搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子和负离子的反射运动对碰撞电负性磁鞘的影响

刘惠平 邹秀

引用本文:
Citation:

电子和负离子的反射运动对碰撞电负性磁鞘的影响

刘惠平, 邹秀

Effects of reflection of electrons and negative ions on magnetized electronegative and collisional plasma sheath

Liu Hui-Ping, Zou Xiu
PDF
HTML
导出引用
  • 研究了鞘层中电子和负离子的反射运动对碰撞电负性磁鞘玻姆判据和鞘层结构的影响. 通过理论推导得到了考虑鞘层中电子和负离子的反射运动时鞘层玻姆判据表达式, 并通过数值模拟得到了电子和负离子采用玻尔兹曼模型和反射运动模型时离子马赫数的下限随参数的变化曲线以及鞘层中带电粒子密度的分布曲线. 结果表明, 电子和负离子的反射运动模型和玻尔兹曼模型离子马赫数的上限完全相同, 下限表达式不同, 反射运动模型中下限还与基板电势有关, 且随着基板电势值的增加而增大, 达到与玻尔兹曼分布中相同值后保持不变, 随着鞘边负离子浓度和温度的不同达到最大值的速度不同; 离子马赫数的下限在玻尔兹曼和反射运动模型中都随鞘边负离子浓度的增加和温度的降低而减小, 只是在反射运动模型中的最大值要小; 两种模型中离子马赫数的下限都随鞘边电场的增加而增加, 但在玻尔兹曼模型中增加得更快最终值更大; 两种模型离子马赫数的下限都随碰撞参数或磁场角度的增加而降低, 但在玻尔兹曼模型中降低更快, 随着碰撞参数或者磁场角度的增加两种模型中离子马赫数的下限趋于一致; 当基板电势值较小时, 电子和负离子的反射运动对鞘层结构影响较大, 当基板电势值较大时电子和负离子反射运动对鞘层中带电粒子密度分布的影响很小.
    The effects of the reflection of electrons and negative ions in magnetized electronegative and collisional plasma sheath on the Bohm criterion and the sheath structure are numerically investigated. The Bohm criterion expression of the sheath with considering the reflection of electrons and negative ions is derived theoretically. The lower limit of ion Mach number versus parameters and the distribution curve of charged particle density in sheath are obtained by numerical simulation when Boltzmannian model and reflection model are applied to electrons and negative ions. The results show that the upper limit of ion Mach number is identical to that of Boltzmannian model, but their lower limit expressions are different. The lower limit of ion Mach number in the reflection model is also related to the wall potential, and with the increase of the wall potential, ion Mach number first increases and then remains unchanged after reaching the same value as that from Boltzmannian model, and the speeds of their reaching the maximum values are different due to the difference in sheath edge negative ion concentration and temperature. In both Boltzmannian and the reflection model, the lower limit of the ion Mach number decreases with the concentration of the negative ion at the sheath edge increasing and the negative ion temperature decreasing, but the maximum value is smaller in the reflection model. The lower limit of ion Mach number for each of the two models increases with sheath edge electric field increasing, but increases faster and the final value is larger in Boltzmannian model. The lower limit of ion Mach number for each of the two models decreases with the increase of collision parameter or magnetic field angle, but decreases faster in Boltzmannian model with the increase of collision parameter or magnetic field angle. The lower limits of ion Mach number in the two models tend to be the same with the increase of magnetic field angle. When the wall potential is small, the reflection of electrons and negative ions has a great influence on the sheath structure. When the wall potential is large, the reflection of electrons and negative ions have little effect on the density distribution of charged particles in the sheath.
      通信作者: 刘惠平, lhp@djtu.edu.cn
    • 基金项目: 辽宁省教育厅基本科研项目(批准号: JDL2017012)和国家自然科学基金(批准号: 11404049)资助的课题
      Corresponding author: Liu Hui-Ping, lhp@djtu.edu.cn
    • Funds: Project supported by Basic Research Foundation of Department of Education of Liaoning Province, China (Grant No. JDL2017012) and the National Natural Science Foundation of China (Grant No. 11404049)
    [1]

    Yamada H, Yoshida Z 1992 J. Plasma Phys. 48 229Google Scholar

    [2]

    Femandez Palop J I, Ballesteros J, Colomer V, Hemandez M A, Dengra A 1995 J. Appl. Phys. 77 2937Google Scholar

    [3]

    Femandez Palop J I, Colomer V, Ballesteros J, Hemandez M A, Dengra A 1996 Surf. Coat. Technol. 84 341Google Scholar

    [4]

    Amemiya H, Annaratone B M, Allen J E 1998 J. Plasma. Phys. 60 81Google Scholar

    [5]

    Ming L, Michael A V, Steven K D, Brett M J 2000 IEEE Trans. Plasma Sci. 28 248Google Scholar

    [6]

    WANG Z X, Liu J Y, Zou X, Liu Y, Wang X G 2003 Chin. Phys. Lett. 20 1537Google Scholar

    [7]

    Yasserian K, Aslaninejad M, Ghoranneviss M 2009 Phys. Plasmas 16 023504Google Scholar

    [8]

    Hatami M M, Shokri B, Niknam A R 2008 Phys. Plasmas 15 123501Google Scholar

    [9]

    Gong Y, Duan P, Zhang J H, Zou X, Liu J Y, Liu Y 2010 Chin. J. Comput. Phys. 27 883

    [10]

    Liu J Y, Wang Z X, Wang X G 2003 Phys. Plasmas 10 3032Google Scholar

    [11]

    Ghomi H, Khoramabadi M, Shukla P K, Ghorannevis M 2010 J. Appl. Phys. 108 063302Google Scholar

    [12]

    Ghomi H, Khoramabadi M 2010 J. Plasma. Phys. 76 247Google Scholar

    [13]

    Zou X, Liu H P, Qiu M H, Sun X H 2011 Chin. Phys. Lett. 28 125201Google Scholar

    [14]

    Ghomi H Khoramabadi M 2011 J Fusion Energ 30 481Google Scholar

    [15]

    刘惠平, 邹秀, 邹滨雁, 邱明辉 2012 61 035201Google Scholar

    Liu H P, Zou X, Zou B Y, Qiu M H 2012 Acta Phys. Sin. 61 035201Google Scholar

    [16]

    邱明辉, 刘惠平, 邹秀 2012 61 155204Google Scholar

    Qiu M H, Liu H P, Zou X 2012 Acta Phys. Sin. 61 155204Google Scholar

    [17]

    Hatami M M, Shokri B 2013 Phys. Plasmas 20 033506Google Scholar

    [18]

    Li J J, Ma J X, Wei Z A 2013 Phys. Plasmas 20 063503Google Scholar

    [19]

    Yasserian K, Aslaninejad M, Borghei M, Eshghabadi M 2010 J. Theor. Appl. Phys. 4 26

    [20]

    Yasserian K, Aslaninejad M 2012 Phys. Plasmas 19 073507Google Scholar

    [21]

    Shaw A K, Kar S, Goswami K S 2012 Phys. Plasmas 19 102108Google Scholar

    [22]

    Moulick R, Mahanta M K, Goswami K S 2013 Phys. Plasmas 20 094501Google Scholar

    [23]

    刘惠平, 邹秀, 邹滨雁, 邱明辉 2016 65 245201Google Scholar

    Liu H P, Zou X, Zou B Y, Qiu M H 2016 Acta Phys. Sin. 65 245201Google Scholar

    [24]

    Sobolewski M A, Wang Y C, Goyette A 2017 J. Appl. Phys. 122 053302Google Scholar

    [25]

    Regodon G F, Femandez-Palop J I, Tejero-del-Caz A, Diaz-Cabrera J M, Carmona-Cabezas R, Ballesteros J 2018 Plasma Sources Sci. Technol. 2018 27

    [26]

    Oudini N, Sirse N, Taccogna F, Ellingboe A R, Bendib A 2018 Phys. Plasmas 25 053510Google Scholar

    [27]

    Sternberg N, Poggie J 2004 IEEE Trans. Plasma Sci. 32 2217Google Scholar

    [28]

    Tskhakaya D D, Shukla P K, Eliasson B, Kuhn S 2005 Phys. Plasmas 12 103503Google Scholar

    [29]

    Pandey B P, Samarian A, Vladimirov S V 2007 Phys. Plasmas 14 093703Google Scholar

    [30]

    Zimmermann T M G, Coppins M, Allen J E 2009 Phys. Plasmas 16 043501Google Scholar

    [31]

    Zimmermann T M G, Coppins M, Allen J E 2010 Phys. Plasmas 17 022301Google Scholar

    [32]

    Krasheninnikova N S, Tang X, Roytershteyn V S 2010 Phys. Plasmas 17 057103Google Scholar

    [33]

    Sheehan J P, Hershkowitz N, Kaganovich I D, Wang H, Raitses Y, Barnat E V, Weatherford B R, Sydorenko D 2013 Phys. Rev. Lett. 111 075002Google Scholar

    [34]

    Sheehan J P, Kaganovich I D, Wang H, Sydorenko D, Raitses Y, Hershkowitz N 2014 Phys. Plasmas 21 063502Google Scholar

    [35]

    Wang T T, Ma J X, Wei Z A 2015 Phys. Plasmas 22 093505Google Scholar

    [36]

    Liu J Y, Wang F, Sun J Z 2011 Phys. Plasmas 18 013506Google Scholar

    [37]

    邹秀, 邹滨雁, 籍延坤 2010 59 1902Google Scholar

    Zou X, Zou B Y, Ji Y K 2010 Acta Phys. Sin. 59 1902Google Scholar

  • 图 1  电负性等离子体磁鞘模型示意图

    Fig. 1.  Geometry of the electronegative magnetized plasma sheath model.

    图 2  负离子浓度和温度对离子马赫数下限的影响($\nu = 0.1$, $B = 0.1 \;{\rm T}$, $\theta = {30^ \circ }$, ${E_0} = 0.05$, ${\eta _{\rm{w}}} = 0.3$) (a)玻尔兹曼模型; (b)反射模型

    Fig. 2.  The effects of negative ions concentration and temperature on the lower limit of ion Mach number ($\nu = 0.1$, $B = 0.1 \;{\rm T}$, $\theta = {30^ \circ }$, ${E_0} = 0.05$, ${\eta _{\rm{w}}} = 0.3$): (a) Boltzmannian model; (b) reflection model.

    图 3  基板电势对离子马赫数下限的影响 (a)整体; (b)局部 ($\nu = 0.1$, $ B = 0.1 \;{\rm T}$, $\theta = {30^ \circ }$, ${E_0} = 0.05$)

    Fig. 3.  The effect of wall potential on the lower limit of ion Mach number: (a) Whole; (b) part ($\nu = 0.1$, $B = 0.1 \;{\rm T}$, $\theta = {30^ \circ }$, ${E_0} = 0.05$).

    图 4  鞘边电场对离子马赫数下限的影响($\nu = 0.1$, $B = 0.1 \;{\rm T}$, $\theta = {30^ \circ }$, $\alpha = 0.2$, $\sigma = 50$, ${\eta _{\rm{w}}} = 0.3$)

    Fig. 4.  The effect of the sheath edge electric field on the lower limit of ion Mach number ($\nu = 0.1$, $B = 0.1 \;{\rm T}$, $\theta = {30^ \circ }$, $\alpha = 0.2$, $\sigma = 50$, ${\eta _{\rm{w}}} = 0.3$).

    图 5  碰撞参数对离子马赫数下限的影响(${E_0} = 0.05$, $B = 0.1 \;{\rm T}$, $\theta = {30^ \circ }$, $\alpha = 0.2$, $\sigma = 50$, ${\eta _{\rm{w}}} = 0.3$)

    Fig. 5.  The effect of collision parameter on the lower limit of ion Mach number (${E_0} = 0.05$, $B = 0.1 \;{\rm T}$, $\theta = {30^ \circ }$, $\alpha = 0.2$, $\sigma = 50$, ${\eta _{\rm{w}}} = 0.3$).

    图 6  磁场角度对离子马赫数下限的影响(${E_0} = 0.05$, $B = 0.1\;{\rm{ T}}$, $\nu = 0.1$, $\alpha = 0.2$, $\sigma = 50$, ${\eta _{\rm{w}}} = 0.3$)

    Fig. 6.  The effect of magnetic field angle on the lower limit of ion Mach number (${E_0} = 0.05$, $B = 0.1\;{\rm{ T}}$, $\nu = 0.1$, $\alpha = 0.2$, $\sigma = 50$, ${\eta _{\rm{w}}} = 0.3$).

    图 7  鞘层中带电粒子密度分布(${\eta _{\rm{w}}} = 0.7$)

    Fig. 7.  The normalized charged particle density (${\eta _{\rm{w}}} = 0.7$).

    图 8  鞘层中带电粒子密度分布(${\eta _{\rm{w}}} = 10$)

    Fig. 8.  The normalized charged particle density (${\eta _{\rm{w}}} = 10$).

    Baidu
  • [1]

    Yamada H, Yoshida Z 1992 J. Plasma Phys. 48 229Google Scholar

    [2]

    Femandez Palop J I, Ballesteros J, Colomer V, Hemandez M A, Dengra A 1995 J. Appl. Phys. 77 2937Google Scholar

    [3]

    Femandez Palop J I, Colomer V, Ballesteros J, Hemandez M A, Dengra A 1996 Surf. Coat. Technol. 84 341Google Scholar

    [4]

    Amemiya H, Annaratone B M, Allen J E 1998 J. Plasma. Phys. 60 81Google Scholar

    [5]

    Ming L, Michael A V, Steven K D, Brett M J 2000 IEEE Trans. Plasma Sci. 28 248Google Scholar

    [6]

    WANG Z X, Liu J Y, Zou X, Liu Y, Wang X G 2003 Chin. Phys. Lett. 20 1537Google Scholar

    [7]

    Yasserian K, Aslaninejad M, Ghoranneviss M 2009 Phys. Plasmas 16 023504Google Scholar

    [8]

    Hatami M M, Shokri B, Niknam A R 2008 Phys. Plasmas 15 123501Google Scholar

    [9]

    Gong Y, Duan P, Zhang J H, Zou X, Liu J Y, Liu Y 2010 Chin. J. Comput. Phys. 27 883

    [10]

    Liu J Y, Wang Z X, Wang X G 2003 Phys. Plasmas 10 3032Google Scholar

    [11]

    Ghomi H, Khoramabadi M, Shukla P K, Ghorannevis M 2010 J. Appl. Phys. 108 063302Google Scholar

    [12]

    Ghomi H, Khoramabadi M 2010 J. Plasma. Phys. 76 247Google Scholar

    [13]

    Zou X, Liu H P, Qiu M H, Sun X H 2011 Chin. Phys. Lett. 28 125201Google Scholar

    [14]

    Ghomi H Khoramabadi M 2011 J Fusion Energ 30 481Google Scholar

    [15]

    刘惠平, 邹秀, 邹滨雁, 邱明辉 2012 61 035201Google Scholar

    Liu H P, Zou X, Zou B Y, Qiu M H 2012 Acta Phys. Sin. 61 035201Google Scholar

    [16]

    邱明辉, 刘惠平, 邹秀 2012 61 155204Google Scholar

    Qiu M H, Liu H P, Zou X 2012 Acta Phys. Sin. 61 155204Google Scholar

    [17]

    Hatami M M, Shokri B 2013 Phys. Plasmas 20 033506Google Scholar

    [18]

    Li J J, Ma J X, Wei Z A 2013 Phys. Plasmas 20 063503Google Scholar

    [19]

    Yasserian K, Aslaninejad M, Borghei M, Eshghabadi M 2010 J. Theor. Appl. Phys. 4 26

    [20]

    Yasserian K, Aslaninejad M 2012 Phys. Plasmas 19 073507Google Scholar

    [21]

    Shaw A K, Kar S, Goswami K S 2012 Phys. Plasmas 19 102108Google Scholar

    [22]

    Moulick R, Mahanta M K, Goswami K S 2013 Phys. Plasmas 20 094501Google Scholar

    [23]

    刘惠平, 邹秀, 邹滨雁, 邱明辉 2016 65 245201Google Scholar

    Liu H P, Zou X, Zou B Y, Qiu M H 2016 Acta Phys. Sin. 65 245201Google Scholar

    [24]

    Sobolewski M A, Wang Y C, Goyette A 2017 J. Appl. Phys. 122 053302Google Scholar

    [25]

    Regodon G F, Femandez-Palop J I, Tejero-del-Caz A, Diaz-Cabrera J M, Carmona-Cabezas R, Ballesteros J 2018 Plasma Sources Sci. Technol. 2018 27

    [26]

    Oudini N, Sirse N, Taccogna F, Ellingboe A R, Bendib A 2018 Phys. Plasmas 25 053510Google Scholar

    [27]

    Sternberg N, Poggie J 2004 IEEE Trans. Plasma Sci. 32 2217Google Scholar

    [28]

    Tskhakaya D D, Shukla P K, Eliasson B, Kuhn S 2005 Phys. Plasmas 12 103503Google Scholar

    [29]

    Pandey B P, Samarian A, Vladimirov S V 2007 Phys. Plasmas 14 093703Google Scholar

    [30]

    Zimmermann T M G, Coppins M, Allen J E 2009 Phys. Plasmas 16 043501Google Scholar

    [31]

    Zimmermann T M G, Coppins M, Allen J E 2010 Phys. Plasmas 17 022301Google Scholar

    [32]

    Krasheninnikova N S, Tang X, Roytershteyn V S 2010 Phys. Plasmas 17 057103Google Scholar

    [33]

    Sheehan J P, Hershkowitz N, Kaganovich I D, Wang H, Raitses Y, Barnat E V, Weatherford B R, Sydorenko D 2013 Phys. Rev. Lett. 111 075002Google Scholar

    [34]

    Sheehan J P, Kaganovich I D, Wang H, Sydorenko D, Raitses Y, Hershkowitz N 2014 Phys. Plasmas 21 063502Google Scholar

    [35]

    Wang T T, Ma J X, Wei Z A 2015 Phys. Plasmas 22 093505Google Scholar

    [36]

    Liu J Y, Wang F, Sun J Z 2011 Phys. Plasmas 18 013506Google Scholar

    [37]

    邹秀, 邹滨雁, 籍延坤 2010 59 1902Google Scholar

    Zou X, Zou B Y, Ji Y K 2010 Acta Phys. Sin. 59 1902Google Scholar

  • [1] 陈龙, 檀聪琦, 崔作君, 段萍, 安宇豪, 陈俊宇, 周丽娜. 电子非广延分布的多离子磁化等离子体鞘层特性.  , 2024, 73(5): 055201. doi: 10.7498/aps.73.20231452
    [2] 龚振洲, 魏浩, 范思源, 洪亚平, 吴撼宇, 邱爱慈. 15 MA Z箍缩装置真空磁绝缘传输线鞘层电子流分析.  , 2023, 72(3): 035204. doi: 10.7498/aps.72.20221901
    [3] 邹秀, 刘惠平, 张小楠, 邱明辉. 具有非广延分布电子的碰撞等离子体磁鞘的结构.  , 2021, 70(1): 015201. doi: 10.7498/aps.70.20200794
    [4] 陈龙, 孙少娟, 姜博瑞, 段萍, 安宇豪, 杨叶慧. 电子非麦氏分布的二次电子发射磁化鞘层特性.  , 2021, 70(24): 245201. doi: 10.7498/aps.70.20211061
    [5] 魏浩, 孙凤举, 呼义翔, 梁天学, 丛培天, 邱爱慈. 一种非轴对称磁绝缘电子鞘层边界的计算方法.  , 2017, 66(3): 038402. doi: 10.7498/aps.66.038402
    [6] 刘惠平, 邹秀, 邹滨雁, 邱明辉. 碰撞参数对磁化电负性等离子体鞘层结构的影响.  , 2016, 65(24): 245201. doi: 10.7498/aps.65.245201
    [7] 段萍, 曹安宁, 沈鸿娟, 周新维, 覃海娟, 刘金远, 卿绍伟. 电子温度对霍尔推进器等离子体鞘层特性的影响.  , 2013, 62(20): 205205. doi: 10.7498/aps.62.205205
    [8] 赵晓云, 张丙开, 张开银. 两种带电尘埃颗粒的等离子体鞘层玻姆判据.  , 2013, 62(17): 175201. doi: 10.7498/aps.62.175201
    [9] 邱明辉, 刘惠平, 邹秀. 斜磁场作用下碰撞电负性等离子体鞘层的玻姆判据.  , 2012, 61(15): 155204. doi: 10.7498/aps.61.155204
    [10] 刘惠平, 邹秀, 邹滨雁, 邱明辉. 电负性等离子体磁鞘的玻姆判据.  , 2012, 61(3): 035201. doi: 10.7498/aps.61.035201
    [11] 赵晓云, 刘金远, 段萍, 倪致祥. 不同成分等离子体鞘层的玻姆判据.  , 2011, 60(4): 045205. doi: 10.7498/aps.60.045205
    [12] 邹秀, 籍延坤, 邹滨雁. 斜磁场中碰撞等离子体鞘层的玻姆判据.  , 2010, 59(3): 1902-1906. doi: 10.7498/aps.59.1902
    [13] 邹秀, 邹滨雁, 刘惠平. 外加磁场对碰撞射频鞘层离子能量分布的影响.  , 2009, 58(9): 6392-6396. doi: 10.7498/aps.58.6392
    [14] 王道泳, 马锦秀, 李毅人, 张文贵. 等离子体中热阴极鞘层的结构.  , 2009, 58(12): 8432-8439. doi: 10.7498/aps.58.8432
    [15] 邹 秀, 刘惠平, 谷秀娥. 磁化等离子体的鞘层结构.  , 2008, 57(8): 5111-5116. doi: 10.7498/aps.57.5111
    [16] 段 萍, 刘金远, 宫 野, 张 宇, 刘 悦, 王晓钢. 等离子体鞘层中尘埃粒子的分布特性.  , 2007, 56(12): 7090-7099. doi: 10.7498/aps.56.7090
    [17] 邹 秀. 斜磁场作用下的射频等离子体平板鞘层结构.  , 2006, 55(4): 1907-1913. doi: 10.7498/aps.55.1907
    [18] 邹 秀, 刘金远, 王正汹, 宫 野, 刘 悦, 王晓钢. 磁场中等离子体鞘层的结构.  , 2004, 53(10): 3409-3412. doi: 10.7498/aps.53.3409
    [19] 王正汹, 刘金远, 邹 秀, 刘 悦, 王晓钢. 尘埃等离子体鞘层的玻姆判据.  , 2004, 53(3): 793-797. doi: 10.7498/aps.53.793
    [20] 谷云鹏, 马腾才. 粒子束对玻姆鞘层判据的影响.  , 2003, 52(5): 1196-1202. doi: 10.7498/aps.52.1196
计量
  • 文章访问数:  6069
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-29
  • 修回日期:  2019-10-20
  • 上网日期:  2020-01-01
  • 刊出日期:  2020-01-20

/

返回文章
返回
Baidu
map