搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlGaN/GaN高电子迁移率器件外部边缘电容的物理模型

刘乃漳 张雪冰 姚若河

引用本文:
Citation:

AlGaN/GaN高电子迁移率器件外部边缘电容的物理模型

刘乃漳, 张雪冰, 姚若河

The physics-based model of AlGaN/GaN high electron mobility transistor outer fringing capacitances

Liu Nai-Zhang, Zhang Xue-Bing, Yao Ruo-He
PDF
HTML
导出引用
  • AlGaN/GaN HEMT外部边缘电容Cofd是由栅极垂直侧壁与二维电子气水平壁之间的电场构成的等效电容. 本文基于保角映射法对Cofd进行物理建模, 考虑沟道长度调制效应, 研究外部偏置、阈值电压漂移和温度变化对Cofd的影响: 随着漏源偏压从零开始增加, Cofd先保持不变再开始衰减, 其衰减速率随栅源偏压的增加而减缓; AlGaN势垒层中施主杂质浓度的减小和Al组分的减小都可引起阈值电压的正向漂移, 正向阈值漂移会加强沟道长度调制效应对Cofd的影响, 导致Cofd呈线性衰减. 在大漏极偏压工作情况下, Cofd对器件工作温度的变化更加敏感.
    With the development of the application of AlGaN/GaN high electron mobility transistors in the radio frequency field, a capacitance model that can accurately describe the C-V characteristics of the device has become an important research topic. The gate capacitance of GaN HEMT can be divided into two parts: intrinsic capacitance and fringing capacitance related to two-dimensional electronic gas (2DEG) electrode. The fringing capacitance plays an important part in the switching device. The outer fringing capacitance Cofs/d dominates the fringing capacitance and is affected by the bias applied, especially the drain outer fringing capacitance Cofd. In order to establish the Cofd model which is related to the bias condition, the physics-based model of Cofd is established based on the conformal mapping, including the drain channel length variable. Since the drain channel length is related to the bias applied, the channel length modulation effect can be used to study how bias apllied effect the channel, and the relationship between Cofd and the bias condition is obtained. In addition, the threshold voltage variable is introduced when the channel length modulation effect is considered, and the threshold voltage drift caused by changes in the internal parameters and temperature of the device is studied using the threshold voltage variable in the model, and the relationship between Cofd and threshold voltage and temperature under different bias was obtained. It is found from the results of the study that as drain bias increases from zero, the channel length modulation effect keeps Cofd unchanged at lower drain bias. When the drain bias continues to increase, Cofd begins to decay again, and its decay rate slows down with the increase of gate bias. The decrease of donor impurity concentration and Al component in AlGaN barrier layer may increase the threshold voltage, which will strengthen the channel length modulation effect on Cofd, resulting in linear attenuation of Cofd. With the increasing of drain bias, the influence of threshold voltage shift on Cofd is enhanced, and the change of device operating temperature will enhance the threshold voltage shift and cause the deviation of Cofd. Moreover, with the continuous increase of drain bias, Cofd becomes more sensitive to the temperature variation.
      通信作者: 姚若河, phrhyao@scut.edu.cn
    • 基金项目: 国家级-国家重点研究计划(2018YFB1802100)
      Corresponding author: Yao Ruo-He, phrhyao@scut.edu.cn
    [1]

    Jones E A, Wang F F, Costinett D 2016 IEEE J. Emerg. Sel. Top. Power Electron. 4 707Google Scholar

    [2]

    王林, 胡伟达, 陈效双, 陆卫 2010 59 5730Google Scholar

    Wang L, Hu W D, Chen X S, Lu W 2010 Acta Phys. Sin. 59 5730Google Scholar

    [3]

    Zhang A, Zhang L, Tang Z, Cheng X, Wang Y, Chen K J, Chan M 2014 IEEE Trans. Electron Devices 61 755Google Scholar

    [4]

    Pregaldiny F, Lallement C, Mathiot D 2002 Solid-State Electron. 46 2191Google Scholar

    [5]

    Bansal A, Paul B C, Roy K 2005 IEEE Trans. Electron Devices 52 256Google Scholar

    [6]

    Li K, Rakheja S 2018 Device Research Conference-Conference Digest, DRC the University of California, Santa Barbara, June 24–27, 2018 p1

    [7]

    Jia Y, Xu Y, Wen Z, Wu Y, Guo Y 2019 IEEE Trans. Electron Devices 66 357Google Scholar

    [8]

    Vetury R, Zhang N Q, Keller S, Mishra U K 2001 IEEE Trans. Electron Devices 48 560Google Scholar

    [9]

    郭伟玲, 陈艳芳, 李松宇, 雷亮, 柏常青 2017 发光学报 38 1000

    Guo Y L, Chen Y F, Li S Y, Lei L, Bai C Q 2017 Chin. J. Lumin. 38 1000

    [10]

    Cheng X, Wang Y 2011 IEEE Trans. Electron Devices 58 448Google Scholar

    [11]

    Dasgupta N, DasGupta A 1993 Solid-State Electron. 36 201Google Scholar

    [12]

    Huque M A, Eliza S A, Ragman T, Huq H F, Islam S K 2009 Solid-State Electron. 53 341

    [13]

    Ahsan S A, Ghosh S, Sharma K, Dasgupta A, Khandelwal S, Chauhan Y S 2016 IEEE Trans. Electron Devices 63 565

    [14]

    Rashmi, Kranti A, Haldar S, Gupta R S 2002 Solid-State Electron. 46 621Google Scholar

    [15]

    Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys 85 3222Google Scholar

    [16]

    范隆, 郝跃 2007 56 3393Google Scholar

    Fan L, Hao Y 2007 Acta Phys. Sin. 56 3393Google Scholar

    [17]

    Ambacher O, Majewski J, Miskys C, Link A, Hermann M, Eickhoff M, Stutzmann M, Bernardini F, Fiorentini V, Tilak V, Schaff B, Eastman L F 2002 J. Phys.-Condes. Matter 14 3399Google Scholar

    [18]

    Khandelwal S, Chauhan Y S, Fjeldly T A 2012 IEEE Trans. Electron Devices 59 2856Google Scholar

    [19]

    He X G, Zhao D G, Jiang D S 2015 Chin. Phys. B 24 067301Google Scholar

    [20]

    Li M, Wang Y 2008 IEEE Trans. Electron Devices 55 261Google Scholar

    [21]

    Alim M A, Rezazadeh A A, Gaquiere C 2016 Semicond. Sci. Technol. 31 125016Google Scholar

  • 图 1  GaN HEMT不同工作状态下外部边缘电容示意图 (a)处于关断状态; (b)处于开启状态

    Fig. 1.  Schematic of GaN HEMT outer fringing capacitances in different state: (a) In the OFF-state; (b) in the ON-state.

    图 2  栅极侧壁与2DEG之间的电场示意图

    Fig. 2.  Schematic of normal electric field between the side wall of the gate and the 2DEG.

    图 3  (a)共焦后的电场示意图; (b) Lcd = Ld时的共焦电场

    Fig. 3.  (a) Electric field lines after transforming the nonconfocal elliptical system to the confocal system; (b) the confocal system with Lcd = Ld.

    图 4  Lcd = Ld所引入的误差

    Fig. 4.  Error in the confocal system with Lcd = Ld.

    图 5  2DEG沟道被类施主表面陷阱耗尽的长度对Cofd的影响关系图

    Fig. 5.  Cofd versus the extended depletion length induced by donor-like surface traps.

    图 6  Vg与2DEG浓度nsEf的关系曲线

    Fig. 6.  The curve of the density ns of 2DEG and Ef versus Vg

    图 7  VgVdsat的关系曲线

    Fig. 7.  The curve of Vdsat versus Vg.

    图 8  传统模型和本文模型得到的VdsCofd的关系曲线

    Fig. 8.  The curve of Cofd versus Vds obtained from the traditional model and the model in this paper.

    图 9  VthCofd的影响关系曲线(插图为Vth与Al组分x和掺杂浓度ND的关系曲线)

    Fig. 9.  The curve ofCofd versus Vth(The illustration show the curve of Vth with Al component and doped concentration).

    图 10  温度TCofd的影响关系曲线

    Fig. 10.  The curve of Cofd versus T

    图 11  不同漏极偏压下Cofd对温度敏感程度的关系曲线

    Fig. 11.  The curve oftemperature sensitivity of Cofd under different drain bias.

    表 1  模型仿真的器件参数值

    Table 1.  Model parameters in this paper.

    参数定义数值
    εx有效介电常数7.65ε0
    Esat/V·μm–1饱和电场15
    Ld/μm漏端沟道长度1
    Tg/μm栅极厚度0.3
    TAlGaN/nmAlGaN层厚度22
    $ E_{\rm g}^{\rm AIN} $/eVAIN禁带宽度6.13
    $ E_{\rm g}^{\rm GaN} $/eVGaN禁带宽度3.42
    VtempVth的依赖系数温度0.1689
    TNOM/K器件温标300
    ξ1拟合参数1.1
    ξ2拟合参数0.24
    m拟合参数1.2
    p拟合参数0.307
    τ拟合参数3.2
    a拟合参数1.497
    b拟合参数1.9
    c拟合参数0.31
    下载: 导出CSV
    Baidu
  • [1]

    Jones E A, Wang F F, Costinett D 2016 IEEE J. Emerg. Sel. Top. Power Electron. 4 707Google Scholar

    [2]

    王林, 胡伟达, 陈效双, 陆卫 2010 59 5730Google Scholar

    Wang L, Hu W D, Chen X S, Lu W 2010 Acta Phys. Sin. 59 5730Google Scholar

    [3]

    Zhang A, Zhang L, Tang Z, Cheng X, Wang Y, Chen K J, Chan M 2014 IEEE Trans. Electron Devices 61 755Google Scholar

    [4]

    Pregaldiny F, Lallement C, Mathiot D 2002 Solid-State Electron. 46 2191Google Scholar

    [5]

    Bansal A, Paul B C, Roy K 2005 IEEE Trans. Electron Devices 52 256Google Scholar

    [6]

    Li K, Rakheja S 2018 Device Research Conference-Conference Digest, DRC the University of California, Santa Barbara, June 24–27, 2018 p1

    [7]

    Jia Y, Xu Y, Wen Z, Wu Y, Guo Y 2019 IEEE Trans. Electron Devices 66 357Google Scholar

    [8]

    Vetury R, Zhang N Q, Keller S, Mishra U K 2001 IEEE Trans. Electron Devices 48 560Google Scholar

    [9]

    郭伟玲, 陈艳芳, 李松宇, 雷亮, 柏常青 2017 发光学报 38 1000

    Guo Y L, Chen Y F, Li S Y, Lei L, Bai C Q 2017 Chin. J. Lumin. 38 1000

    [10]

    Cheng X, Wang Y 2011 IEEE Trans. Electron Devices 58 448Google Scholar

    [11]

    Dasgupta N, DasGupta A 1993 Solid-State Electron. 36 201Google Scholar

    [12]

    Huque M A, Eliza S A, Ragman T, Huq H F, Islam S K 2009 Solid-State Electron. 53 341

    [13]

    Ahsan S A, Ghosh S, Sharma K, Dasgupta A, Khandelwal S, Chauhan Y S 2016 IEEE Trans. Electron Devices 63 565

    [14]

    Rashmi, Kranti A, Haldar S, Gupta R S 2002 Solid-State Electron. 46 621Google Scholar

    [15]

    Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys 85 3222Google Scholar

    [16]

    范隆, 郝跃 2007 56 3393Google Scholar

    Fan L, Hao Y 2007 Acta Phys. Sin. 56 3393Google Scholar

    [17]

    Ambacher O, Majewski J, Miskys C, Link A, Hermann M, Eickhoff M, Stutzmann M, Bernardini F, Fiorentini V, Tilak V, Schaff B, Eastman L F 2002 J. Phys.-Condes. Matter 14 3399Google Scholar

    [18]

    Khandelwal S, Chauhan Y S, Fjeldly T A 2012 IEEE Trans. Electron Devices 59 2856Google Scholar

    [19]

    He X G, Zhao D G, Jiang D S 2015 Chin. Phys. B 24 067301Google Scholar

    [20]

    Li M, Wang Y 2008 IEEE Trans. Electron Devices 55 261Google Scholar

    [21]

    Alim M A, Rezazadeh A A, Gaquiere C 2016 Semicond. Sci. Technol. 31 125016Google Scholar

  • [1] 王帅, 葛晨, 徐祖银, 成爱强, 陈敦军. 微波GaN器件温度效应建模.  , 2024, 73(17): 177101. doi: 10.7498/aps.73.20240765
    [2] 张林, 马林东, 杜林, 李艳波, 徐先峰, 黄鑫蓉. 不同栅压下Si-n型金属氧化物半导体场效应管总剂量效应的瞬态特性仿真.  , 2023, 72(13): 138501. doi: 10.7498/aps.72.20230207
    [3] 谢天赐, 张彬, 贺泊, 李昊鹏, 秦壮, 钱金钱, 石锲铭, LewisElfed, 孙伟民. 放疗绝对剂量的数学算法模型.  , 2021, 70(1): 018701. doi: 10.7498/aps.70.20200986
    [4] 刘佳文, 姚若河, 刘玉荣, 耿魁伟. 一个圆柱形双栅场效应晶体管的物理模型.  , 2021, 70(15): 157302. doi: 10.7498/aps.70.20202156
    [5] 刘乃漳, 姚若河, 耿魁伟. AlGaN/GaN高电子迁移率晶体管的栅极电容模型.  , 2021, 70(21): 217301. doi: 10.7498/aps.70.20210700
    [6] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型.  , 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [7] 段宝兴, 杨银堂, 陈敬. F离子注入新型Al0.25Ga0.75 N/GaN HEMT 器件耐压分析.  , 2012, 61(22): 227302. doi: 10.7498/aps.61.227302
    [8] 姜志宏, 王晖, 高超. 一种基于随机行走和策略连接的网络演化模型.  , 2011, 60(5): 058903. doi: 10.7498/aps.60.058903
    [9] 吴华英, 张鹤鸣, 宋建军, 胡辉勇. 单轴应变硅nMOSFET栅隧穿电流模型.  , 2011, 60(9): 097302. doi: 10.7498/aps.60.097302
    [10] 李斌, 刘红侠, 袁博, 李劲, 卢凤铭. 应变Si/Si1-xGex n型金属氧化物半导体场效应晶体管反型层中的电子迁移率模型.  , 2011, 60(1): 017202. doi: 10.7498/aps.60.017202
    [11] 王鑫华, 赵妙, 刘新宇, 蒲颜, 郑英奎, 魏珂. AlGaN/AlN/GaN高电子迁移率器件的电容电压特性的经验拟合.  , 2011, 60(4): 047101. doi: 10.7498/aps.60.047101
    [12] 王鑫华, 庞磊, 陈晓娟, 袁婷婷, 罗卫军, 郑英奎, 魏珂, 刘新宇. GaN HEMT栅边缘电容用于缺陷的研究.  , 2011, 60(9): 097101. doi: 10.7498/aps.60.097101
    [13] 李 琦, 张 波, 李肇基. 漂移区表面阶梯掺杂LDMOS的击穿电压模型.  , 2008, 57(3): 1891-1896. doi: 10.7498/aps.57.1891
    [14] 张鹤鸣, 崔晓英, 胡辉勇, 戴显英, 宣荣喜. 应变SiGe SOI量子阱沟道PMOSFET阈值电压模型研究.  , 2007, 56(6): 3504-3508. doi: 10.7498/aps.56.3504
    [15] 范 隆, 郝 跃. 辐射感生应力弛豫对AlmGa1-mN/GaN HEMT电学特性的影响.  , 2007, 56(6): 3393-3399. doi: 10.7498/aps.56.3393
    [16] 郭亮良, 冯 倩, 郝 跃, 杨 燕. 高击穿电压的AlGaN/GaN FP-HEMT研究与分析.  , 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [17] 郝 跃, 韩新伟, 张进城, 张金凤. AlGaN/GaN HEMT器件直流扫描电流崩塌机理及其物理模型.  , 2006, 55(7): 3622-3628. doi: 10.7498/aps.55.3622
    [18] 李东临, 曾一平. InP基HEMT器件中二维电子气浓度及分布与沟道层厚度关系的理论分析.  , 2006, 55(7): 3677-3682. doi: 10.7498/aps.55.3677
    [19] 马仲发, 庄奕琪, 杜 磊, 包军林, 李伟华. 栅氧化层介质经时击穿的逾渗模型.  , 2003, 52(8): 2046-2051. doi: 10.7498/aps.52.2046
    [20] 吕红亮, 张义门, 张玉明. 4H-SiC pn结型二极管击穿特性中隧穿效应影响的模拟研究.  , 2003, 52(10): 2541-2546. doi: 10.7498/aps.52.2541
计量
  • 文章访问数:  8468
  • PDF下载量:  178
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-20
  • 修回日期:  2020-01-31
  • 刊出日期:  2020-04-05

/

返回文章
返回
Baidu
map