搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强激光间接驱动材料动态破碎过程的实验技术研究

储根柏 于明海 税敏 范伟 席涛 景龙飞 赵永强 吴玉迟 辛建婷 周维民

引用本文:
Citation:

强激光间接驱动材料动态破碎过程的实验技术研究

储根柏, 于明海, 税敏, 范伟, 席涛, 景龙飞, 赵永强, 吴玉迟, 辛建婷, 周维民

Experimental technique for dynamic fragmentation of materials via indirect drive by high-intensity laser

Chu Gen-Bai, Yu Ming-Hai, Shui Min, Fan Wei, Xi Tao, Jing Long-Fei, Zhao Yong-Qiang, Wu Yu-Chi, Xin Jian-Ting, Zhou Wei-Min
PDF
HTML
导出引用
  • 强激光驱动加载已成为冲击波作用下材料动态破碎过程研究的一种有效手段. 采用间接驱动方式, 设计合适的腔型进行物理实验研究, 可实现更大且更均匀的冲击加载一维区. 采用数值模拟和物理实验方法, 研究强激光间接驱动材料动态破碎过程的实验技术. 首先, 利用IRAD程序设计适用于开展动态破碎过程研究的半柱腔, 其直径为2 mm、腔长为2 mm; 进而通过物理实验获得此腔型下多个激光能量点、脉宽2 ns和3 ns条件下辐射峰值温度和波形; 最后, 利用流体模拟方法给出多种辐射波形下的冲击加载波形. 利用高能X射线成像和光子多普勒干涉仪诊断给出间接驱动加载下层裂过程的物理图像和速度历史. 经分析发现, 间接驱动的加载一维区达到2 mm, 平面性优于5%, 能有效地开展相关物理实验研究. 研究结果为新型柱腔设计、冲击加载技术及动态破碎过程研究提供了重要的研究基础.
    High intensity laser is an efficient method for shock generator to study the dynamic fragmentation of materials, in which the direct drive is widely utilized. The continuum phase plate is used for smoothing the focal spot of the laser, but the loading region is usually smaller than the designed value. In this work, we study an experimental technique for investigating the dynamic fragmentation of metal via indirectly driving a high-intensity laser. Firstly, the radiation distributions on the sample for four different hohlraums each with a diameter of 2 mm but different length are simulated via the IRAD software, in which the proper hohlraum with a diameter of 2 mm and a height of 2 mm is selected for the experiments. Secondly, the peak temperatures and radiation waves under different laser energy and pulse durations are measured. The peak temperature decreases simultaneously as the laser energy decreases. In addition, the loading shock waves under a peak temperature of 140 eV and different radiation waves are estimated via the hydrodynamic simulation. It is revealed that a peak pressure of several tens of gigapascals is acquired and the peak pressure is greatly increased when the 10 μm CH layer is placed on the sample. In the end, the dynamic fragmentation process via indirect drive is investigated by using the high energy X-ray radiography and photonic Doppler velocimetry. The radiograph is a snapshot at 600 ns and shows a typical result of the spall process. The first layer is measured to be 0.06 mm thick and 0.3 mm away from the unperturbed free surface. It is also exhibited that the hohlraum is expanded to a large extent but is not broken up. The jump-up velocity and time of spall are measured to be 0.65 km/s and 131 ns, respectively. The average velocity of the first layer is estimated to be (0.63 ± 0.1) km/s, obtained via the distance of 0.3 mm divided by the time difference of 469 ns (600 ns minus 131 ns). The one-dimensional loading region is 2 mm, and the flatness is better than 5 %. This work provides a reference for designing new hohlraum, shock wave loading technique and dynamic fragmentation process.
      通信作者: 储根柏, cgbcc@sina.com ; 辛建婷, jane_xjt@126.com
    • 基金项目: 国家自然科学基金(批准号: 11804319, 11805177)资助的课题
      Corresponding author: Chu Gen-Bai, cgbcc@sina.com ; Xin Jian-Ting, jane_xjt@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804319, 11805177)
    [1]

    Signor L, Lescoute E, Loison D, de Rességuier T, Dragon A, Roy G 2010 EPJ Web of Conferences 6 39012Google Scholar

    [2]

    Resseguier T 2012 AIP Conf. Proc. 1426 1015

    [3]

    Buttler W T, Lamoreaux S K, Schulze R K, Schwarzkopf J D, Cooley J C, Grover M, Hammerberg J E, La Lone B M, Llobet A, Manzanares R, Martinez J I, Schmidt D W, Sheppard D G, Stevens G D, Turley W D, Veeser L R 2017 J. Dyn. Behav. Mater. 3 334Google Scholar

    [4]

    Buttler W T, Williams R J R, Najjar F M 2017 J. Dyn. Behav. Mater. 3 151Google Scholar

    [5]

    Rességuier T, Signor L, Dragon A, Roy G 2009 Int. J. Fract. 163 109

    [6]

    Smith R F, Eggert J H, Jeanloz R, Duffy T S, Braun D G, Patterson J R, Rudd R E, Biener J, Lazicki A E, Hamza A V, Wang J, Braun T, Benedict L X, Celliers P M, Collins G W 2014 Nature 511 330Google Scholar

    [7]

    Xin J, He W, Shao J, Li J, Wang P, Gu Y 2014 J. Phys. D: Appl. Phys. 47 325304Google Scholar

    [8]

    Rességuier T, Lescoute E, Signor L, Loison D, Dragon A, Boustie M, Cuq-Lelandais J P, Berthe L 2011 EPJ Web of Conferences 10 00023

    [9]

    Rességuier T, Loison D, Dragon A, Lescoute E 2014 Metals 4 490Google Scholar

    [10]

    Campbell E M, Goncharov V N, Sangster T C, Regan S P, Radha P B, Betti R, Myatt J F, Froula D H, Rosenberg M J, Igumenshchev I V, Seka W, Solodov A A, Maximov A V, Marozas J A, Collins T J B, Turnbull D, Marshall F J, Shvydky A, Knauer J P, McCrory R L, Sefkow A B, Hohenberger M, Michel P A, Chapman T, Masse L, Goyon C, Ross S, Bates J W, Karasik M, Oh J, Weaver J, Schmitt A J, Obenschain K, Obenschain S P, Reyes S, van Wonterghem B 2017 Matt. Rad. Extre. 2 37Google Scholar

    [11]

    Millot M, Coppari F, Rygg J R, Correa Barrios A, Hamel S, Swift D C, Eggert J H 2019 Nature 569 251Google Scholar

    [12]

    Su X, Xia L, Liu K, Zhang P, Li P, Zhao R, Wang B 2018 Chin. Opt. Lett. 16 102201Google Scholar

    [13]

    Chu G, Xi T, Yu M, Fan W, Zhao Y, Shui M, He W, Zhang T, Zhang B, Wu Y, Zhou W, Cao L, Xin J, Gu Y 2018 Rev. Sci. Instrum. 89 115106Google Scholar

    [14]

    宋天明, 杨家敏, 朱托, 易荣清, 黄成武 2013 强激光与粒子束 25 3115

    Song T M, Yang J M, Zhu T, Yi R Q, Huang C W 2013 High Pow. Las. Part. Beam. 25 3115

    [15]

    黎航, 蒲昱东, 景龙飞, 等 2013 62 225204Google Scholar

    Li H, Pu Y D, Jing L F, et al. 2013 Acta. Phys. Sin 62 225204Google Scholar

    [16]

    Kondratev A N, Andriyash A V, Astashkin M V, Baranov V K, Golubinskii A G, Irinichev D A, Khatunkin A Y, Kuratov S E, Mazanov V A, Rogozkin D B, Stepushkin S N 2018 AIP Conf. Proc. 1979 080008

    [17]

    Park H S, Chambers D M, Chung H K, Clarke R J, Eagleton R, Giraldez E, Goldsack T, Heathcote R, Izumi N, Key M H, King J A, Koch J A, Landen O L, Nikroo A, Patel P K, Price D F, Remington B A, Robey H F, Snavely R A, Steinman D A, Stephens R B, Stoeckl C, Storm M, Tabak M, Theobald W, Town R P J, Wickersham J E, Zhang B B 2006 Phys. Plasmas 13 056309Google Scholar

    [18]

    Park H S, Maddox B R, Giraldez E, Hatchett S P, Hudson L T, Izumi N, Key M H, Le Pape S, MacKinnon A J, MacPhee A G, Patel P K, Phillips T W, Remington B A, Seely J F, Tommasini R, Town R, Workman J, Brambrink E 2008 Phys. Plasmas 15 072705Google Scholar

    [19]

    Jing L, Jiang S, Yang D, Li H, Zhang L, Lin Z, Li L, Kuang L, Huang Y, Ding Y 2015 Phys. Plasmas 22 022709Google Scholar

    [20]

    Videau L, Combis P, Laffite S, Lescoute E, Jadaud J P, Chevalier J M, Raffestin D, Ducasse F, Patissou L, Geille A, Resseguier T 2012 AIP Conf. Proc. 1426 1011

  • 图 1  激光间接驱动冲击加载物理实验示意图

    Fig. 1.  The schematic view of indirect driving shock wave experiments via lasers.

    图 2  不同腔长下样品处的辐射分布

    Fig. 2.  Radiation distribution in the surface of the sample for hohlraum with different lengths.

    图 3  辐射波形 (a)激光脉宽3 ns; (b)激光脉宽2 ns

    Fig. 3.  Radiation wave at different pulse duration of laser: (a) 3 ns; (b) 2 ns.

    图 4  (a)不同辐射波形; (b)冲击加载波形

    Fig. 4.  (a) Radiation wave; (b) loading shock wave at different pulse duration of laser.

    图 5  高能X射线动态诊断间接驱动的层裂过程

    Fig. 5.  High energy X-ray radiography of spall from indirect drive by laser.

    图 6  间接驱动层裂过程的自由面速度历史

    Fig. 6.  Velocity of free surface of spall from indirect drive by laser.

    Baidu
  • [1]

    Signor L, Lescoute E, Loison D, de Rességuier T, Dragon A, Roy G 2010 EPJ Web of Conferences 6 39012Google Scholar

    [2]

    Resseguier T 2012 AIP Conf. Proc. 1426 1015

    [3]

    Buttler W T, Lamoreaux S K, Schulze R K, Schwarzkopf J D, Cooley J C, Grover M, Hammerberg J E, La Lone B M, Llobet A, Manzanares R, Martinez J I, Schmidt D W, Sheppard D G, Stevens G D, Turley W D, Veeser L R 2017 J. Dyn. Behav. Mater. 3 334Google Scholar

    [4]

    Buttler W T, Williams R J R, Najjar F M 2017 J. Dyn. Behav. Mater. 3 151Google Scholar

    [5]

    Rességuier T, Signor L, Dragon A, Roy G 2009 Int. J. Fract. 163 109

    [6]

    Smith R F, Eggert J H, Jeanloz R, Duffy T S, Braun D G, Patterson J R, Rudd R E, Biener J, Lazicki A E, Hamza A V, Wang J, Braun T, Benedict L X, Celliers P M, Collins G W 2014 Nature 511 330Google Scholar

    [7]

    Xin J, He W, Shao J, Li J, Wang P, Gu Y 2014 J. Phys. D: Appl. Phys. 47 325304Google Scholar

    [8]

    Rességuier T, Lescoute E, Signor L, Loison D, Dragon A, Boustie M, Cuq-Lelandais J P, Berthe L 2011 EPJ Web of Conferences 10 00023

    [9]

    Rességuier T, Loison D, Dragon A, Lescoute E 2014 Metals 4 490Google Scholar

    [10]

    Campbell E M, Goncharov V N, Sangster T C, Regan S P, Radha P B, Betti R, Myatt J F, Froula D H, Rosenberg M J, Igumenshchev I V, Seka W, Solodov A A, Maximov A V, Marozas J A, Collins T J B, Turnbull D, Marshall F J, Shvydky A, Knauer J P, McCrory R L, Sefkow A B, Hohenberger M, Michel P A, Chapman T, Masse L, Goyon C, Ross S, Bates J W, Karasik M, Oh J, Weaver J, Schmitt A J, Obenschain K, Obenschain S P, Reyes S, van Wonterghem B 2017 Matt. Rad. Extre. 2 37Google Scholar

    [11]

    Millot M, Coppari F, Rygg J R, Correa Barrios A, Hamel S, Swift D C, Eggert J H 2019 Nature 569 251Google Scholar

    [12]

    Su X, Xia L, Liu K, Zhang P, Li P, Zhao R, Wang B 2018 Chin. Opt. Lett. 16 102201Google Scholar

    [13]

    Chu G, Xi T, Yu M, Fan W, Zhao Y, Shui M, He W, Zhang T, Zhang B, Wu Y, Zhou W, Cao L, Xin J, Gu Y 2018 Rev. Sci. Instrum. 89 115106Google Scholar

    [14]

    宋天明, 杨家敏, 朱托, 易荣清, 黄成武 2013 强激光与粒子束 25 3115

    Song T M, Yang J M, Zhu T, Yi R Q, Huang C W 2013 High Pow. Las. Part. Beam. 25 3115

    [15]

    黎航, 蒲昱东, 景龙飞, 等 2013 62 225204Google Scholar

    Li H, Pu Y D, Jing L F, et al. 2013 Acta. Phys. Sin 62 225204Google Scholar

    [16]

    Kondratev A N, Andriyash A V, Astashkin M V, Baranov V K, Golubinskii A G, Irinichev D A, Khatunkin A Y, Kuratov S E, Mazanov V A, Rogozkin D B, Stepushkin S N 2018 AIP Conf. Proc. 1979 080008

    [17]

    Park H S, Chambers D M, Chung H K, Clarke R J, Eagleton R, Giraldez E, Goldsack T, Heathcote R, Izumi N, Key M H, King J A, Koch J A, Landen O L, Nikroo A, Patel P K, Price D F, Remington B A, Robey H F, Snavely R A, Steinman D A, Stephens R B, Stoeckl C, Storm M, Tabak M, Theobald W, Town R P J, Wickersham J E, Zhang B B 2006 Phys. Plasmas 13 056309Google Scholar

    [18]

    Park H S, Maddox B R, Giraldez E, Hatchett S P, Hudson L T, Izumi N, Key M H, Le Pape S, MacKinnon A J, MacPhee A G, Patel P K, Phillips T W, Remington B A, Seely J F, Tommasini R, Town R, Workman J, Brambrink E 2008 Phys. Plasmas 15 072705Google Scholar

    [19]

    Jing L, Jiang S, Yang D, Li H, Zhang L, Lin Z, Li L, Kuang L, Huang Y, Ding Y 2015 Phys. Plasmas 22 022709Google Scholar

    [20]

    Videau L, Combis P, Laffite S, Lescoute E, Jadaud J P, Chevalier J M, Raffestin D, Ducasse F, Patissou L, Geille A, Resseguier T 2012 AIP Conf. Proc. 1426 1011

  • [1] 王碧涵, 李冰, 刘旭强, 王毫, 蒋升, 林传龙, 杨文革. 毫秒时间分辨同步辐射X射线衍射和高压快速加载装置及应用.  , 2022, 71(10): 100702. doi: 10.7498/aps.71.20212360
    [2] 张凤国, 刘军, 何安民, 赵福祺, 王裴. 强冲击加载下延性金属卸载熔化损伤/破碎问题的物理建模及其应用.  , 2022, 71(24): 244601. doi: 10.7498/aps.71.20221340
    [3] 鞠晓璐, 李可, 余福成, 许明伟, 邓彪, 李宾, 肖体乔. 电解池电化学反应过程的运动衬度X射线成像.  , 2022, 71(14): 144101. doi: 10.7498/aps.71.20220339
    [4] 孙婷, 王宇, 郭任彤, 卢知为, 栗建兴. 强激光驱动高能极化正负电子束与偏振伽马射线的研究进展.  , 2021, 70(8): 087901. doi: 10.7498/aps.70.20210009
    [5] 张彬, 成鹏, 李清廉, 陈慧源, 李晨阳. 液体横向射流在气膜作用下的破碎过程.  , 2021, 70(5): 054702. doi: 10.7498/aps.70.20201384
    [6] 陈小辉, 谭伯仲, 薛桃, 马云灿, 靳赛, 李志军, 辛越峰, 李晓亚, 李俊. 高压高应变率加载下多晶相变的原位X射线衍射.  , 2020, 69(24): 246201. doi: 10.7498/aps.69.20200929
    [7] 张天奎, 于明海, 董克攻, 吴玉迟, 杨靖, 陈佳, 卢峰, 李纲, 朱斌, 谭放, 王少义, 闫永宏, 谷渝秋. 激光高能X射线成像中探测器表征与电子影响研究.  , 2017, 66(24): 245201. doi: 10.7498/aps.66.245201
    [8] 刘鑫, 易明皓, 郭金川. 线焦斑X射线源成像.  , 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [9] 侯鹏程, 钟哲强, 文萍, 张彬. 激光间接驱动球形腔新型光路排布方案.  , 2016, 65(2): 024202. doi: 10.7498/aps.65.024202
    [10] 乔秀梅, 郑无敌, 高耀明. 间接驱动内爆靶丸示踪元素Ar发射X光谱线的理论模拟研究.  , 2015, 64(4): 045201. doi: 10.7498/aps.64.045201
    [11] 陈永涛, 任国武, 汤铁钢, 胡海波. 爆轰加载下金属样品的熔化破碎现象诊断.  , 2013, 62(11): 116202. doi: 10.7498/aps.62.116202
    [12] 晏骥, 郑建华, 陈黎, 林稚伟, 江少恩. X射线相衬成像技术应用于高能量密度物理条件下内爆靶丸诊断.  , 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [13] 乔秀梅, 郑无敌, 高耀明, 叶文华. 神光Ⅱ间接驱动内爆实验ArX射线谱线模拟研究.  , 2012, 61(17): 175201. doi: 10.7498/aps.61.175201
    [14] 程冠晓, 胡超. X射线相衬成像光子筛.  , 2011, 60(8): 080703. doi: 10.7498/aps.60.080703
    [15] 苏兆锋, 杨海亮, 邱爱慈, 孙剑锋, 丛培天, 王亮平, 雷天时, 韩娟娟. 高能脉冲X射线能谱测量.  , 2010, 59(11): 7729-7735. doi: 10.7498/aps.59.7729
    [16] 陈 博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明 海, 吴自玉. X射线光栅相位成像的理论和方法.  , 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [17] 曹柱荣, 江少恩, 陈家斌, 缪文勇, 周维民, 陈 铭, 谷渝秋, 丁永坤. 神光Ⅱ装置间接驱动DD燃料面密度诊断.  , 2007, 56(9): 5330-5334. doi: 10.7498/aps.56.5330
    [18] 于 斌, 彭 翔, 田劲东, 牛憨笨. 硬x射线同轴相衬成像的相位恢复.  , 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
    [19] 燕 飞, 张 杰, 董全力, 鲁 欣, 李英骏. 掠入射驱动产生x射线激光的数值模拟.  , 2005, 54(10): 4741-4746. doi: 10.7498/aps.54.4741
    [20] 张 彬, 吕百达, 肖 峻. 激光间接驱动聚变的光束均匀化方案研究.  , 1998, 47(12): 1998-2004. doi: 10.7498/aps.47.1998
计量
  • 文章访问数:  6564
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-16
  • 修回日期:  2019-11-01
  • 上网日期:  2020-01-01
  • 刊出日期:  2020-01-20

/

返回文章
返回
Baidu
map