-
钇钡铜氧(YBCO)高温超导材料在能源、交通等方面具有广泛的应用前景, 然而强磁场下出现的低临界电流密度问题严重限制了其应用. 利用快重离子辐照技术可在YBCO中形成潜径迹对磁通涡旋进行钉扎, 从而有效改善其在磁场下的超导性能. 本文利用能量为1.9 GeV的Ta离子对YBCO高温超导薄膜进行辐照, 系统地研究了不同离子注量下YBCO薄膜的微观结构及磁场下电流传输特性的变化情况. 研究表明, Ta离子辐照在薄膜中沿入射路径方向产生贯穿整个超导层的一维非晶潜径迹, 其直径在5 nm到15 nm之间. 结合Higuchi模型分析了快重离子辐照对薄膜中磁通钉扎机制的影响. 研究发现: 在原始样品中本征面缺陷钉扎是主要的钉扎机制; 随着辐照注量的增加, 薄膜中的钉扎类型逐渐转变为由快重离子辐照引入的正常相缺陷钉扎. 临界电流密度与磁场的关系可用函数
${J_c} \propto {B^{ - \alpha }}$ 进行拟合. 指数α随着注量的增加而降低, 当注量为5.0 × 1011 ions/cm2时已由最初的0.784降低至0.375, 说明临界电流密度对磁场的依赖关系大大减弱. 当辐照注量为8.0 × 1010 ions/cm2时, 潜径迹对磁通涡旋的钉扎效果最佳. 在该注量下, 高场(B > 0.3 T)下临界电流密度达到最大值且钉扎力提升了近两倍, 临界转变温度无明显变化(ΔTon ≈ 0.5 K). 实验结果表明, 快重离子辐照产生的潜径迹可以在不影响临界转变温度的前提下有效改善磁场下超导载流能力.-
关键词:
- YBCO高温超导薄膜 /
- 快重离子辐照 /
- 钉扎
YBa2Cu3O7−δ (YBCO) high temperature superconductor materials have many promising applications in energy, transportation and so on. Nonetheless, the application of YBCO in high magnetic field was limited because of low critical current. One-dimensional latent tracks produced by swift heavy ions irradiation can be effective pinning centers, thus enhancing superconductivity in external field. YBCO high temperature superconducting films were irradiated with 1.9 GeV Ta ions at room temperature and vacuum condition. Structure damages in irradiated samples were characterized by transmission electron microscopy (TEM). Continuous amorphous latent tracks, with diameter from 5 nm to 15 nm, throughout the whole superconducting layer can be observed from TEM images. Physical property measurement system (PPMS) was used to measure superconducting properties of samples before and after irradiation. When irradiated at optimal fluence of 8 × 1010 ions/cm2, critical current reaches its maximum value and pinning force was twice of unirradiated sample, while critical temperature almost unchanged. The analysis of experimental results shows that latent tracks produced by swift heavy ions irradiation can enhance in-field current-carrying capability, without decreasing critical temperature. In the power-law regime${J_c} \propto {B^{ - \alpha }}$ values of ɑ decreased with the increasing of fluence, indicating a weaker magnetic field dependence of critical current. ɑ reaches its lowest value 0.375 when irradiated at a fluence of 5.0 × 1011 ions/cm2, corresponding to a lowest in-field Jc. This result may be a combination of increasing pinning centers and decreasing superconductor volumes that work together. Normalized pinning force fp = Fp/Fp,max of sample irradiated with different fluence as a function of magnetic field h = H/Hmax was analyzed using Higuchi model. Fitting results show that planar defects are main source of pinning when h > 1, independent of irradiation. Whereas, dominate pinning centers shifting from surface pinning to isotropic normal point pinning with increasing fluence when h < 1. Given that latent tracks produced by Ta ions irradiation act as strong anisotropic pinning centers, the reason of the dominate pinning centers change with increasing fluence remains to be further studied.[1] 赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 32 412Google Scholar
Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 32 412Google Scholar
[2] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar
[3] [4] Wang J, Wei B, Cao B, Guo X, Zhang X, Song X 2013 Phys. C Supercond. its Appl. 495 79Google Scholar
[5] Sadovskyy I A, Koshelev A E, Glatz A, Ortalan V, Rupich M W, LeRoux M 2016 Phys. Rev. Appl. 5 014011Google Scholar
[6] Crisan A, Dang V S, Mikheenko P 2017 Phys. C Supercond. its Appl. 533 118Google Scholar
[7] Sato S, Honma T, Takahashi S, Sato K, Watanabe M, Ichikawa K, Takeda K, Nakagawa K, Saito A, Ohshima S 2013 IEEE Trans. Appl. Supercond. 23 7200404Google Scholar
[8] Macmanus-Driscoll J L, Foltyn S R, Jia Q X, Wang H, Serquis A, Civale L, Maiorov B, Hawley M E, Maley M P, Peterson D E 2004 Nat. Mater. 3 439Google Scholar
[9] Zhou Y X, Ghalsasi S, Rusakova I, Salama K 2007 Supercond. Sci. Technol. 20 S147
[10] Kwok W K, Welp U, Glatz A, Koshelev A E, Kihlstrom K J, Crabtree G W 2016 Reports Prog. Phys. 79 116501Google Scholar
[11] LeRoux M, Kihlstrom K J, Holleis S, Rupich M W, Sathyamurthy S, Fleshler S, Sheng H P, Miller D J, Eley S, Civale L, Kayani A, Niraula P M, Welp U, Kwok W K 2015 Appl. Phys. Lett. 107 192601
[12] Fischer D X, Prokopec R, Emhofer J, Eisterer M 2018 Supercond. Sci. Technol. 31 044006Google Scholar
[13] Khadzhai G Y, Litvinov Y V., Vovk R V., Zdorovko S F, Goulatis I L, Chroneos A 2018 J. Mater. Sci. Mater. Electron. 29 7725Google Scholar
[14] Biswal R, John J, Behera D, Mallick P, Kumar S, Kanjilal D, Mohanty T, Raychaudhuri P, Mishra N C 2008 Supercond. Sci. Technol. 21 085016Google Scholar
[15] Civale L, Marwick A D, Worthington T K, Kirk M A, Thompson J R, Sun Y 1991 Phys. Rev. Lett. 67 648Google Scholar
[16] Bourgault D, Hervieu M, Bouffard S, Groult D, Raveau B 1989 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 42 61Google Scholar
[17] Nakashima K, Chikumoto N, Ibi A, Miyata S, Yamada Y, Kubo T, Suzuki A, Terai T 2007 Phys. C Supercond. its Appl. 463 665
[18] Sueyoshi T, Nishimura T, Fujiyoshi T, Mitsugi F, Ikegami T, Ishikawa N 2016 Supercond. Sci. Technol. 29 105006Google Scholar
[19] Sueyoshi T, Sogo T, Nishimura T, Fujiyoshi T, Mitsugi F, Ikegami T, Awaji S, Watanabe K, Ichinose A, Ishikawa N 2016 Supercond. Sci. Technol. 29 065023Google Scholar
[20] Hardy V, Hervieu M, Provost J, Simon Ch 2000 Phys. Rev. B 62 691Google Scholar
[21] Sueyoshi T, Kotaki T, Uraguchi Y, Suenaga M, Makihara T, Fujiyoshi T, Ishikawa N 2016 Phys. C Supercond. its Appl. 530 72Google Scholar
[22] Sadovskyy I A, Jia Y, Leroux M, Kwon J, Hu H, Fang L, Chaparro C, Zhu S, Welp U, Zuo J M, Zhang Y, Nakasaki R, Selvamanickam V, Crabtree G W, Koshelev A E, Glatz A, Kwok W K 2016 Adv. Mater 28 4593
[23] Strickl, N M, Talantsev E F, Long N J, Xia J A, Searle S D, Kennedy J, Markwitz A, Rupich M W, Li X, Sathyamurthy S 2009 Phys. C Supercond. its Appl. 469 2060Google Scholar
[24] Fuchs G, Nenkov K, Krabbes G, Weinstein R, Gandini A, Sawh R, Mayes B, Parks D 2007 Supercond. Sci. Technol. 20 S197Google Scholar
[25] Biswal R, John J, Avasthi D K, Kanjilal D, Raychaudhuri P, Mishra N C 2010 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 268 3325Google Scholar
[26] Gupta R P, Gupta M 1992 Phys. Rev. B 45 9958Google Scholar
[27] Behera D, Mohanty T, Dash S K, Banerjee T, Kanjilal D, Mishra N C 2003 Radiat. Meas. 36 125Google Scholar
[28] Weinstein R, Gandini A, Sawh R P, Parks D, Mayes B 2003 Phys. C Supercond. its Appl. 387 391Google Scholar
[29] Murakami Y, Goto H, Taguchi Y, Nagasaka Y 2017 Int. J. Thermophys. 38 160Google Scholar
[30] Cui X M, Liu G Q, Wang J, Huang Z C, Zhao Y T, Tao B W, Li Y R 2007 Phys. C Supercond. its Appl. 466 1Google Scholar
[31] Higuchi T, Yoo S I, Murakami M 1999 Phys. Rev. B 59 1514
[32] Cai Q, Liu Y C, Ma Z Q, Li H J, Yu L M 2013 Appl. Phys. Lett. 103 132601
[33] Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 268 1818Google Scholar
[34] Weinstein R, Gandini A, Sawh R, Mayes B, Parks D 2006 Supercond. Sci. Technol. 19 S575Google Scholar
[35] Kwon J H, Meng Y, Wu L, Zhu Y, Zhang Y, Selvamanickam V, Welp U, Kwok W K, Zuo J M 2018 Supercond. Sci. Technol. 31 105006Google Scholar
[36] Zhu Y, Cai Z X, Budhani R C, Suenaga M, Welch D O 1993 Phys. Rev. B 48 6436Google Scholar
[37] Biswal R, John J, Mallick P, Dash B N, Kulriya P K, Avasthi D K, Kanjilal D, Behera D, Mohanty T, Raychaudhuri P, Mishra N C 2009 J. Appl. Phys. 106 053912Google Scholar
[38] Zeng L, Lu Y M, Liu Z Y, Chen C Z, Gao B, Cai C B 2012 J. Appl. Phys. 112 053903
[39] Chang H, Ren Y T, Sun Y Y, Wang Y Q, Xue Y Y, Chu C W 1995 Phys. C Supercond. its Appl. 252 333Google Scholar
[40] Kujur A, Asokan K, Behera D 2013 Thin Solid Films 536 256Google Scholar
[41] Vlastou R, Gazis E N, Papadopoulos C T, Liaropapis E, Palles D, Kossionides S, Kokkoris M, Pilakouta M, Assmann W, Huber H 1996 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 113 253Google Scholar
[42] Wang S S, Li F, Wu H, Zhang Y, Muhammad S, Zhao P, Le X Y, Xiao Z S, Jiang L X, Ou X D, Ouyang X P 2019 Chinese Phys. B 28 027401Google Scholar
[43] Hensel B, Roas B, Henke S, Hopfengärtner R, Lippert M, Ströbel J P, Vildić M, Saemann-Ischenko G, Klaumünzer S 1990 Phys. Rev. B 42 4135Google Scholar
[44] Rullier-Albenque F, Legris A, Bouffard S, Paumier E, Lejay P 1991 Phys. C Supercond. its Appl. 175 111Google Scholar
[45] Yan Y, Kirk M A 1998 Phys. Rev. B 57 6152
[46] Yan Y, Kirk M A 1999 Philos. Mag. Lett. 79 841Google Scholar
[47] Kirk M A, Yan Y 1999 Micron 30 507Google Scholar
-
图 6 (a) 能量为1.9 GeV的Ta离子辐照前后YBCO高温超导薄膜的显微拉曼光谱; (b) O(2, 3)-B1g和O(4)-Ag峰的峰位随着注量的变化情况
Fig. 6. (a) Micro-Raman spectra of YBCO high temperature superconductor films between pristine sample and samples irradiated with 1.9 GeV Ta ions; (b) variations in the position of O(2, 3)-B1g and O(4)-Ag peaks with different fluences.
表 1 钉扎力密度标度函数
Table 1. Fitting functions of scaling behavior of normalized pinning force.
钉扎函数 钉扎中心类型 ${{\rm{f}}_{\rm{p}}}(h) = \dfrac{9}{4}h{\left(1 - \dfrac{h}{3}\right)^2}$ Normal point pinning ${{\rm{f}}_{\rm{p}}}(h) = \dfrac{{25}}{{16}}\sqrt h {\left(1 - \dfrac{h}{5}\right)^2}$ Surface pinning -
[1] 赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 32 412Google Scholar
Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 32 412Google Scholar
[2] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar
[3] [4] Wang J, Wei B, Cao B, Guo X, Zhang X, Song X 2013 Phys. C Supercond. its Appl. 495 79Google Scholar
[5] Sadovskyy I A, Koshelev A E, Glatz A, Ortalan V, Rupich M W, LeRoux M 2016 Phys. Rev. Appl. 5 014011Google Scholar
[6] Crisan A, Dang V S, Mikheenko P 2017 Phys. C Supercond. its Appl. 533 118Google Scholar
[7] Sato S, Honma T, Takahashi S, Sato K, Watanabe M, Ichikawa K, Takeda K, Nakagawa K, Saito A, Ohshima S 2013 IEEE Trans. Appl. Supercond. 23 7200404Google Scholar
[8] Macmanus-Driscoll J L, Foltyn S R, Jia Q X, Wang H, Serquis A, Civale L, Maiorov B, Hawley M E, Maley M P, Peterson D E 2004 Nat. Mater. 3 439Google Scholar
[9] Zhou Y X, Ghalsasi S, Rusakova I, Salama K 2007 Supercond. Sci. Technol. 20 S147
[10] Kwok W K, Welp U, Glatz A, Koshelev A E, Kihlstrom K J, Crabtree G W 2016 Reports Prog. Phys. 79 116501Google Scholar
[11] LeRoux M, Kihlstrom K J, Holleis S, Rupich M W, Sathyamurthy S, Fleshler S, Sheng H P, Miller D J, Eley S, Civale L, Kayani A, Niraula P M, Welp U, Kwok W K 2015 Appl. Phys. Lett. 107 192601
[12] Fischer D X, Prokopec R, Emhofer J, Eisterer M 2018 Supercond. Sci. Technol. 31 044006Google Scholar
[13] Khadzhai G Y, Litvinov Y V., Vovk R V., Zdorovko S F, Goulatis I L, Chroneos A 2018 J. Mater. Sci. Mater. Electron. 29 7725Google Scholar
[14] Biswal R, John J, Behera D, Mallick P, Kumar S, Kanjilal D, Mohanty T, Raychaudhuri P, Mishra N C 2008 Supercond. Sci. Technol. 21 085016Google Scholar
[15] Civale L, Marwick A D, Worthington T K, Kirk M A, Thompson J R, Sun Y 1991 Phys. Rev. Lett. 67 648Google Scholar
[16] Bourgault D, Hervieu M, Bouffard S, Groult D, Raveau B 1989 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 42 61Google Scholar
[17] Nakashima K, Chikumoto N, Ibi A, Miyata S, Yamada Y, Kubo T, Suzuki A, Terai T 2007 Phys. C Supercond. its Appl. 463 665
[18] Sueyoshi T, Nishimura T, Fujiyoshi T, Mitsugi F, Ikegami T, Ishikawa N 2016 Supercond. Sci. Technol. 29 105006Google Scholar
[19] Sueyoshi T, Sogo T, Nishimura T, Fujiyoshi T, Mitsugi F, Ikegami T, Awaji S, Watanabe K, Ichinose A, Ishikawa N 2016 Supercond. Sci. Technol. 29 065023Google Scholar
[20] Hardy V, Hervieu M, Provost J, Simon Ch 2000 Phys. Rev. B 62 691Google Scholar
[21] Sueyoshi T, Kotaki T, Uraguchi Y, Suenaga M, Makihara T, Fujiyoshi T, Ishikawa N 2016 Phys. C Supercond. its Appl. 530 72Google Scholar
[22] Sadovskyy I A, Jia Y, Leroux M, Kwon J, Hu H, Fang L, Chaparro C, Zhu S, Welp U, Zuo J M, Zhang Y, Nakasaki R, Selvamanickam V, Crabtree G W, Koshelev A E, Glatz A, Kwok W K 2016 Adv. Mater 28 4593
[23] Strickl, N M, Talantsev E F, Long N J, Xia J A, Searle S D, Kennedy J, Markwitz A, Rupich M W, Li X, Sathyamurthy S 2009 Phys. C Supercond. its Appl. 469 2060Google Scholar
[24] Fuchs G, Nenkov K, Krabbes G, Weinstein R, Gandini A, Sawh R, Mayes B, Parks D 2007 Supercond. Sci. Technol. 20 S197Google Scholar
[25] Biswal R, John J, Avasthi D K, Kanjilal D, Raychaudhuri P, Mishra N C 2010 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 268 3325Google Scholar
[26] Gupta R P, Gupta M 1992 Phys. Rev. B 45 9958Google Scholar
[27] Behera D, Mohanty T, Dash S K, Banerjee T, Kanjilal D, Mishra N C 2003 Radiat. Meas. 36 125Google Scholar
[28] Weinstein R, Gandini A, Sawh R P, Parks D, Mayes B 2003 Phys. C Supercond. its Appl. 387 391Google Scholar
[29] Murakami Y, Goto H, Taguchi Y, Nagasaka Y 2017 Int. J. Thermophys. 38 160Google Scholar
[30] Cui X M, Liu G Q, Wang J, Huang Z C, Zhao Y T, Tao B W, Li Y R 2007 Phys. C Supercond. its Appl. 466 1Google Scholar
[31] Higuchi T, Yoo S I, Murakami M 1999 Phys. Rev. B 59 1514
[32] Cai Q, Liu Y C, Ma Z Q, Li H J, Yu L M 2013 Appl. Phys. Lett. 103 132601
[33] Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 268 1818Google Scholar
[34] Weinstein R, Gandini A, Sawh R, Mayes B, Parks D 2006 Supercond. Sci. Technol. 19 S575Google Scholar
[35] Kwon J H, Meng Y, Wu L, Zhu Y, Zhang Y, Selvamanickam V, Welp U, Kwok W K, Zuo J M 2018 Supercond. Sci. Technol. 31 105006Google Scholar
[36] Zhu Y, Cai Z X, Budhani R C, Suenaga M, Welch D O 1993 Phys. Rev. B 48 6436Google Scholar
[37] Biswal R, John J, Mallick P, Dash B N, Kulriya P K, Avasthi D K, Kanjilal D, Behera D, Mohanty T, Raychaudhuri P, Mishra N C 2009 J. Appl. Phys. 106 053912Google Scholar
[38] Zeng L, Lu Y M, Liu Z Y, Chen C Z, Gao B, Cai C B 2012 J. Appl. Phys. 112 053903
[39] Chang H, Ren Y T, Sun Y Y, Wang Y Q, Xue Y Y, Chu C W 1995 Phys. C Supercond. its Appl. 252 333Google Scholar
[40] Kujur A, Asokan K, Behera D 2013 Thin Solid Films 536 256Google Scholar
[41] Vlastou R, Gazis E N, Papadopoulos C T, Liaropapis E, Palles D, Kossionides S, Kokkoris M, Pilakouta M, Assmann W, Huber H 1996 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 113 253Google Scholar
[42] Wang S S, Li F, Wu H, Zhang Y, Muhammad S, Zhao P, Le X Y, Xiao Z S, Jiang L X, Ou X D, Ouyang X P 2019 Chinese Phys. B 28 027401Google Scholar
[43] Hensel B, Roas B, Henke S, Hopfengärtner R, Lippert M, Ströbel J P, Vildić M, Saemann-Ischenko G, Klaumünzer S 1990 Phys. Rev. B 42 4135Google Scholar
[44] Rullier-Albenque F, Legris A, Bouffard S, Paumier E, Lejay P 1991 Phys. C Supercond. its Appl. 175 111Google Scholar
[45] Yan Y, Kirk M A 1998 Phys. Rev. B 57 6152
[46] Yan Y, Kirk M A 1999 Philos. Mag. Lett. 79 841Google Scholar
[47] Kirk M A, Yan Y 1999 Micron 30 507Google Scholar
计量
- 文章访问数: 7827
- PDF下载量: 112
- 被引次数: 0