-
基于建立的15 MA Z箍缩装置等效电路模型, 获得了外层磁绝缘传输线(magnetically-insulated transmission line, MITL)鞘层电子流分布规律: 从时间上看, 鞘层电子流幅值先减小、后增大, 波形呈“马鞍”型; 从空间上看, 鞘层电子流沿着功率流方向逐渐减小. 分析了MITL参数, 包括恒阻抗段真空阻抗、恒间隙段间距, 以及柱孔盘旋面位置半径对MITL末端鞘层电子流的影响. 计算结果显示: MITL末端鞘层电子流受MITL末端阻抗和柱孔盘旋面位置半径的影响较大. 当15 MA装置四层MITL并联真空阻抗从0.42 Ω增大到0.84 Ω时, 在负载聚爆前5 ns时刻, MITL末端鞘层电子流从184.7 kA降低至106.9 kA, 负载峰值电流减小约0.5 MA.The 15-MA driver is powered by 24 linear-transformer-driver (LTD) modules connected electrically in parallel. The magnetically-insulated-transmission-line (MITL) system of the 15-MA driver adopts a four-level design. It is expected that the primary source delivers a more than 15 MA current to a physics load. The typical one-dimensional steady-state pressure-balance model is adopted to calculate the electron flow current of the outer MITLs of the 15-MA driver after the magnetic insulation has been established. The cathode plasma expansion and the collisional flow electrons are considered on the basis of that model. Multiple designs with different characteristic parameters of the MITL system include the vacuum impedance of the constant-impedance segment of the outer-MITL, the minimum gap of the outer-MITL, and the location of the post-hole convolute (PHC). The flow currents of these designs are calculated in three typical times (1/3 peak load current time, peak load current time, and 5 ns before the Z-pinch stagnation) by establishing the equivalent circuit model of the 15-MA driver. The influences of these characteristic parameters on the electrical pulse transmission and convergence of the 15 MA driver are obtained. The calculation results show that the electron flow current at the end of MITL is greatly affected by the impedance of the end of MITL after the electron flow current has entered into the steady state magnetic insulation. The flow current decreases from 184.7 kA to 106.9 kA, while the load current is reduced by 0.5 MA, as the vacuum impedance increases from 0.42 Ω to 0.84 Ω. This is mainly because the central inductance increases by about 1.43 nH (from 9.94 nH to 11.37 nH). In the time of 5 ns before load stagnation, the flow current decreases from 181.9 kA to 85.1 kA as the minimum gap of the outer-MITL increases from 7.10 mm to 14.00 mm, and the peak load current drops only by about 0.1 MA. The flow current and load current decrease slowly as the location radius of the PHC decreases until the radius decreases to 7.65 mm. The research in this paper is helpful in guiding the structure optimization for the central converging region of future Z-pinch driver.
-
Keywords:
- Z-pinch /
- magnetically insulated transmission line /
- electron flow current /
- vacuum impedance
[1] Hutsel B T, Corcoran P A, Cuneo M E, et al. 2018 Phys. Rev. ST Accel. Beams 21 030401Google Scholar
[2] 邹文康, 郭帆, 王贵林, 陈林, 卫兵, 宋盛义 2015 高电压技术 41 1844Google Scholar
Zou W K, Guo F, Wang G L, Chen L, Wei B, Song S Y 2015 High Volt. Eng. 41 1844Google Scholar
[3] Deng J J, Xie W P, Feng S P, et al. 2016 Matter Radiat. Extremes 1 48Google Scholar
[4] Stygar W A, Awe T J, Bailey J E, et al. 2015 Phys. Rev. ST Accel. Beams 18 110401Google Scholar
[5] Spielman R B, Froula D H, Brent G, et al. 2017 Matter Radiat. Extremes 5 204Google Scholar
[6] Spielman R B, Reisman D B 2019 Matter Radiat. Extremes 4 027402Google Scholar
[7] Chen L, Zou W K, Zhou L J, et al. 2019 Phys. Rev. Accel. Beams 22 030401Google Scholar
[8] Madrid E A, Rose D V, Welch D R, et al. 2013 Phys. Rev. ST Accel. Beams 16 120401Google Scholar
[9] Rose D V, Madrid E A, Welch D R, Clark R E, Mostrom C B, Stygar W A, Cuneo M E 2015 Phys. Rev. ST Accel. Beams 18 030402Google Scholar
[10] Gomez M R, Gilgenbach R M, Cuneo M E, et al. 2017 Phys. Rev. ST Accel. Beams 20 010401Google Scholar
[11] Waisman E M, Desjarlais M P, Cuneo M E 2019 Phys. Rev. Accel. Beams 22 030402Google Scholar
[12] Rose D V, Waisman E M, Desjarlais M P, Hutsel B T, Cuneo M E, Welch D, Bennett N, Laity G R 2020 Phys. Rev. Accel. Beams 23 080401Google Scholar
[13] Mazarakis M G, Cuneo M E, Fowler W E, et al. 2013 The 19 th IEEE Pulsed Power Conference San Francisco, CA, USA, June 16−21 2013 p1
[14] Bennett N, Welch D R, Jennings C A, et al. 2019 Phys. Rev. Accel. Beams 22 120401Google Scholar
[15] Bennett N, Welch D R, Laity G, Rose D V, Cuneo M E 2021 Phys. Rev. Accel. Beams 24 060401Google Scholar
[16] Welch D R, Bennett N, Genoni T C, Thoma C, Rose. D V 2020 Phys. Rev. Accel. Beams 23 110401Google Scholar
[17] 龚振洲, 魏浩, 范思源, 孙凤举, 吴撼宇, 邱爱慈 2022 71 105202Google Scholar
Gong Z Z, Wei H, Fan S Y, Sun F J, Wu H Y, Qiu A C 2022 Acta Phys. Sin. 71 105202Google Scholar
[18] Stygar W A, Wagoner T C, Ives H C, et al. 2006 Phys. Rev. ST Accel. Beams 9 090401Google Scholar
[19] Stygar W A, Corcoran P A, Ives H C, et al. 2009 Phys. Rev. ST Accel. Beams 12 120401Google Scholar
[20] Jennings C A, Chittenden J P, Cuneo M E, et al. 2010 IEEE Trans. Plasma Sci. 38 529Google Scholar
-
表 1 几种MITL典型参数对比
Table 1. Comparison of the structural parameters of the MITL of the different designs.
组 A层阻抗ZA/Ω B层阻抗ZB/Ω C层阻抗ZC/Ω D层阻抗ZD/Ω 四层并联阻抗ZMITL/Ω 最小间隙距离h/mm PHC位置半径rcon/cm 中心区初始
电感/nHⅠ 2.83 2.83 4.24 4.24 0.84 10.00 7.65 11.37 Ⅱ 2.00 2.00 3.00 3.00 0.60 10.00 7.65 10.50 Ⅲ 1.41 1.41 2.12 2.12 0.42 10.00 7.65 9.94 Ⅳ 2.00 2.00 3.00 3.00 0.60 14.10 7.65 10.84 Ⅴ 2.00 2.00 3.00 3.00 0.60 7.10 7.65 10.33 Ⅵ 2.00 2.00 3.00 3.00 0.60 10.00 10.82 10.90 Ⅶ 2.00 2.00 3.00 3.00 0.60 10.00 5.41 10.11 -
[1] Hutsel B T, Corcoran P A, Cuneo M E, et al. 2018 Phys. Rev. ST Accel. Beams 21 030401Google Scholar
[2] 邹文康, 郭帆, 王贵林, 陈林, 卫兵, 宋盛义 2015 高电压技术 41 1844Google Scholar
Zou W K, Guo F, Wang G L, Chen L, Wei B, Song S Y 2015 High Volt. Eng. 41 1844Google Scholar
[3] Deng J J, Xie W P, Feng S P, et al. 2016 Matter Radiat. Extremes 1 48Google Scholar
[4] Stygar W A, Awe T J, Bailey J E, et al. 2015 Phys. Rev. ST Accel. Beams 18 110401Google Scholar
[5] Spielman R B, Froula D H, Brent G, et al. 2017 Matter Radiat. Extremes 5 204Google Scholar
[6] Spielman R B, Reisman D B 2019 Matter Radiat. Extremes 4 027402Google Scholar
[7] Chen L, Zou W K, Zhou L J, et al. 2019 Phys. Rev. Accel. Beams 22 030401Google Scholar
[8] Madrid E A, Rose D V, Welch D R, et al. 2013 Phys. Rev. ST Accel. Beams 16 120401Google Scholar
[9] Rose D V, Madrid E A, Welch D R, Clark R E, Mostrom C B, Stygar W A, Cuneo M E 2015 Phys. Rev. ST Accel. Beams 18 030402Google Scholar
[10] Gomez M R, Gilgenbach R M, Cuneo M E, et al. 2017 Phys. Rev. ST Accel. Beams 20 010401Google Scholar
[11] Waisman E M, Desjarlais M P, Cuneo M E 2019 Phys. Rev. Accel. Beams 22 030402Google Scholar
[12] Rose D V, Waisman E M, Desjarlais M P, Hutsel B T, Cuneo M E, Welch D, Bennett N, Laity G R 2020 Phys. Rev. Accel. Beams 23 080401Google Scholar
[13] Mazarakis M G, Cuneo M E, Fowler W E, et al. 2013 The 19 th IEEE Pulsed Power Conference San Francisco, CA, USA, June 16−21 2013 p1
[14] Bennett N, Welch D R, Jennings C A, et al. 2019 Phys. Rev. Accel. Beams 22 120401Google Scholar
[15] Bennett N, Welch D R, Laity G, Rose D V, Cuneo M E 2021 Phys. Rev. Accel. Beams 24 060401Google Scholar
[16] Welch D R, Bennett N, Genoni T C, Thoma C, Rose. D V 2020 Phys. Rev. Accel. Beams 23 110401Google Scholar
[17] 龚振洲, 魏浩, 范思源, 孙凤举, 吴撼宇, 邱爱慈 2022 71 105202Google Scholar
Gong Z Z, Wei H, Fan S Y, Sun F J, Wu H Y, Qiu A C 2022 Acta Phys. Sin. 71 105202Google Scholar
[18] Stygar W A, Wagoner T C, Ives H C, et al. 2006 Phys. Rev. ST Accel. Beams 9 090401Google Scholar
[19] Stygar W A, Corcoran P A, Ives H C, et al. 2009 Phys. Rev. ST Accel. Beams 12 120401Google Scholar
[20] Jennings C A, Chittenden J P, Cuneo M E, et al. 2010 IEEE Trans. Plasma Sci. 38 529Google Scholar
计量
- 文章访问数: 3259
- PDF下载量: 58
- 被引次数: 0