搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋磁铁氧体在实现低频电磁波吸收中的作用

叶康平 裴文瑾 郗翔 蒲殷 伍瑞新

引用本文:
Citation:

旋磁铁氧体在实现低频电磁波吸收中的作用

叶康平, 裴文瑾, 郗翔, 蒲殷, 伍瑞新

Achieving low frequency electromagnetic wave absorption by gyromagnetic ferrite

Ye Kang-Ping, Pei Wen-Jin, Xi Xiang, Pu Yin, Wu Rui-Xin
PDF
HTML
导出引用
  • 本文研究了旋磁铁氧体材料在不同条件下(磁化状态, 大块材料和离散的阵列形式)对低频电磁波的吸收性能以及铁氧体基元间的耦合作用对吸收带宽的影响. 研究结果表明, 通过旋磁铁氧体在吸波材料中的结构设计可以实现对低频电磁波的高效吸收. 文中4 mm大块薄层旋磁铁氧体反射率的–10 dB频点能低至0.48 GHz, 并可以通过调整偏置磁场的大小或者离散铁氧体基元的大小灵活地改变共振频率. 引入不同尺寸的基元形成的多谐振峰及其相互的耦合可以有效拓展–10 dB带宽, 并且这种展宽作用在不同的磁化状态下都是有效的. 当采用横向偏置场700 Oe时, 两基元吸波材料–10 dB带宽可达单个基元各自作用带宽之和的105.7%.
    Under the action of static bias magnetic field, the magnetized ferrite has a permeability tensor which can be adjusted by the applied magnetic field. In this paper, the absorption properties of bulk gyromagnetic ferrites under different magnetized conditions are studied and the great potential of gyromagnetic ferrite in achieving low frequency electromagnetic wave absorption is demonstrated. Full wave electromagnetic simulations are performed based on the finite element method (FEM). A floquet port is adopted at the top boundary of the unit cell to simulate a normally incident plane wave. The unit cell boundary conditions are used in the x-y plane to simulate a periodic structure. Orthogonality magnetization in plane is utilized to solve the polarization selectivity in the condition of transverse magnetic field. The influence on absorption capacity of discrete ferrite array structure and the coupling effect of ferrite elements with different sizes are also studied in consideration of the size effect. The simulation results show that a thin bulk gyromagnetic ferrite layer whose thickness is only 4 mm can possess frequency as low as 0.48 GHz and reflectivity below –10 dB. Gyromagnetic ferrite presents different absorption properties under longitudinal magnetization and transversal magnetization, and different polarization directions in transversal magnetization as well. When longitudinal bias magnetic field H0 = 200 Oe, the bandwidth of the reflectivity below –10 dB ranges from 0.48 to 1.84 GHz. The resonant absorption frequency can be regulated by adjusting bias magnetic field and the size of ferrite element. In general, a large bias magnetic field leads to a high resonant frequency due to the ferromagnetic resonance frequency positively associated with the applied magnetic field, but a ferrite array consisting of larger size elements provides a lower resonant frequency for the size resonance negatively associated with the size. By introducing the coupling between elements with different sizes, the reflection bandwidth below –10 dB can be effectively extended to above 80% of the sum of the bandwidth possessed by single unit cell, especially 105.7% under transversal bias magnetic field 700 Oe. And the broadening effect is effective in both longitudinal and transverse magnetized state but it will be weaker when the two absorption peaks are closer. To further understand the absorption mechanism of the two-element absorber, the distribution of the electric field, magnetic field and power loss density are examined. The results prove that the two peaks at the lower frequency exactly originates from $ \Delta R = 0$ and the higher frequency originates from $ \Delta R = 4$, and therefore the widened absorption is contributed by the coupled multiple resonances provided by the elements with different sizes.
      通信作者: 伍瑞新, rxwu@nju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61771237)、江苏省电磁波先进调控技术重点实验室和江苏高校优势学科建设工程资助的课题
      Corresponding author: Wu Rui-Xin, rxwu@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61771237), the Project of the Key Laboratory of Advanced Electromagnetic Wave Control Technology in Jiangsu Province, and Construction Project of Superior Discipline in Universities in Jiangsu Province, China
    [1]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [2]

    Ding F, Cui Y X, Ge X C, Jin Y, He S L 2012 Appl. Phys. Lett. 100 103506Google Scholar

    [3]

    Zhang Y, Huang Y, Zhang T F, Chang H C, Xiao P S, Chen H H, Huang Z Y, Chen Y S 2015 Adv. Mater. 27 2049Google Scholar

    [4]

    Wang Y, Du Y C, Xu P, Qiang R, Han X J 2017 Polymers 9 29Google Scholar

    [5]

    Liu Y P, Zhang B Z, Duan J P, Xu Y G 2018 Appl. Opt. 57 10257Google Scholar

    [6]

    Zhang X J, Wang G S, Cao W Q, Wei Y Z, Liang J F, Guo L, Cao M S 2014 ACS Appl. Mater. Interfaces 6 7471Google Scholar

    [7]

    Zhang Y, Huang Y, Chen H H, Huang Z Y, Yang Y, Xiao P S, Zhou Y, Chen Y S 2016 Carbon 105 438Google Scholar

    [8]

    Wang D J, Zhang J Y, He P, Hou Z L 2019 Ceram. Int. 45 23043Google Scholar

    [9]

    周卓辉, 刘晓来, 黄大庆, 康飞宇 2014 63 184101Google Scholar

    Zhou Z H, Liu X L, Huang D Q, Kang F Y 2014 Acta Phys. Sin. 63 184101Google Scholar

    [10]

    Zhang K L, Zhang J Y, Hou Z L, Bi S, Zhao Q L 2019 Carbon 141 608Google Scholar

    [11]

    Wang J, Gao C N, Jiang Y N, Charles N A 2017 Chin. Phys. B 26 114102Google Scholar

    [12]

    Wang Y, Du Y C, Qiang R, Tian C H, Xu P, Han X J 2016 Adv. Mater. Interfaces 3 1500684Google Scholar

    [13]

    Alkuh M S, Famili M H N, Shirvan M M M, Moeini M H 2016 Mater. Des. 100 73Google Scholar

    [14]

    Amano M, Kotsuka Y 2003 IEEE Trans. Microwave Theory Tech. 51 238Google Scholar

    [15]

    Kazantsev Y N, Lopatin A V, Kazantseva N E, Shatrov A D, Mal'tsev V P, Vilcakova J, Saha P 2010 IEEE Trans. Antennas Propag. 58 1227Google Scholar

    [16]

    Chen H Y, Zhang H B, Deng L J 2010 IEEE Antennas Wirel. Propag. Lett. 9 899Google Scholar

    [17]

    Rozanov K N, Li Z W, Chen L F, Koledintseva M Y 2005 J. Appl. Phys. 97 013905

    [18]

    Park M J, Choi J H, Kim S S 2000 Intermag Proceedings of International Magnetics Conference Toronto, Canada, April 09−12, 2000 p3272

    [19]

    Jacobo S E, Fano W G, Razzitte A C, Digiovanni N D, Trainotti V 1998 Proceedings of the 67th Annual Conference on Electrical Insulation and Dielectric Phenomena Atlanta, USA, October 25−28, 1998 p273

    [20]

    Bi K, Guo Y S, Liu X M, Zhao Q, Xiao J H, Lei M, Zhou J 2014 Sci. Rep. 4 7001

    [21]

    Yang Y J, Huang Y J, Wen G J, Zhong J P, Sun H B, Oghenemuero G 2012 Chin. Phys. B 21 038501Google Scholar

    [22]

    郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅 2015 64 077801Google Scholar

    Guo F, Du H L, Qu S B, Xia S, Xu Z, Zhao J F, Zhang H M 2015 Acta Phys. Sin. 64 077801Google Scholar

    [23]

    Meena R S, Bhattachrya S, Chatterjee R 2010 J. Magn. Magn. Mater. 322 1923Google Scholar

    [24]

    Liu X S, Hernandez-Gomez P, Huang K, Zhou S Q, Wang Y, Cai X, Sun H J, Ma B 2006 J. Magn. Magn. Mater. 305 524Google Scholar

    [25]

    Bercoff P G, Herme C, Jacobo S E 2009 J. Magn. Magn. Mater. 321 2245Google Scholar

    [26]

    Zuo X, How H, Somu S, Vittoria C 2003 IEEE Trans. Magn. 39 3160Google Scholar

    [27]

    Pozar D M 2004 Microwave Engineering (3rd ed) (New York: Wiely) pp391−395

    [28]

    Yang Y, Yang Y, Wen X, Ding J 2014 J. Appl. Phys. 115 17A521Google Scholar

    [29]

    Zhang K L, Hou Z L, Bi S, Fang H M 2017 Chin. Phys. B 26 127802Google Scholar

  • 图 1  大块铁氧体模型示意图和在不同磁化方式、磁场强度、极化方向下对电磁波的反射率 (a)模型示意图; (b)纵向磁化下不同磁场强度对反射率的影响; (c)横向磁化下不同极化方向的反射率; (d)不同磁化方式对反射率的影响

    Fig. 1.  The schematic model and the reflectivity of bulk ferrite under different magnetized methods, magnetic field intensities and polarized directions: (a) The schematic model; (b) the influence of different magnetic field intensities under longitudinal magnetization; (c) different polarized directions under transversal magnetization; (d) the influence of different magnetized methods.

    图 2  基元结构和横向磁化时面内正交磁化作用下铁氧体的反射率 (a)基元结构(A, B分别表示沿y向磁化和x向磁化的铁氧体基元); (b) TE极化; (c) TM极化; (d) TE极化时尺寸效应; (e) TM极化时尺寸效应

    Fig. 2.  The unit cell and the reflectivity of transversally orthogonally magnetized ferrite: (a) The unit cell(A and B present the ferrite magnetized along y and x directions, respectively); the reflectivity of (b) TE polarization and (c) TM polarization; the size effect of (d) TE polarization and (e) TM polarization.

    图 3  不同基元大小的铁氧体阵列及其在不同磁化状态下的反射性能 (a)离散的铁氧体阵列; (b)纵向磁化下$\Delta R$的影响; (c)横向磁化TE极化下$\Delta R$的影响; (d)横向磁化TM极化下$\Delta R$的影响

    Fig. 3.  Reflection of ferrites array with different element sizes in different magnetized conditions: (a) The discrete array; the influence of $\Delta R$ in (b) longitudinal magnetization; (c) transversal magnetization with TE polarization and (d) transverse magnetization with TM polarization.

    图 4  结构示意图和不同尺寸基元组合的性能 (a)结构示意图(左部分表示超胞1(2)的细节); (b)纵向磁化200 Oe, $\Delta R = 0$$\Delta R = 4$组合; (c)纵向磁化700 Oe, $\Delta R = 0$$\Delta R = 4$组合; (d)纵向磁化700 Oe, $\Delta R = 0$$\Delta R = 2$组合; (e)横向磁化200 Oe, $\Delta R = 0$$\Delta R = 4$组合; (f)横向磁化700 Oe, $\Delta R = 0$$\Delta R = 4$组合; (g)横向磁化700 Oe, $\Delta R = 0$$\Delta R = 2$组合

    Fig. 4.  The schematic and the properties of elements combinations with different sizes: (a) Schematic of the array combined by different elements(The left shows the details of supercell1(2)); the combination of $\Delta R = 0$ and $\Delta R = 4$ under longitudinal magnetization (b) 200 Oe and (c) 700 Oe; (d) the combination of $\Delta R = 0$ and $\Delta R = 2$ under longitudinal magnetization 700 Oe; the combination of $\Delta R = 0$ and $\Delta R = 4$ under transversal magnetization (e) 200 Oe and (f) 700 Oe; (g) the combination of $\Delta R = 0$ and $\Delta R = 2$ under transversal magnetization 700 Oe.

    图 5  $\Delta R = 0$$\Delta R = 4$两种阵列组合而成的吸波结构在y = 0平面内的电场, 磁场, 能量损耗密度分布 (a), (b)分别为工作频率1.95和3.05 GHz, 纵向磁化场700 Oe时的情形; (c), (d)分别是工作频率为1.65和2.25 GHz, 横向磁化场700 Oe时的情形

    Fig. 5.  Distributions of electric field, magnetic field and power loss density in the y = 0 plane of the absorption structure combined by $\Delta R = 0$ and $\Delta R = 4$ at two absorption peaks: (a) 1.95 GHz and (b) 3.05 GHz of longitudinal magnetization 700 Oe; (c) 1.65 GHz and (d) 2.25 GHz of transversal magnetization 700 Oe.

    图 6  能量损耗密度在x-y截面(正视图)的分布 (a), (b)分别是工作频率为1.95和3.05 GHz, 纵向磁化磁场700 Oe时的情形; (c), (d)分别是工作频率为1.65和2.25 GHz时, 横向磁化场700 Oe时的情形

    Fig. 6.  Distributions of power loss density in the x-y cross section (the front view): (a) 1.95 GHz and (b) 3.05 GHz of longitudinal magnetization 700 Oe; (c) 1.65 GHz and (d) 2.25 GHz of transversal magnetization 700 Oe.

    Baidu
  • [1]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [2]

    Ding F, Cui Y X, Ge X C, Jin Y, He S L 2012 Appl. Phys. Lett. 100 103506Google Scholar

    [3]

    Zhang Y, Huang Y, Zhang T F, Chang H C, Xiao P S, Chen H H, Huang Z Y, Chen Y S 2015 Adv. Mater. 27 2049Google Scholar

    [4]

    Wang Y, Du Y C, Xu P, Qiang R, Han X J 2017 Polymers 9 29Google Scholar

    [5]

    Liu Y P, Zhang B Z, Duan J P, Xu Y G 2018 Appl. Opt. 57 10257Google Scholar

    [6]

    Zhang X J, Wang G S, Cao W Q, Wei Y Z, Liang J F, Guo L, Cao M S 2014 ACS Appl. Mater. Interfaces 6 7471Google Scholar

    [7]

    Zhang Y, Huang Y, Chen H H, Huang Z Y, Yang Y, Xiao P S, Zhou Y, Chen Y S 2016 Carbon 105 438Google Scholar

    [8]

    Wang D J, Zhang J Y, He P, Hou Z L 2019 Ceram. Int. 45 23043Google Scholar

    [9]

    周卓辉, 刘晓来, 黄大庆, 康飞宇 2014 63 184101Google Scholar

    Zhou Z H, Liu X L, Huang D Q, Kang F Y 2014 Acta Phys. Sin. 63 184101Google Scholar

    [10]

    Zhang K L, Zhang J Y, Hou Z L, Bi S, Zhao Q L 2019 Carbon 141 608Google Scholar

    [11]

    Wang J, Gao C N, Jiang Y N, Charles N A 2017 Chin. Phys. B 26 114102Google Scholar

    [12]

    Wang Y, Du Y C, Qiang R, Tian C H, Xu P, Han X J 2016 Adv. Mater. Interfaces 3 1500684Google Scholar

    [13]

    Alkuh M S, Famili M H N, Shirvan M M M, Moeini M H 2016 Mater. Des. 100 73Google Scholar

    [14]

    Amano M, Kotsuka Y 2003 IEEE Trans. Microwave Theory Tech. 51 238Google Scholar

    [15]

    Kazantsev Y N, Lopatin A V, Kazantseva N E, Shatrov A D, Mal'tsev V P, Vilcakova J, Saha P 2010 IEEE Trans. Antennas Propag. 58 1227Google Scholar

    [16]

    Chen H Y, Zhang H B, Deng L J 2010 IEEE Antennas Wirel. Propag. Lett. 9 899Google Scholar

    [17]

    Rozanov K N, Li Z W, Chen L F, Koledintseva M Y 2005 J. Appl. Phys. 97 013905

    [18]

    Park M J, Choi J H, Kim S S 2000 Intermag Proceedings of International Magnetics Conference Toronto, Canada, April 09−12, 2000 p3272

    [19]

    Jacobo S E, Fano W G, Razzitte A C, Digiovanni N D, Trainotti V 1998 Proceedings of the 67th Annual Conference on Electrical Insulation and Dielectric Phenomena Atlanta, USA, October 25−28, 1998 p273

    [20]

    Bi K, Guo Y S, Liu X M, Zhao Q, Xiao J H, Lei M, Zhou J 2014 Sci. Rep. 4 7001

    [21]

    Yang Y J, Huang Y J, Wen G J, Zhong J P, Sun H B, Oghenemuero G 2012 Chin. Phys. B 21 038501Google Scholar

    [22]

    郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅 2015 64 077801Google Scholar

    Guo F, Du H L, Qu S B, Xia S, Xu Z, Zhao J F, Zhang H M 2015 Acta Phys. Sin. 64 077801Google Scholar

    [23]

    Meena R S, Bhattachrya S, Chatterjee R 2010 J. Magn. Magn. Mater. 322 1923Google Scholar

    [24]

    Liu X S, Hernandez-Gomez P, Huang K, Zhou S Q, Wang Y, Cai X, Sun H J, Ma B 2006 J. Magn. Magn. Mater. 305 524Google Scholar

    [25]

    Bercoff P G, Herme C, Jacobo S E 2009 J. Magn. Magn. Mater. 321 2245Google Scholar

    [26]

    Zuo X, How H, Somu S, Vittoria C 2003 IEEE Trans. Magn. 39 3160Google Scholar

    [27]

    Pozar D M 2004 Microwave Engineering (3rd ed) (New York: Wiely) pp391−395

    [28]

    Yang Y, Yang Y, Wen X, Ding J 2014 J. Appl. Phys. 115 17A521Google Scholar

    [29]

    Zhang K L, Hou Z L, Bi S, Fang H M 2017 Chin. Phys. B 26 127802Google Scholar

  • [1] 陶蒙蒙, 王亚民, 吴昊龙, 李国华, 王晟, 陶波, 叶景峰, 冯国斌, 叶锡生, 陈卫标. 基于宽带可调谐、窄线宽掺铥光纤激光器的2 μm波段水的超光谱吸收测量.  , 2022, 71(11): 114203. doi: 10.7498/aps.71.20212127
    [2] 陈旭生, 李九生. 缺陷组合嵌入VO2薄膜结构的可调太赫兹吸收器.  , 2020, 69(2): 027801. doi: 10.7498/aps.69.20191511
    [3] 陶蒙蒙, 陶波, 叶景峰, 沈炎龙, 黄珂, 叶锡生, 赵军. 可调谐掺铥光纤激光器线宽压缩及其超光谱吸收应用.  , 2020, 69(3): 034205. doi: 10.7498/aps.69.20191515
    [4] 管林强, 邓昊, 姚路, 聂伟, 许振宇, 李想, 臧益鹏, 胡迈, 范雪丽, 杨晨光, 阚瑞峰. 基于可调谐激光吸收光谱技术的二硫化碳中红外光谱参数测量.  , 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [5] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨. 基于超材料的可调谐的太赫兹波宽频吸收器.  , 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [6] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器.  , 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [7] 薛斌, 王洪阳, 秦猛, 曹毅, 王炜. 基于可调控多肽纳米管和石墨烯复合纳米结构的光吸收催化平台.  , 2015, 64(9): 098702. doi: 10.7498/aps.64.098702
    [8] 耿辉, 刘建国, 张玉钧, 阚瑞峰, 许振宇, 姚路, 阮俊. 基于可调谐半导体激光吸收光谱的酒精蒸汽检测方法.  , 2014, 63(4): 043301. doi: 10.7498/aps.63.043301
    [9] 鲁磊, 屈绍波, 马华, 余斐, 夏颂, 徐卓, 柏鹏. 基于电磁谐振的极化无关透射吸收超材料吸波体.  , 2013, 62(10): 104102. doi: 10.7498/aps.62.104102
    [10] 张志荣, 吴边, 夏滑, 庞涛, 王高旋, 孙鹏帅, 董凤忠, 王煜. 基于可调谐半导体激光吸收光谱技术的气体浓度测量温度影响修正方法研究.  , 2013, 62(23): 234204. doi: 10.7498/aps.62.234204
    [11] 许振宇, 刘文清, 刘建国, 何俊峰, 姚路, 阮俊, 陈玖英, 李晗, 袁松, 耿辉, 阚瑞峰. 基于可调谐半导体激光器吸收光谱的温度测量方法研究.  , 2012, 61(23): 234204. doi: 10.7498/aps.61.234204
    [12] 张亮, 刘建国, 阚瑞峰, 刘文清, 张玉钧, 许振宇, 陈军. 基于可调谐半导体激光吸收光谱技术的高速气流流速测量方法研究.  , 2012, 61(3): 034214. doi: 10.7498/aps.61.034214
    [13] 付乌有, 曹静, 李伊荇, 杨海滨. 类花状ZnO-CoFe2 O4 复合纳米管束的制备及其电磁波吸收特性.  , 2011, 60(6): 067505. doi: 10.7498/aps.60.067505
    [14] 王建, 李会峰, 黄运华, 余海波, 张跃. 碳纳米管/四针状纳米氧化锌复合涂层的电磁波吸收特性.  , 2010, 59(3): 1946-1951. doi: 10.7498/aps.59.1946
    [15] 曹佳伟, 黄运华, 张 跃, 廖庆亮, 邓战强. 四针状纳米氧化锌电磁波吸收特性.  , 2008, 57(6): 3641-3645. doi: 10.7498/aps.57.3641
    [16] 阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王 敏, 陈 军. 可调谐二极管激光吸收光谱法测量环境空气中的甲烷含量.  , 2005, 54(4): 1927-1930. doi: 10.7498/aps.54.1927
    [17] 宋法伦, 曹金祥, 王 舸. 弱电离等离子体对电磁波吸收的物理模型和数值求解.  , 2005, 54(2): 807-811. doi: 10.7498/aps.54.807
    [18] 沈学民. 托卡马克等离子体非全吸收离子迴旋波的耦合计算.  , 1995, 44(4): 570-580. doi: 10.7498/aps.44.570
    [19] 傅柔励. Hg1-xCdxTe的低频吸收带.  , 1986, 35(10): 1299-1305. doi: 10.7498/aps.35.1299
    [20] 黄宏嘉, 范滇元. 变截面铁氧体柱中电磁波传播的耦合波理论.  , 1965, 21(9): 1653-1667. doi: 10.7498/aps.21.1653
计量
  • 文章访问数:  10283
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-14
  • 修回日期:  2019-10-31
  • 上网日期:  2019-12-07
  • 刊出日期:  2020-01-05

/

返回文章
返回
Baidu
map