搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微腔效应对顶发射串联蓝光有机电致发光器件性能的影响

张娟 焦志强 闫华杰 陈福栋 黄清雨 康亮亮 刘晓云 王路 袁广才

引用本文:
Citation:

微腔效应对顶发射串联蓝光有机电致发光器件性能的影响

张娟, 焦志强, 闫华杰, 陈福栋, 黄清雨, 康亮亮, 刘晓云, 王路, 袁广才

Influence of microcavity effect on the performance of top emission tandem blue organic light emitting devices

Zhang Juan, Jiao Zhi-Qiang, Yan Hua-Jie, Chen Fu-Dong, Huang Qing-Yu, Kang Liang-Liang, Liu Xiao-Yun, Wang Lu, Yuan Guang-Cai
PDF
HTML
导出引用
  • 相比于传统有机电致发光器件, 串联有机电致发光器件的发光效率与寿命均得到明显提升. 因此, 深入研究微腔效应对顶发射串联有机电致发光器件性能的影响具有重要意义. 本文以蓝光器件为例, 通过光学仿真模拟与实际实验相结合的方法, 研究了顶发射串联蓝光器件的光学性能与电学性能变化规律. 具体实验为: 分别制备了顶发射串联蓝光器件, 使其两个发光层位置分别位于器件光学结构中的第一与第二反节点、第二与第三反节点、第三与第四反节点. 分析并确定了顶发射串联蓝光器件的两个发光层位置分别位于第二反节点与第三反节点处时, 器件性能较佳. 即: 当器件电流密度为15 mA/cm2时, 器件电流效率为10.68 cd/A (色坐标CIEx, y = 0.14, 0.05), 其亮度衰减到95%所需时间为1091.55 h. 可能原因是: 器件腔长较长时, 既可以改善第一发光单元的空穴与电子平衡度、削弱表面等离激元效应, 降低膜厚波动性对器件腔长的影响性; 又可以在一定程度内起到包裹Partical的作用, 提高效率, 延长寿命. 这一研究成果为设计高效率、长寿命的顶发射串联器件提供了重要依据.
    Comparing with traditional single organic light-emitting device (OLED), the luminance efficiency and lifetime of tandem OLED are significantly improved. Therefore, it is of crucial importance to in depth study the influence of microcavity effect on the performance of top emitting tandem OLED. In this paper, taking the blue organic light emitting device for example, the change rule of optical and electrical properties of top-emitting tandem blue-light device are studied by combining optical simulation with practical experiments. The specific experiment is as follows. The top emitting tandem blue organic light devices are fabricated, in which the two light-emitting layers are located at the first anti node and second anti node, the second anti node and third anti node, and the third anti node and fourth anti node in the optical structure of the device respectively. It is found that the performance of the device is better when the two emitting layers of the top-emitting tandem blue light device are located at the second anti node and third anti node in the optical structure of the device respectively. That is to say, when the current density of the device is 15 mA/cm2, the current efficiency of the device reaches 10.68 cd/A, color coordinate (CIEx, y) of the device is (0.14, 0.05), and the time of the brightness decreases from 100% to 95% in 1091.55 hours, which is likely to be due to the fact that when the cavity length of the device is long, it can not only improve the recombination rate of hole and electron in the first light-emitting unit, weaken the surface plasmon polarition effect, reduce the influence of the fluctuation of the film thickness on the cavity length of the device, but also play a role of wrapping partials to a certain extent, improve the efficiency and prolong the device lifetime. The research results provide an important theoretical and data basis for designing the top-emitting tandem blue light device with high efficiency and long lifetime. In the future, we will continue to systematically and detailedly study the top emitting tandem organic light-emitting devices, which will provide strong support for preparing the laminated devices with high efficiency long-lifetime, and lower cost.
      Corresponding author: Yuan Guang-Cai, yuanguangcai@boe.com.cn
    [1]

    刘洋 2017 硕士学位论文 (天津: 天津理工大学)

    Liu Y 2017 M. S. Thesis (Tianjin: Tianjin University of Technology) (in Chinese)

    [2]

    Sun H D, Chen Y H, Chen J SH, Ma D G 2016 IEEE J. Sel. Top. Quant. Electron. 22 1Google Scholar

    [3]

    景姝, 王华, 刘慧慧, 杜晓刚, 苗艳勤, 潘成龙, 周禾丰 2014 液晶与显示 29 6Google Scholar

    Jing S, Wang H, Liu H H, Du X G, Miao Y Q, Pan C L, Zhou H F 2014 Chin. J. Liq. Cryst. Displays 29 6Google Scholar

    [4]

    Lee H W, Lee J W, Lee S E, Lee J H, Kim Y K 2017 J. Lumin. 188 112Google Scholar

    [5]

    Hong K, Lee J L 2011 Electron. Mater. Lett. 7 77Google Scholar

    [6]

    Hoang V, Lee S E, Lee J G, Kim Y K, Lee J H 2017 Opt. Express 25 31006Google Scholar

    [7]

    Lee S E, Lee H W, Lee J W, Hwang K M, Park S N, Yoon S S, Kim Y K 2015 Jpn. J. Appl. Phys. 54 06FGoogle Scholar

    [8]

    Sun J X, Zhu X L, Peng H J, Wong M, Kwok H S 2005 Appl. Phys. Lett. 87 093504Google Scholar

    [9]

    Chen C W, Lu Y J, Wu C C, Wu E H E, Chu C W, Yang Y 2005 Appl. Phys. Lett. 87 241121Google Scholar

    [10]

    Kuehne A J C, Gather M C 2016 Chem. Rev. 116 12823Google Scholar

    [11]

    Zhang X, Dong H, Hu W 2018 Adv. Mater. 30 1801048Google Scholar

    [12]

    Muccini M 2006 Nat. Mater. 5 605Google Scholar

    [13]

    Uoyama C, Gou S K, Shi Z K, Nomura H, Adachi C 2012 Nature 492 234Google Scholar

    [14]

    Chen Y, Tian H, Chen Y, Geng Y, Yan D, Wang L, Ma D 2012 J. Mater. Chem. 22 8492Google Scholar

    [15]

    Ban X, Sun K, Sun Y, Huang B, Ye S, Yang M, Jiang W 2015 ACS Appl. Mater. Interfaces 7 25129Google Scholar

    [16]

    Hsu S F, Lee C C, Hu A T, Chen C H 2004 Curr. Appl. Phys. 4 663Google Scholar

    [17]

    Liao L S, Klubek K P, Tang C W 2004 Appl. Phys. Lett. 84 167Google Scholar

    [18]

    Tsutsui T, Terai M 2004 Appl. Phys. Lett. 84 440Google Scholar

    [19]

    Yang J P, Bao Q Y, Xiao Y, Deng Y H, Li Y Q, Lee S T, Tang J X 2012 Org. Electron. 13 2243Google Scholar

    [20]

    Ho M H, Chen T M, Yeh P C, Hwang S W, Chen C H 2007 Appl. Phys. Lett. 91 233507Google Scholar

    [21]

    张娟 2017 硕士学位论文 (天津: 天津理工大学)

    Zhang J 2017 M. S. Thesis (Tianjin: Tianjin University of Technology) (in Chinese)

    [22]

    Zhang J, Xin L W, Gao J, Liu Y, Rui H S, Lin X, Hua Y L, Wu X M, Yin S G 2017 J. Mater. Sci. Mater. Electron. 28 12761Google Scholar

    [23]

    李亭亭 2018 硕士学位论文 (西安: 陕西科技大学)

    Li T T 2018 M.S. Thesis (Shaanxi: Shaanxi University of Science & Technology) (in Chinese)

    [24]

    Udagawa K, Sasabe H, Cai C, Kido J 2014 Adv. Mater. 26 5062Google Scholar

  • 图 1  微腔器件原理图

    Fig. 1.  Schematic diagram of microcavity device.

    图 2  有机材料的分子结构式

    Fig. 2.  Molecular structure formula of organic materials.

    图 3  有机材料的折射率曲线

    Fig. 3.  Refractive index curve of organic materials.

    图 4  器件A1发光性能模拟图 (a)不同的腔长对OLED器件CIEx, y的影响; (b)不同的腔长对OLED器件发光光谱的影响; (c)不同的腔长对OLED器件亮度的影响

    Fig. 4.  Simulated electroluminescence (EL) performance of devices A1: (a) Influence of length of microcavity on CIEx, y of OLED; (b) influence of length of microcavity on spectrum of OLED; (c) influence of length of microcavity on luminance of OLED.

    图 5  器件A2发光性能模拟图 (a)不同的腔长对OLED器件CIEx, y的影响; (b)不同的腔长对OLED器件发光光谱的影响; (c)不同的腔长对OLED器件亮度的影响

    Fig. 5.  Simulated EL performance of devices A2: (a) Influence of length of microcavity on CIEx, y of OLED; (b) influence of length of microcavity on spectrum of OLED; (c) influence of length of microcavity on luminance of OLED.

    图 6  器件1, 2, 3的电流密度-电压特性曲线

    Fig. 6.  Current density-voltage characteristics of device 1, 2 and 3.

    图 7  电荷产生层的能级示意图

    Fig. 7.  Energy level diagram of charge generation layer.

    图 8  器件A的发光性能图 (a)光谱特性曲线; (b)电流效率-亮度特性曲线; (c)电流密度-电压特性曲线

    Fig. 8.  The EL performance of devices A: (a) The spectrum characteristics; (b) the current efficiency-luminance characteristics; (c) the current density-voltage characteristics.

    图 9  OLED器件结构图

    Fig. 9.  Device structure of OLED.

    图 10  器件B, C, D, E的发光性能图 (a)光谱特性曲线; (b)电流效率-亮度特性曲线; (c)电流密度-功率效率特性曲线; (d)电流密度-外量子效率特性曲线; (e)电流密度-电压特性曲线; (f)寿命特性曲线@50 mA/cm2; (g)寿命特性曲线@15 mA/cm2; (h)亮度-视角特性曲线; (i)光谱-视角特性曲线

    Fig. 10.  The EL performance of devices B, C, D and E: (a) The spectrum characteristics; (b) the current efficiency-luminance characteristics; (c) the current density-power efficiency characteristics; (d) the current density- external quantum efficiency characteristics; (e) the current density-voltage characteristics; (f) the lifetime characteristics @50 mA/cm2; (g) the lifetime characteristics @15 mA/cm2; (h) the luminance-angle characteristics; (i) the spectrum-angle characteristics.

    图 11  有机材料的分子结构式

    Fig. 11.  Molecular structure formula of organic materials.

    图 12  器件G发光性能模拟图 (a)不同的腔长对OLED器件CIEx, y的影响; (b)不同的腔长对OLED器件发光光谱的影响; (c)不同的腔长对OLED器件亮度的影响

    Fig. 12.  Simulated EL performance of devices G: (a) Influence of the length of microcavity on CIEx, y of OLED; (b) influence of the length of microcavity on spectrum of OLED; (c) influence of the length of microcavity on luminance of OLED.

    图 13  器件F, H, I, J的发光性能图 (a)光谱特性曲线; (b)电流效率-亮度特性曲线; (c)电流密度-功率效率特性曲线; (d)电流密度-外量子效率特性曲线; (e)电流密度-电压特性曲线; (f)寿命特性曲线@50 mA/cm2

    Fig. 13.  The EL performance of devices F, H, I and J: (a) The spectrum characteristics; (b) the current efficiency-luminance characteristics; (c) the current density-power efficiency characteristics; (d) the current density-external quantum efficiency characteristics; (e) the current density-voltage characteristics; (f) the lifetime characteristics @50 mA/cm2.

    表 1  有机材料的折射率

    Table 1.  Refractive index of organic materials.

    波长/nm折射率
    HAT-CNNPBTCTAADNDAS-phTPBiLiq
    4652.022.051.962.091.961.701.85
    5451.921.941.881.891.881.661.79
    6201.881.891.851.831.851.641.76
    下载: 导出CSV

    表 2  器件A的测试性能参数

    Table 2.  Performance parameters of device A.

    Device@15 mA/cm2V/VL/cd·m–2CE/cd·A–1PE/lm·W–1EQE/%CIExCIEy
    5 nm6.76154810.324.785.250.13720.0516
    25 nm7.1114259.514.264.880.34630.4545
    45 nm7.4213809.223.904.690.34250.6028
    65 nm8.306154.131.612.200.36210.6218
    85 nm8.868255.531.962.820.13750.0405
    105 nm9.5114709.823.144.550.13180.4528
    125 nm10.21160310.683.285.250.13690.0512
    145 nm10.80153010.202.965.020.33260.4168
    165 nm11.1110216.801.924.910.34630.4545
    185 nm11.326344.231.162.320.34250.6028
    205 nm11.667995.321.432.510.13750.0405
    225 nm11.98153410.222.695.120.13100.4512
    245 nm12.34158010.532.665.360.13690.0502
    265 nm12.62150410.032.495.080.35120.4555
    下载: 导出CSV

    表 3  器件B, C, D, E的性能参数

    Table 3.  Performance parameters of devices B, C, D and E.

    Device@15 mA/cm2V/VL/cd·m–2CE/cd·A–1PE/lm·W–1EQE/%CIExCIEyLT95(h) @50 mA/cm2
    B3.719786.525.514.080.13760.051458.26
    C6.87154810.324.716.620.13720.051693.88
    D7.33160310.684.586.860.13690.0512140.65
    E8.12157910.534.066.770.13690.050879.88
    下载: 导出CSV

    表 4  器件F, H, I, J的性能参数

    Table 4.  Performance parameters of devices F, H, I and J.

    Device@15 mA/cm2V/VL/cd·m–2CE/cd·A–1PE/lm·W–1EQE/%CIExCIEyLT95(h) @50 mA/cm2
    F3.908805.874.723.050.13850.050446.12
    H7.2112388.263.594.290.13830.050880.88
    I7.72168311.224.575.860.13790.051193.21
    J8.31154710.323.915.350.13780.051572.36
    下载: 导出CSV
    Baidu
  • [1]

    刘洋 2017 硕士学位论文 (天津: 天津理工大学)

    Liu Y 2017 M. S. Thesis (Tianjin: Tianjin University of Technology) (in Chinese)

    [2]

    Sun H D, Chen Y H, Chen J SH, Ma D G 2016 IEEE J. Sel. Top. Quant. Electron. 22 1Google Scholar

    [3]

    景姝, 王华, 刘慧慧, 杜晓刚, 苗艳勤, 潘成龙, 周禾丰 2014 液晶与显示 29 6Google Scholar

    Jing S, Wang H, Liu H H, Du X G, Miao Y Q, Pan C L, Zhou H F 2014 Chin. J. Liq. Cryst. Displays 29 6Google Scholar

    [4]

    Lee H W, Lee J W, Lee S E, Lee J H, Kim Y K 2017 J. Lumin. 188 112Google Scholar

    [5]

    Hong K, Lee J L 2011 Electron. Mater. Lett. 7 77Google Scholar

    [6]

    Hoang V, Lee S E, Lee J G, Kim Y K, Lee J H 2017 Opt. Express 25 31006Google Scholar

    [7]

    Lee S E, Lee H W, Lee J W, Hwang K M, Park S N, Yoon S S, Kim Y K 2015 Jpn. J. Appl. Phys. 54 06FGoogle Scholar

    [8]

    Sun J X, Zhu X L, Peng H J, Wong M, Kwok H S 2005 Appl. Phys. Lett. 87 093504Google Scholar

    [9]

    Chen C W, Lu Y J, Wu C C, Wu E H E, Chu C W, Yang Y 2005 Appl. Phys. Lett. 87 241121Google Scholar

    [10]

    Kuehne A J C, Gather M C 2016 Chem. Rev. 116 12823Google Scholar

    [11]

    Zhang X, Dong H, Hu W 2018 Adv. Mater. 30 1801048Google Scholar

    [12]

    Muccini M 2006 Nat. Mater. 5 605Google Scholar

    [13]

    Uoyama C, Gou S K, Shi Z K, Nomura H, Adachi C 2012 Nature 492 234Google Scholar

    [14]

    Chen Y, Tian H, Chen Y, Geng Y, Yan D, Wang L, Ma D 2012 J. Mater. Chem. 22 8492Google Scholar

    [15]

    Ban X, Sun K, Sun Y, Huang B, Ye S, Yang M, Jiang W 2015 ACS Appl. Mater. Interfaces 7 25129Google Scholar

    [16]

    Hsu S F, Lee C C, Hu A T, Chen C H 2004 Curr. Appl. Phys. 4 663Google Scholar

    [17]

    Liao L S, Klubek K P, Tang C W 2004 Appl. Phys. Lett. 84 167Google Scholar

    [18]

    Tsutsui T, Terai M 2004 Appl. Phys. Lett. 84 440Google Scholar

    [19]

    Yang J P, Bao Q Y, Xiao Y, Deng Y H, Li Y Q, Lee S T, Tang J X 2012 Org. Electron. 13 2243Google Scholar

    [20]

    Ho M H, Chen T M, Yeh P C, Hwang S W, Chen C H 2007 Appl. Phys. Lett. 91 233507Google Scholar

    [21]

    张娟 2017 硕士学位论文 (天津: 天津理工大学)

    Zhang J 2017 M. S. Thesis (Tianjin: Tianjin University of Technology) (in Chinese)

    [22]

    Zhang J, Xin L W, Gao J, Liu Y, Rui H S, Lin X, Hua Y L, Wu X M, Yin S G 2017 J. Mater. Sci. Mater. Electron. 28 12761Google Scholar

    [23]

    李亭亭 2018 硕士学位论文 (西安: 陕西科技大学)

    Li T T 2018 M.S. Thesis (Shaanxi: Shaanxi University of Science & Technology) (in Chinese)

    [24]

    Udagawa K, Sasabe H, Cai C, Kido J 2014 Adv. Mater. 26 5062Google Scholar

  • [1] 黄一帆, 邢阳光, 沈文杰, 彭吉龙, 代树武, 王颖, 段紫雯, 闫雷, 刘越, 李林. 亚角秒空间分辨的太阳极紫外宽波段成像光谱仪光学设计.  , 2024, 73(3): 039501. doi: 10.7498/aps.73.20231481
    [2] 吴长茂, 唐熊忻, 夏媛媛, 杨瀚翔, 徐帆江. 用于空间相机设计的高精度光线追迹方法.  , 2023, 72(8): 084201. doi: 10.7498/aps.72.20222463
    [3] 侯晨阳, 孟凡超, 赵一鸣, 丁进敏, 赵小艇, 刘鸿维, 王鑫, 娄淑琴, 盛新志, 梁生. “机器微纳光学科学家”: 人工智能在微纳光学设计的应用与发展.  , 2023, 72(11): 114204. doi: 10.7498/aps.72.20230208
    [4] 许祥馨, 常军, 武楚晗, 宋大林. 基于双随机相位编码的局部混合光学加密系统.  , 2020, 69(20): 204201. doi: 10.7498/aps.69.20200478
    [5] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析.  , 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [6] 白旭芳, 陈磊, 额尔敦朝鲁. 电磁场中施主中心量子点内磁极化子态寿命与qubit退相干.  , 2020, 69(14): 147802. doi: 10.7498/aps.69.20200242
    [7] 刘飞, 魏雅喆, 韩平丽, 刘佳维, 邵晓鹏. 基于共心球透镜的多尺度广域高分辨率计算成像系统设计.  , 2019, 68(8): 084201. doi: 10.7498/aps.68.20182229
    [8] 冯帅, 常军, 牛亚军, 穆郁, 刘鑫. 一种非对称双面离轴非球面反射镜检测补偿变焦光路设计方法.  , 2019, 68(11): 114201. doi: 10.7498/aps.68.20182253
    [9] 徐平, 杨伟, 张旭琳, 罗统政, 黄燕燕. 集成化导光板下表面微棱镜二维分布设计.  , 2019, 68(3): 038502. doi: 10.7498/aps.68.20181684
    [10] 操超, 廖志远, 白瑜, 范真节, 廖胜. 基于矢量像差理论的离轴反射光学系统初始结构设计.  , 2019, 68(13): 134201. doi: 10.7498/aps.68.20190299
    [11] 陶洪, 高栋雨, 刘佰全, 王磊, 邹建华, 徐苗, 彭俊彪. 电荷生成层中引入超薄金属Ag层对串联有机发光二极管性能的提升.  , 2017, 66(1): 017302. doi: 10.7498/aps.66.017302
    [12] 沈本兰, 常军, 王希, 牛亚军, 冯树龙. 三反射主动变焦系统设计.  , 2014, 63(14): 144201. doi: 10.7498/aps.63.144201
    [13] 马莉, 沈光地, 陈依新, 蒋文静, 郭伟玲, 徐晨, 高志远. 新型AlGaInP系发光二极管饱和特性与寿命的研究.  , 2014, 63(3): 037201. doi: 10.7498/aps.63.037201
    [14] 任洪亮. 有限远共轭显微镜光镊设计和误差分析.  , 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [15] 冯志刚, 张好, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷铯Rydberg原子寿命的测量.  , 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [16] 朱海娜, 徐征, 赵谡玲, 张福俊, 孔超, 闫光, 龚伟. 量子阱结构对有机电致发光器件效率的影响.  , 2010, 59(11): 8093-8097. doi: 10.7498/aps.59.8093
    [17] 陈依新, 沈光地, 韩金茹, 李建军, 郭伟玲. 不同表面结构的半导体发光二极管的效率与寿命的研究.  , 2010, 59(1): 545-549. doi: 10.7498/aps.59.545
    [18] 王小霞, 廖显恒, 罗积润, 赵青兰, 张晓伟. 新型贮存式氧化物阴极寿命机理的初步探讨.  , 2009, 58(2): 1280-1286. doi: 10.7498/aps.58.1280
    [19] 王 方, 朱启华, 蒋东镔, 张清泉, 邓 武, 景 峰. 多程放大系统主放大级光学优化设计.  , 2006, 55(10): 5277-5282. doi: 10.7498/aps.55.5277
    [20] 鲁 欣, 奚婷婷, 李英竣, 张 杰. 超短超强脉冲激光在空气中产生的电离通道的寿命研究.  , 2004, 53(10): 3404-3408. doi: 10.7498/aps.53.3404
计量
  • 文章访问数:  10227
  • PDF下载量:  267
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-15
  • 修回日期:  2020-02-24
  • 刊出日期:  2020-05-05

/

返回文章
返回
Baidu
map