚, 范胜波, 赖志慧. 弹性支撑双稳压电悬臂梁振动响应及能量采集研究.  , 2014, 63(9): 090501. doi: 10.7498/aps.63.090501
    [9] 葛伟宽, 薛纭, 楼智美. 完整力学系统的广义梯度表示.  , 2014, 63(11): 110202. doi: 10.7498/aps.63.110202
    [10] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯热导率的分子动力学模拟.  , 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [11] 方建士, 章定国. 旋转内接悬臂梁的刚柔耦合动力学特性分析.  , 2013, 62(4): 044501. doi: 10.7498/aps.62.044501
    [12] 周耐根, 胡秋发, 许文祥, 李克, 周浪. 硅熔化特性的分子动力学模拟–-不同势函数的对比研究.  , 2013, 62(14): 146401. doi: 10.7498/aps.62.146401
    [13] 周耐根, 洪涛, 周浪. MEAM势与Tersoff势比较研究碳化硅熔化与凝固行为.  , 2012, 61(2): 028101. doi: 10.7498/aps.61.028101
    [14] 陈仲生, 杨拥民. 悬臂梁压电振子宽带低频振动能量俘获的随机共振机理研究.  , 2011, 60(7): 074301. doi: 10.7498/aps.60.074301
    [15] 陈育祥, 谢国锋, 马颖, 周益春. BaTiO3晶体结构及弹性的分子动力学模拟.  , 2009, 58(6): 4085-4089. doi: 10.7498/aps.58.4085
    [16] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响.  , 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [17] 孙久勋. 严格可解四参数双原子分子势函数.  , 1999, 48(11): 1992-1998. doi: 10.7498/aps.48.1992
    [18] 刘长清, 金柱京, 李美栓, 呼和吉夫, 吴维?. 悬臂梁弯曲法研究氮化钛薄膜临界开裂行为与损毁机理.  , 1992, 41(7): 1137-1142. doi: 10.7498/aps.41.1137
    [19] 唐敖庆, 陈世元. 分子内旋转的阻碍势函数.  , 1962, 18(3): 143-158. doi: 10.7498/aps.18.143
    [20] 胡海昌. 各向异性的悬臂梁负担均布载荷的弯曲问题.  , 1956, 12(4): 339-349. doi: 10.7498/aps.12.339
计量
  • 文章访问数:  8417
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-27
  • 修回日期:  2020-04-15
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-07-20

/

返回文章
返回
Baidu
map