搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

点缺陷调控: 宽禁带II族氧化物半导体的机遇与挑战

谢修华 李炳辉 张振中 刘雷 刘可为 单崇新 申德振

引用本文:
Citation:

点缺陷调控: 宽禁带II族氧化物半导体的机遇与挑战

谢修华, 李炳辉, 张振中, 刘雷, 刘可为, 单崇新, 申德振

Point defects: key issues for II-oxides wide-bandgap semiconductors development

Xie Xiu-Hua, Li Bing-Hui, Zhang Zhen-Zhong, Liu Lei, Liu Ke-Wei, Shan Chong-Xin, Shen De-Zhen
PDF
HTML
导出引用
  • 宽禁带II族氧化物半导体材料体系, 包括氧化铍(BeO)、氧化镁(MgO)、氧化锌(ZnO)及合金, 拥有较大的激子结合能(ZnO 60 meV, MgO 80 meV), 较高的光学增益(ZnO 300 cm–1)以及较宽的可调带隙(ZnO 3.37 eV, MgO 7.8 eV, BeO 10.6 eV), 具有实现紫外及深紫外波段低阈值激光器的独特优势, 同时也是取代传统气体放电灯(汞灯、氘灯、准分子灯、氙灯)成为深紫外乃至真空紫外光源的重要候选材料之一. 虽然经过20余年的研究历程, ZnO基pn同质结近紫外电致发光方向取得了长足进步, 但是, 随着带隙的展宽, 伴随而来的受主(施主)离化能变高(百毫电子伏特量级), 使得室温等效热能(26 meV)无法实现对杂质能级上的空穴(电子)有效离化; 此外, 掺杂过程中存在的自补偿效应也进一步弱化了载流子的产率, 以上因素已经成为了阻碍宽禁带II 族氧化物半导体实现紫外激光器件及向更短波长扩展的瓶颈性问题, 同时也是其他宽禁带半导体材料共同面对的难题. 对材料电学及发光性能的调控往往取决于对关键缺陷态的识别与控制, 丰富的点缺陷及其组合类型, 使宽禁带II族氧化物半导体成为研究缺陷物理的重要平台. 针对特定点缺陷的识别及表征将有望发现并进一步构建能级较浅的缺陷态, 为电学性能调控提供基础. 本文从高质量外延生长、杂质与点缺陷、p型掺杂及紫外电致发光三个方面阐述II族氧化物半导体近期研究结果, 通过对相关研究工作的概览, 阐明该体系作为深紫外光源材料的独特优势的同时, 指明未来针对电学性能调控的关键在于对点缺陷的调控.
    II-oxides wide-bandgap semiconductor, including the beryllium oxide (BeO), magnesium oxide (MgO), zinc oxide (ZnO), have large exciton binding energy (ZnO 60 meV, MgO 80 meV), high optical gain (ZnO 300 cm–1) and wide tunable band gap (3.37 eV ZnO, MgO 7.8 eV, BeO 10.6 eV), which are the advantages of achieving low-threshold laser devices in the ultraviolet wavelength. It is also one of the important candidates to replace the traditional gas arc lamp (such as mercury lamp, deuterium lamp, excimer lamp, xenon lamp etc.) as the source of deep ultraviolet and even vacuum ultraviolet. Although, during the past decades, the ZnO-based pn homojunction devices have made great progress in the near-UV electroluminescence, but as the band gap broadens, the acceptor (or donor) ionization energy becomes higher (On the order of hundreds meV), which causing the room temperature equivalent thermal energy (26 meV) cannot make the impurities ionizing effectively. In addition, the self-compensation effect in the doping process further weakens the carrier yield. These above drawbacks have become the bottleneck that hinders II-oxides wide-bandgap semiconductor from achieving ultraviolet laser devices and expanding to shorter wavelengths, and are also a common problem faced by other wide-bandgap semiconductor materials. The regulation of the electrical and luminescent properties of materials often depends on the control of critical defect states. The rich point defects and their combination types make the II-oxides wide-bandgap semiconductors an important platform for studying defect physics. For the identification and characterization of specific point defects, it is expected to discover and further construct shallower defect states, which will provide a basis for the regulation of electrical performance. In this paper, recent research results of II-oxides wide-bandgap semiconductors will be described from three aspects: high-quality epitaxial growth, impurity and point defects, p-type doping and ultraviolet electroluminescence. Through the overview of related research works, II-oxides wide-bandgap semiconductors are clarified as deep ultraviolet light sources materials. Meanwhile, indicates that the key to the regulation of electrical performance in the future lies in the regulation of point defects.
      通信作者: 申德振, shendz@ciomp.ac.cn
    • 基金项目: 国家重大科研仪器设备研制专项(批准号: 11727902)和吉林省优秀青年人才基金项目(批准号: 20190103042JH)资助的课题.
      Corresponding author: Shen De-Zhen, shendz@ciomp.ac.cn
    • Funds: Project supported by the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 11727902) and the Excellent Young Scientists Fund of Jilin Province, China (Grant No. 20190103042JH).
    [1]

    Prakash V, Agarwal A, Mussada E K 2019 Silicon 11 1617Google Scholar

    [2]

    Neubert M, Rudolph P 2001 Prog. Cryst. Growth Charact. Mater. 43 119Google Scholar

    [3]

    Mullin J B 2004 J. Cryst. Growth 264 578Google Scholar

    [4]

    Nakamura S 2015 Rev. Mod. Phys. 87 1139Google Scholar

    [5]

    Akasaki I 2015 Rev. Mod. Phys. 87 1119Google Scholar

    [6]

    Amano H 2015 Rev. Mod. Phys. 87 1133Google Scholar

    [7]

    Liang Y H, Towe E 2018 Appl. Phys. Rev. 5 011107Google Scholar

    [8]

    Walsh A, Zunger A 2017 Nat. Mater. 16 964Google Scholar

    [9]

    Chen Y F, Ko H J, Hong S K, Yao T, Segawa Y 2000 J. Cryst. Growth 214 87Google Scholar

    [10]

    Chen Y F, Ko H J, Hong S K, Yao T 2000 Appl. Phys. Lett. 76 559Google Scholar

    [11]

    Fons P, Iwata K, Yamada A, Matsubara K, Niki S, Nakahara K, Tanabe T, Takasu H 2000 Appl. Phys. Lett. 77 1801Google Scholar

    [12]

    Fons P, Iwata K, Niki S, Yamada A, Matsubara K, Watanabe M 2000 J. Cryst. Growth 209 532Google Scholar

    [13]

    Liu J S, Shan C X, Wang S P, Sun F, Yao B, Shen D Z 2010 J. Cryst. Growth 312 2861Google Scholar

    [14]

    Kato H, Miyamoto K, Sano M, Yao T 2004 Appl. Phys. Lett. 84 4562Google Scholar

    [15]

    Hong S K, Hanada T, Ko H J, Chen Y F, Yao T, Imai D, Araki K, Shinohara M, Saitoh K, Terauchi M 2002 Phys. Rev. B 65 115331Google Scholar

    [16]

    Park J S, Hong S K, Minegishi T, Park S H, Im I H, Hanada T, Cho M W, Yao T, Lee J W, Lee J Y 2007 Appl. Phys. Lett. 90 201907Google Scholar

    [17]

    Xie X H, Li B H, Zhang Z Z, Wang S P, Shen D Z 2018 Sci. Rep. 8 17020Google Scholar

    [18]

    Helbig R 1972 J. Cryst. Growth. 15 25Google Scholar

    [19]

    Look D C, Reynolds D C, Sizelove J R, Jones R L, Litton C W, Cantwell G, Harsch W C 1998 Solid State Commun. 105 399Google Scholar

    [20]

    Ohshima E, Ogino H, Niikura I, Maeda K, Sato M, Ito M, Fukuda T 2004 J. Cryst. Growth 260 166Google Scholar

    [21]

    Maeda K, Sato M, Niikura I, Fukuda T 2005 Semicond. Sci. Technol. 20 S49Google Scholar

    [22]

    Ehrentraut D, Maeda K, Kano M, Fujii K, Fukuda T 2011 J. Cryst. Growth 320 18Google Scholar

    [23]

    Graubner S, Neumann C, Volbers N, Meyer B K, Blasing J, Krost A 2007 Appl. Phys. Lett. 90 042103Google Scholar

    [24]

    Takamizu D, Nishimoto Y, Akasaka S, Yuji H, Tamura K, Nakahara K, Onuma T, Tanabe T, Takasu H, Kawasaki M, Chichibu S F 2008 J. Appl. Phys. 103 063502Google Scholar

    [25]

    Kato H, Sano M, Miyamoto K, Yao T 2003 Jpn. J. Appl. Phys. Part 2-Lett. 42 L1002Google Scholar

    [26]

    Kato H, Sano M, Miyamoto K, Yao T 2003 Jpn. J. Appl. Phys. Part 1-Regul. Pap. Short Notes Rev. Pap. 42 2241Google Scholar

    [27]

    Park S H, Minegishi T, Lee H J, Oh D C, Ko H J, Chang J H, Yao T 2011 J. Appl. Phys. 110 053520Google Scholar

    [28]

    Tsukazaki A, Akasaka S, Nakahara K, Ohno Y, Ohno H, Maryenko D, Ohtomo A, Kawasaki M 2010 Nat. Mater. 9 889Google Scholar

    [29]

    Nakahara K, Akasaka S, Yuji H, Tamura K, Fujii T, Nishimoto Y, Takamizu D, Sasaki A, Tanabe T, Takasu H, Amaike H, Onuma T, Chichibu S F, Tsukazaki A, Ohtomo A, Kawasaki M 2010 Appl. Phys. Lett. 97 013501Google Scholar

    [30]

    Makino T, Segawa Y, Kawasaki M, Ohtomo A, Shiroki R, Tamura K, Yasuda T, Koinuma H 2001 Appl. Phys. Lett. 78 1237Google Scholar

    [31]

    Choopun S, Vispute R D, Yang W, Sharma R P, Venkatesan T, Shen H 2002 Appl. Phys. Lett. 80 1529Google Scholar

    [32]

    Sharma A K, Narayan J, Muth J F, Teng C W, Jin C, Kvit A, Kolbas R M, Holland O W 1999 Appl. Phys. Lett. 75 3327Google Scholar

    [33]

    Teng C W, Muth J F, Ozgur U, Bergmann M J, Everitt H O, Sharma A K, Jin C, Narayan J 2000 Appl. Phys. Lett. 76 979Google Scholar

    [34]

    Coli G, Bajaj K K 2001 Appl. Phys. Lett. 78 2861Google Scholar

    [35]

    Ohtomo A, Shiroki R, Ohkubo I, Koinuma H, Kawasaki M 1999 Appl. Phys. Lett. 75 4088Google Scholar

    [36]

    Vashaei Z, Minegishi T, Suzuki H, Hanada T, Cho M W, Yao T, Setiawan A 2005 J. Appl. Phys. 98 054911Google Scholar

    [37]

    Tanaka H, Fujita S, Fujita S 2005 Appl. Phys. Lett. 86 192911Google Scholar

    [38]

    Zheng Q H, Huang F, Ding K, Huang J, Chen D G, Zhan Z B, Lin Z 2011 Appl. Phys. Lett. 98 221112Google Scholar

    [39]

    Wang L K, Ju Z G, Zhang J Y, Zheng J, Shen D Z, Yao B, Zhao D X, Zhang Z Z, Li B H, Shan C X 2009 Appl. Phys. Lett. 95 131113Google Scholar

    [40]

    Xie X H, Zhang Z Z, Li B H, Wang S P, Jiang M M, Shan C X, Zhao D X, Chen H Y, Shen D Z 2014 Opt. Express 22 246Google Scholar

    [41]

    Ju Z G, Shan C X, Yang C L, Zhang J Y, Yao B, Zhao D X, Shen D Z, Fan X W 2009 Appl. Phys. Lett. 94 101902Google Scholar

    [42]

    Ju Z G, Shan C X, Jiang D Y, Zhang J Y, Yao B, Zhao D X, Shen D Z, Fan X W 2008 Appl. Phys. Lett. 93 173505Google Scholar

    [43]

    Kaneko K, Onuma T, Tsumura K, Uchida T, Jinno R, Yamaguchi T, Honda T, Fujita S 2016 Appl. Phys. Express 9 111102Google Scholar

    [44]

    Onuma T, Ono M, Ishii K, Kaneko K, Yamaguchi T, Fujita S, Honda T 2018 Appl. Phys. Lett. 113 061903Google Scholar

    [45]

    Kaneko K, Tsumura K, Ishii K, Onuma T, Honda T, Fujita S 2018 J. Electron. Mater. 47 4356Google Scholar

    [46]

    Wen M C, Lu S A, Chang L, Chou M M C, Ploog K H 2017 J. Cryst. Growth 477 169Google Scholar

    [47]

    Ryu Y R, Lee T S, Lubguban J A, Corman A B, White H W, Leem J H, Han M S, Park Y S, Youn C J, Kim W J 2006 Appl. Phys. Lett. 88 052103Google Scholar

    [48]

    Kim W J, Leem J H, Han M S, Ryu Y R, Lee T S 2006 J. Appl. Phys. 99 096104Google Scholar

    [49]

    Su L X, Zhu Y, Chen M M, Zhang Q L, Su Y Q, Ji X, Wu T Z, Gui X C, Xiang R, Tang Z K 2013 Appl. Phys. Lett. 103 072104Google Scholar

    [50]

    Jeong T S, Han M S, Kim J H, Bae S J, Youn C J 2007 J. Phys. D-Appl. Phys. 40 370Google Scholar

    [51]

    Chen M M, Xiang R, Su L X, Zhang Q L, Cao J S, Zhu Y, Gui X C, Wu T Z, Tang Z K 2012 J. Phys. D-Appl. Phys. 45 455101Google Scholar

    [52]

    Ye D Q, Mei Z X, Liang H L, Liu Y L, Azarov A, Kuznetsov A, Du X L 2014 J. Phys. D-Appl. Phys. 47 175102Google Scholar

    [53]

    Park S H, Ahn D 2014 Physica B 441 12Google Scholar

    [54]

    Su L X, Zhu Y, Zhang Q L, Chen M M, Wu T Z, Gui X C, Pan B C, Xiang R, Tang Z K 2013 Appl. Surf. Sci. 274 341Google Scholar

    [55]

    Yong D Y, He H Y, Su L X, Zhu Y, Tang Z K, Pan B C 2014 J. Alloys Compd. 608 197Google Scholar

    [56]

    Ding K, Ullah M B, Avrutin V, Ozgur U, Morkoc H 2017 Appl. Phys. Lett. 111 182101Google Scholar

    [57]

    Gorczyca I, Teisseyre H, Suski T, Christensen N E, Svane A 2016 J. Appl. Phys. 120 215704Google Scholar

    [58]

    Toporkov M, Demchenko D O, Zolnai Z, Volk J, Avrutin V, Morkoc H, Ozgur U 2016 J. Appl. Phys. 119 095311Google Scholar

    [59]

    Toporkov M, Avrutin V, Okur S, Izyumskaya N, Demchenko D, Volk J, Smith D J, Morkoc H, Ozgur U 2014 J. Cryst. Growth 402 60Google Scholar

    [60]

    Yang C, Li X M, Gao X D, Cao X, Yang R, Li Y Z 2010 J. Cryst. Growth 312 978Google Scholar

    [61]

    Toporkov M, Ullah M B, Demchenko D O, Avrutin V, Morkoc H, Ozgur U 2017 J. Cryst. Growth 467 145Google Scholar

    [62]

    Ullah M B, Avrutin V, Nakagawara T, Hafiz S, Altuntas I, Ozgur U, Morkoc H 2017 J. Appl. Phys. 121 185704Google Scholar

    [63]

    Roessler D M, Walker W C 1967 Phys. Rev. 159 733Google Scholar

    [64]

    Cordero B, Gomez V, Platero-Prats A E, Reves M, Echeverria J, Cremades E, Barragan F, Alvarez S 2008 Dalton Trans. 21 2832

    [65]

    Ashrafi A, Jagadish C 2007 J. Appl. Phys. 102 071101Google Scholar

    [66]

    Zhu Y, Chen M M, Su L X, Su Y Q, Ji X, Gui X C, Tang Z K 2014 J. Alloys Compd. 616 505Google Scholar

    [67]

    Chen M M, Zhu Y, Su L X, Zhang Q L, Chen A Q, Ji X, Xiang R, Gui X C, Wu T Z, Pan B C, Tang Z K 2013 Appl. Phys. Lett. 102 202103Google Scholar

    [68]

    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle C G 2014 Rev. Mod. Phys. 86 253Google Scholar

    [69]

    Kohan A F, Ceder G, Morgan D, Van de Walle C G 2000 Phys. Rev. B 61 15019Google Scholar

    [70]

    Sokol A A, French S A, Bromley S T, Catlow C R A, van Dam H J J, Sherwood P 2007 Faraday Discuss. 134 267Google Scholar

    [71]

    Lyons J L, Janotti A, Van de Walle C G 2009 Appl. Phys. Lett. 95 252105Google Scholar

    [72]

    Wang L G, Zunger A 2003 Phys. Rev. Lett. 90 256401Google Scholar

    [73]

    Duan X M, Stampfl C, Bilek M M M, McKenzie D R 2009 Phys. Rev. B 79 235208Google Scholar

    [74]

    Urban D F, Korner W, Elsasser C 2016 Phys. Rev. B 94 075140Google Scholar

    [75]

    Puchala B, Morgan D 2012 Phys. Rev. B 85 195207Google Scholar

    [76]

    Limpijumnong S, Zhang S B, Wei S H, Park C H 2004 Phys. Rev. Lett. 92 155504Google Scholar

    [77]

    Li J, Wei S H, Li S S, Xia J B 2006 Phys. Rev. B 74 081201Google Scholar

    [78]

    Gai Y Q, Li J B, Li S S, Xia J B, Yan Y F, Wei S H 2009 Phys. Rev. B 80 153201Google Scholar

    [79]

    Xie X H, Li B H, Zhang Z Z, Shen D Z 2018 AIP Adv. 8 035115

    [80]

    Lautenschlaeger S, Sann J, Volbers N, Meyer B K, Hoffmann A, Haboeck U, Wagner M R 2008 Phys. Rev. B 77 144108

    [81]

    Akasaka S, Nakahara K, Yuji H, Tsukazaki A, Ohtomo A, Kawasaki M 2011 Appl. Phys. Express 4 035701

    [82]

    Kozuka Y, Tsukazaki A, Kawasaki M 2014 Appl. Phys. Rev. 1 011303

    [83]

    Akasaka S, Tsukazaki A, Nakahara K, Ohtomo A, Kawasaki M 2011 Jpn. J. Appl. Phys. 50 080215

    [84]

    Oba F, Choi M, Togo A, Tanaka I 2011 Sci. Technol. Adv. Mater. 12 034302Google Scholar

    [85]

    Ellmer K, Bikowski A 2016 J. Phys. D-Appl. Phys. 49 413002Google Scholar

    [86]

    McCluskey M D, Jokela S J 2009 J. Appl. Phys. 106 071101Google Scholar

    [87]

    Janotti A, Van de Walle C G 2009 Rep. Prog. Phys. 72 126501Google Scholar

    [88]

    Janotti A, Van de Walle C G 2007 Phys. Rev. B 76 165202Google Scholar

    [89]

    Oba F, Togo A, Tanaka I, Paier J, Kresse G 2008 Phys. Rev. B 77 245202Google Scholar

    [90]

    Oba F, Nishitani S R, Isotani S, Adachi H, Tanaka I 2001 J. Appl. Phys. 90 824Google Scholar

    [91]

    Borseth T M, Svensson B G, Kuznetsov A Y, Klason P, Zhao Q X, Willander M 2006 Appl. Phys. Lett. 89 262112Google Scholar

    [92]

    Look D C, Leedy K D, Vines L, Svensson B G, Zubiaga A, Tuomisto F, Doutt D R, Brillson L J 2011 Phys. Rev. B 84 115202Google Scholar

    [93]

    Vidya R, Ravindran P, Fjellvag H, Svensson B G, Monakhov E, Ganchenkova M, Nieminen R M 2011 Phys. Rev. B 83 045206Google Scholar

    [94]

    Ton-That C, Weston L, Phillips M R 2012 Phys. Rev. B 86 115205Google Scholar

    [95]

    Alkauskas A, Pasquarello A 2011 Phys. Rev. B 84 125206Google Scholar

    [96]

    Knutsen K E, Galeckas A, Zubiaga A, Tuomisto F, Farlow G C, Svensson B G, Kuznetsov A Y 2012 Phys. Rev. B 86 121203Google Scholar

    [97]

    Can M M, Shah S I, Doty M F, Haughn C R, Firat T 2012 J. Phys. D-Appl. Phys. 45 195104Google Scholar

    [98]

    Kim D H, Lee G W, Kim Y C 2012 Solid State Commun. 152 1711Google Scholar

    [99]

    Travlos A, Boukos N, Chandrinou C, Kwack H S, Dang L S 2009 J. Appl. Phys. 106 104307Google Scholar

    [100]

    Selim F A, Weber M H, Solodovnikov D, Lynn K G 2007 Phys. Rev. Lett. 99 085502Google Scholar

    [101]

    Erhart P, Albe K 2006 Appl. Phys. Lett. 88 201918Google Scholar

    [102]

    Vlasenko L S, Watkins G D 2005 Phys. Rev. B 72 035203Google Scholar

    [103]

    Liu H Y, Izyumskaya N, Avrutin V 2012 J. Appl. Phys. 112 033706Google Scholar

    [104]

    Liu L, Xu J L, Wang D D, Jiang M M, Wang S P, Li B H, Zhang Z Z, Zhao D X, Shan C X, Yao B, Shen D Z 2012 Phys. Rev. Lett. 108 215501Google Scholar

    [105]

    Xie X H, Li B H, Zhang Z Z, Shen D Z 2017 J. Phys. D-Appl. Phys. 50 325304Google Scholar

    [106]

    Sanyal D, Roy T K, Chakrabarti M, Dechoudhury S, Bhowmick D, Chakrabarti A 2008 J. Phys.-Condes. Matter 20 045217Google Scholar

    [107]

    Ono R, Togimitsu T, Sato W 2015 J. Radioanal. Nucl. Chem. 303 1223Google Scholar

    [108]

    Khan E H, Weber M H, McCluskey M D 2013 Phys. Rev. Lett. 111 017401Google Scholar

    [109]

    Makkonen I, Korhonen E, Prozheeva V, Tuomisto F 2016 J. Phys.-Condes. Matter 28 224002Google Scholar

    [110]

    Chakrabarti M, Jana D, Sanyal D 2013 Vacuum 87 16Google Scholar

    [111]

    Sarkar A, Chakrabarti M, Ray S K, Bhowmick D, Sanyal D 2011 J. Phys.-Condes. Matter 23 155801Google Scholar

    [112]

    Zubiaga A, Garcia J A, Plazaola F, Tuomisto F, Zuniga-Perez J, Munoz-Sanjose V 2007 Phys. Rev. B 75 205305Google Scholar

    [113]

    Chen Z Q, Betsuyaku K, Kawasuso A 2008 Phys. Rev. B 77 113204Google Scholar

    [114]

    Erdem E 2017 Nanoscale 9 10983Google Scholar

    [115]

    Lambrecht W R L, Boonchun A 2013 Phys. Rev. B 87 195207Google Scholar

    [116]

    Parashar S K S, Murty B S, Repp S, Weber S, Erdem E 2012 J. Appl. Phys. 111 113712Google Scholar

    [117]

    Vlasenko L S 2010 Appl. Magn. Reson. 39 103Google Scholar

    [118]

    Vlasenko L S 2009 Physica B 404 4774Google Scholar

    [119]

    Zheng H, Weismann A, Berndt R 2013 Phys. Rev. Lett. 110 226101Google Scholar

    [120]

    Xu H, Dong L, Shi X Q, Van Hove M A, Ho W K, Lin N, Wu H S, Tong S Y 2014 Phys. Rev. B 89 235403Google Scholar

    [121]

    Stavale F, Nilius N, Freund H J 2013 J. Phys. Chem. Lett. 4 3972Google Scholar

    [122]

    Dulub O, Boatner L A, Diebold U 2002 Surf. Sci. 519 201Google Scholar

    [123]

    Zubiaga A, Garcia J A, Plazaola F, Tuomisto F, Saarinen K, Zuniga Perez J, Munoz-Sanjose V 2006 J. Appl. Phys. 99 053516Google Scholar

    [124]

    Lin B X, Fu Z X, Jia Y B 2001 Appl. Phys. Lett. 79 943Google Scholar

    [125]

    Dong Y F, Tuomisto F, Svensson B G, Kuznetsov A Y, Brillson L J 2010 Phys. Rev. B 81 081201Google Scholar

    [126]

    Reshchikov M A 2014 J. Appl. Phys. 115 012010Google Scholar

    [127]

    Zhu L C, Lockrey M, Phillips M R, Cuong T T 2018 Phys. Status Solidi A-Appl. Mat. 215 1800389Google Scholar

    [128]

    Wu X L, Siu G G, Fu C L, Ong H C 2001 Appl. Phys. Lett. 78 2285Google Scholar

    [129]

    Liu X Y, Shan C X, Zhu H, Li B H, Jiang M M, Yu S F, Shen D Z 2015 Sci. Rep. 5 13641Google Scholar

    [130]

    Zhu H, Shan C X, Li B H, Zhang Z Z, Shen D Z, Choy K L 2011 J. Mater. Chem. 21 2848Google Scholar

    [131]

    McCluskey M D, Corolewski C D, Lv J P, Tarun M C, Teklemichael S T, Walter E D, Norton M G, Harrison K W, Ha S 2015 J. Appl. Phys. 117 112802Google Scholar

    [132]

    Fan J C, Sreekanth K M, Xie Z, Chang S L, Rao K V 2013 Prog. Mater. Sci. 58 874Google Scholar

    [133]

    Reynolds J G, Reynolds C L 2014 Adv. Condens. Matter Phys. 2014 457058

    [134]

    Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M 2005 Nat. Mater. 4 42

    [135]

    Jiao S J, Zhang Z Z, Lu Y M, Shen D Z, Yao B, Zhang J Y, Li B H, Zhao D X, Fan X W, Tang Z K 2006 Appl. Phys. Lett. 88 031911Google Scholar

    [136]

    Chu S, Olmedo M, Yang Z, Kong J Y, Liu J L 2008 Appl. Phys. Lett. 93 181106Google Scholar

    [137]

    Chu S, Wang G P, Zhou W H, Lin Y Q, Chernyak L, Zhao J Z, Kong J Y, Li L, Ren J J, Liu J L 2011 Nat. Nanotechnol. 6 506Google Scholar

    [138]

    Xie X H, Li B H, Zhang Z Z, Shen D Z 2018 J. Phys. D-Appl. Phys. 51 225104Google Scholar

    [139]

    Stehr J E, Wang X J, Filippov S, Pearton S J, Ivanov I G, Chen W M, Buyanova I A 2013 J. Appl. Phys. 113 103509Google Scholar

    [140]

    Yong D Y, He H Y, Tang Z K, Wei S H, Pan B C 2015 Phys. Rev. B 92 235207Google Scholar

    [141]

    Chavillon B, Cario L, Renaud A, Tessier F, Chevire F, Boujtita M, Pellegrin Y, Blart E, Smeigh A 2012 J. Am. Chem. Soc. 134 464Google Scholar

    [142]

    Ye Z Z, He H P, Jiang L 2018 Nano Energy 52 527Google Scholar

    [143]

    Chen A Q, Zhu H, Wu Y Y, Chen M M, Zhu Y, Gui X C, Tang Z K 2016 Adv. Funct. Mater. 26 3696Google Scholar

    [144]

    Sun F, Shan C X, Li B H, Zhang Z Z, Shen D Z, Zhang Z Y, Fan D 2011 Opt. Lett. 36 499Google Scholar

    [145]

    Liu J S, Shan C X, Shen H, Li B H, Zhang Z Z, Liu L, Zhang L G, Shen D Z 2012 Appl. Phys. Lett. 101 011106Google Scholar

  • 图 1  ZnO外延生长过程中缓冲层的RHEED线条图像演变过程 (a)氧等离子体处理后的蓝宝石(0001)表面; (b) 二维成核阶段的MgO缓冲层表面; (c) MgO缓冲层开始三维成岛状生长; (d) 薄层低温ZnO缓冲层生长在MgO上; (e) 退火后的ZnO缓冲层表现出平整二维表面[9]

    Fig. 1.  Evolution of RHEED line image of buffer layer during epitaxial growth of ZnO: (a) Oxygen plasma treated sapphire (0001) surface; (b) MgO buffer layer surface in two-dimensional nucleation stage; (c) the MgO buffer layer begins to grow into three-dimensional islands; (d) thin layer low temperature ZnO buffer layer grown on MgO; (e) annealed ZnO buffer layer exhibits a flat two-dimensional surface[9]

    图 2  ZnO在c面蓝宝石上的原子排列示意图 (a)厚度为1 nm的MgO缓冲层; (b)厚度大于3 nm的MgO缓冲层[14]

    Fig. 2.  Schematic diagram of atomic arrangement of ZnO on c-sapphire: (a) MgO buffer layer with a thickness of 1 nm; (b) MgO buffer layer with a thickness greater than 3 nm[14]

    图 3  ZnO与GaN异质界面的STEM图像, 通过Zn束流保护, 获得了清晰陡峭的界面, 保证了外延层的Zn极性均一[17]

    Fig. 3.  The STEM image of the hetero interface between ZnO and GaN, and it is protected by Zn beam, which obtains a clear and sharp interface and ensures uniformity of Zn polarity in the epitaxial layer[17]

    图 4  N掺杂MgZnO薄膜原子力图像, 粗糙度为0.72 nm[29]

    Fig. 4.  Atomic force image of N-doped MgZnO film with roughness of 0.72 nm[29]

    图 5  II族氧化物半导体带隙与晶格常数关系

    Fig. 5.  Relationship between band gap and lattice constant of group II oxide semiconductors.

    图 6  (a), (b)二维电子气系统中应变层应力类型与压电极化方向; (c) BeMgZnO体系下应变类型随组分比例的变化情况[56]

    Fig. 6.  (a), (b) Strain stress type and piezoelectric polarization direction in two-dimensional electron gas system; (c) variation of strain type with composition ratio in BeMgZnO system[56]

    图 7  ZnO薄膜中杂质浓度的深度分布情况 (a)非故意掺杂层中Si, Mo, Ta, Al的分布情况; (b)氮掺杂层中C, B, N, Cl, F的分布情况; (c) 施主型杂质元素经抑制后的纵向分布情况[79]

    Fig. 7.  Depth distribution of impurity concentration in ZnO thin films: (a) Distribution of Si, Mo, Ta and Al in unintentionally doped layers; (b) longitudinal distribution of donor-type impurity elements after suppression[79]

    图 8  ZnO单晶衬底上外延层中杂质元素的SIMS数据[80]

    Fig. 8.  SIMS data of impurity elements in epitaxial layers on ZnO single crystal substrates[80]

    图 9  极性面ZnO单晶衬底在氧环境下经1150 ℃退火1h前后, 杂质种类及含量变化情况[23]

    Fig. 9.  Changes in impurity types and contents of O-polar ZnO single crystal substrate after annealing at 1150 ℃ for 1 hour in an oxygen atmosphere[23]

    图 10  (a)稀盐酸刻蚀后的ZnO单晶Zn极性表面; (b)稀盐酸刻蚀前后, Si元素的深度分布[81,82]

    Fig. 10.  (a) Zn polar surface of ZnO single crystal after being etched by dilute hydrochloric acid; (b) depth distribution of Si element before and after being etched dilute hydrochloric acid[81,82]

    图 11  沿极性表面外延时, Zn极性与O极性表面极化电荷分布情况以及利用光生非平衡载流子构建Zn极性表面层富电子环境[17]

    Fig. 11.  Zn polar and O polar surface polarized charge distribution along epitaxial surface and Zn polar surface layer rich electronic environment using photogenerated unbalanced carriers[17]

    图 12  Zn极性表面(2 × 2) + VZn重构的STM图像及结构示意图[105]

    Fig. 12.  STM image and structure diagram of Zn polar surface (2 × 2) + VZn reconstruction[105]

    Baidu
  • [1]

    Prakash V, Agarwal A, Mussada E K 2019 Silicon 11 1617Google Scholar

    [2]

    Neubert M, Rudolph P 2001 Prog. Cryst. Growth Charact. Mater. 43 119Google Scholar

    [3]

    Mullin J B 2004 J. Cryst. Growth 264 578Google Scholar

    [4]

    Nakamura S 2015 Rev. Mod. Phys. 87 1139Google Scholar

    [5]

    Akasaki I 2015 Rev. Mod. Phys. 87 1119Google Scholar

    [6]

    Amano H 2015 Rev. Mod. Phys. 87 1133Google Scholar

    [7]

    Liang Y H, Towe E 2018 Appl. Phys. Rev. 5 011107Google Scholar

    [8]

    Walsh A, Zunger A 2017 Nat. Mater. 16 964Google Scholar

    [9]

    Chen Y F, Ko H J, Hong S K, Yao T, Segawa Y 2000 J. Cryst. Growth 214 87Google Scholar

    [10]

    Chen Y F, Ko H J, Hong S K, Yao T 2000 Appl. Phys. Lett. 76 559Google Scholar

    [11]

    Fons P, Iwata K, Yamada A, Matsubara K, Niki S, Nakahara K, Tanabe T, Takasu H 2000 Appl. Phys. Lett. 77 1801Google Scholar

    [12]

    Fons P, Iwata K, Niki S, Yamada A, Matsubara K, Watanabe M 2000 J. Cryst. Growth 209 532Google Scholar

    [13]

    Liu J S, Shan C X, Wang S P, Sun F, Yao B, Shen D Z 2010 J. Cryst. Growth 312 2861Google Scholar

    [14]

    Kato H, Miyamoto K, Sano M, Yao T 2004 Appl. Phys. Lett. 84 4562Google Scholar

    [15]

    Hong S K, Hanada T, Ko H J, Chen Y F, Yao T, Imai D, Araki K, Shinohara M, Saitoh K, Terauchi M 2002 Phys. Rev. B 65 115331Google Scholar

    [16]

    Park J S, Hong S K, Minegishi T, Park S H, Im I H, Hanada T, Cho M W, Yao T, Lee J W, Lee J Y 2007 Appl. Phys. Lett. 90 201907Google Scholar

    [17]

    Xie X H, Li B H, Zhang Z Z, Wang S P, Shen D Z 2018 Sci. Rep. 8 17020Google Scholar

    [18]

    Helbig R 1972 J. Cryst. Growth. 15 25Google Scholar

    [19]

    Look D C, Reynolds D C, Sizelove J R, Jones R L, Litton C W, Cantwell G, Harsch W C 1998 Solid State Commun. 105 399Google Scholar

    [20]

    Ohshima E, Ogino H, Niikura I, Maeda K, Sato M, Ito M, Fukuda T 2004 J. Cryst. Growth 260 166Google Scholar

    [21]

    Maeda K, Sato M, Niikura I, Fukuda T 2005 Semicond. Sci. Technol. 20 S49Google Scholar

    [22]

    Ehrentraut D, Maeda K, Kano M, Fujii K, Fukuda T 2011 J. Cryst. Growth 320 18Google Scholar

    [23]

    Graubner S, Neumann C, Volbers N, Meyer B K, Blasing J, Krost A 2007 Appl. Phys. Lett. 90 042103Google Scholar

    [24]

    Takamizu D, Nishimoto Y, Akasaka S, Yuji H, Tamura K, Nakahara K, Onuma T, Tanabe T, Takasu H, Kawasaki M, Chichibu S F 2008 J. Appl. Phys. 103 063502Google Scholar

    [25]

    Kato H, Sano M, Miyamoto K, Yao T 2003 Jpn. J. Appl. Phys. Part 2-Lett. 42 L1002Google Scholar

    [26]

    Kato H, Sano M, Miyamoto K, Yao T 2003 Jpn. J. Appl. Phys. Part 1-Regul. Pap. Short Notes Rev. Pap. 42 2241Google Scholar

    [27]

    Park S H, Minegishi T, Lee H J, Oh D C, Ko H J, Chang J H, Yao T 2011 J. Appl. Phys. 110 053520Google Scholar

    [28]

    Tsukazaki A, Akasaka S, Nakahara K, Ohno Y, Ohno H, Maryenko D, Ohtomo A, Kawasaki M 2010 Nat. Mater. 9 889Google Scholar

    [29]

    Nakahara K, Akasaka S, Yuji H, Tamura K, Fujii T, Nishimoto Y, Takamizu D, Sasaki A, Tanabe T, Takasu H, Amaike H, Onuma T, Chichibu S F, Tsukazaki A, Ohtomo A, Kawasaki M 2010 Appl. Phys. Lett. 97 013501Google Scholar

    [30]

    Makino T, Segawa Y, Kawasaki M, Ohtomo A, Shiroki R, Tamura K, Yasuda T, Koinuma H 2001 Appl. Phys. Lett. 78 1237Google Scholar

    [31]

    Choopun S, Vispute R D, Yang W, Sharma R P, Venkatesan T, Shen H 2002 Appl. Phys. Lett. 80 1529Google Scholar

    [32]

    Sharma A K, Narayan J, Muth J F, Teng C W, Jin C, Kvit A, Kolbas R M, Holland O W 1999 Appl. Phys. Lett. 75 3327Google Scholar

    [33]

    Teng C W, Muth J F, Ozgur U, Bergmann M J, Everitt H O, Sharma A K, Jin C, Narayan J 2000 Appl. Phys. Lett. 76 979Google Scholar

    [34]

    Coli G, Bajaj K K 2001 Appl. Phys. Lett. 78 2861Google Scholar

    [35]

    Ohtomo A, Shiroki R, Ohkubo I, Koinuma H, Kawasaki M 1999 Appl. Phys. Lett. 75 4088Google Scholar

    [36]

    Vashaei Z, Minegishi T, Suzuki H, Hanada T, Cho M W, Yao T, Setiawan A 2005 J. Appl. Phys. 98 054911Google Scholar

    [37]

    Tanaka H, Fujita S, Fujita S 2005 Appl. Phys. Lett. 86 192911Google Scholar

    [38]

    Zheng Q H, Huang F, Ding K, Huang J, Chen D G, Zhan Z B, Lin Z 2011 Appl. Phys. Lett. 98 221112Google Scholar

    [39]

    Wang L K, Ju Z G, Zhang J Y, Zheng J, Shen D Z, Yao B, Zhao D X, Zhang Z Z, Li B H, Shan C X 2009 Appl. Phys. Lett. 95 131113Google Scholar

    [40]

    Xie X H, Zhang Z Z, Li B H, Wang S P, Jiang M M, Shan C X, Zhao D X, Chen H Y, Shen D Z 2014 Opt. Express 22 246Google Scholar

    [41]

    Ju Z G, Shan C X, Yang C L, Zhang J Y, Yao B, Zhao D X, Shen D Z, Fan X W 2009 Appl. Phys. Lett. 94 101902Google Scholar

    [42]

    Ju Z G, Shan C X, Jiang D Y, Zhang J Y, Yao B, Zhao D X, Shen D Z, Fan X W 2008 Appl. Phys. Lett. 93 173505Google Scholar

    [43]

    Kaneko K, Onuma T, Tsumura K, Uchida T, Jinno R, Yamaguchi T, Honda T, Fujita S 2016 Appl. Phys. Express 9 111102Google Scholar

    [44]

    Onuma T, Ono M, Ishii K, Kaneko K, Yamaguchi T, Fujita S, Honda T 2018 Appl. Phys. Lett. 113 061903Google Scholar

    [45]

    Kaneko K, Tsumura K, Ishii K, Onuma T, Honda T, Fujita S 2018 J. Electron. Mater. 47 4356Google Scholar

    [46]

    Wen M C, Lu S A, Chang L, Chou M M C, Ploog K H 2017 J. Cryst. Growth 477 169Google Scholar

    [47]

    Ryu Y R, Lee T S, Lubguban J A, Corman A B, White H W, Leem J H, Han M S, Park Y S, Youn C J, Kim W J 2006 Appl. Phys. Lett. 88 052103Google Scholar

    [48]

    Kim W J, Leem J H, Han M S, Ryu Y R, Lee T S 2006 J. Appl. Phys. 99 096104Google Scholar

    [49]

    Su L X, Zhu Y, Chen M M, Zhang Q L, Su Y Q, Ji X, Wu T Z, Gui X C, Xiang R, Tang Z K 2013 Appl. Phys. Lett. 103 072104Google Scholar

    [50]

    Jeong T S, Han M S, Kim J H, Bae S J, Youn C J 2007 J. Phys. D-Appl. Phys. 40 370Google Scholar

    [51]

    Chen M M, Xiang R, Su L X, Zhang Q L, Cao J S, Zhu Y, Gui X C, Wu T Z, Tang Z K 2012 J. Phys. D-Appl. Phys. 45 455101Google Scholar

    [52]

    Ye D Q, Mei Z X, Liang H L, Liu Y L, Azarov A, Kuznetsov A, Du X L 2014 J. Phys. D-Appl. Phys. 47 175102Google Scholar

    [53]

    Park S H, Ahn D 2014 Physica B 441 12Google Scholar

    [54]

    Su L X, Zhu Y, Zhang Q L, Chen M M, Wu T Z, Gui X C, Pan B C, Xiang R, Tang Z K 2013 Appl. Surf. Sci. 274 341Google Scholar

    [55]

    Yong D Y, He H Y, Su L X, Zhu Y, Tang Z K, Pan B C 2014 J. Alloys Compd. 608 197Google Scholar

    [56]

    Ding K, Ullah M B, Avrutin V, Ozgur U, Morkoc H 2017 Appl. Phys. Lett. 111 182101Google Scholar

    [57]

    Gorczyca I, Teisseyre H, Suski T, Christensen N E, Svane A 2016 J. Appl. Phys. 120 215704Google Scholar

    [58]

    Toporkov M, Demchenko D O, Zolnai Z, Volk J, Avrutin V, Morkoc H, Ozgur U 2016 J. Appl. Phys. 119 095311Google Scholar

    [59]

    Toporkov M, Avrutin V, Okur S, Izyumskaya N, Demchenko D, Volk J, Smith D J, Morkoc H, Ozgur U 2014 J. Cryst. Growth 402 60Google Scholar

    [60]

    Yang C, Li X M, Gao X D, Cao X, Yang R, Li Y Z 2010 J. Cryst. Growth 312 978Google Scholar

    [61]

    Toporkov M, Ullah M B, Demchenko D O, Avrutin V, Morkoc H, Ozgur U 2017 J. Cryst. Growth 467 145Google Scholar

    [62]

    Ullah M B, Avrutin V, Nakagawara T, Hafiz S, Altuntas I, Ozgur U, Morkoc H 2017 J. Appl. Phys. 121 185704Google Scholar

    [63]

    Roessler D M, Walker W C 1967 Phys. Rev. 159 733Google Scholar

    [64]

    Cordero B, Gomez V, Platero-Prats A E, Reves M, Echeverria J, Cremades E, Barragan F, Alvarez S 2008 Dalton Trans. 21 2832

    [65]

    Ashrafi A, Jagadish C 2007 J. Appl. Phys. 102 071101Google Scholar

    [66]

    Zhu Y, Chen M M, Su L X, Su Y Q, Ji X, Gui X C, Tang Z K 2014 J. Alloys Compd. 616 505Google Scholar

    [67]

    Chen M M, Zhu Y, Su L X, Zhang Q L, Chen A Q, Ji X, Xiang R, Gui X C, Wu T Z, Pan B C, Tang Z K 2013 Appl. Phys. Lett. 102 202103Google Scholar

    [68]

    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle C G 2014 Rev. Mod. Phys. 86 253Google Scholar

    [69]

    Kohan A F, Ceder G, Morgan D, Van de Walle C G 2000 Phys. Rev. B 61 15019Google Scholar

    [70]

    Sokol A A, French S A, Bromley S T, Catlow C R A, van Dam H J J, Sherwood P 2007 Faraday Discuss. 134 267Google Scholar

    [71]

    Lyons J L, Janotti A, Van de Walle C G 2009 Appl. Phys. Lett. 95 252105Google Scholar

    [72]

    Wang L G, Zunger A 2003 Phys. Rev. Lett. 90 256401Google Scholar

    [73]

    Duan X M, Stampfl C, Bilek M M M, McKenzie D R 2009 Phys. Rev. B 79 235208Google Scholar

    [74]

    Urban D F, Korner W, Elsasser C 2016 Phys. Rev. B 94 075140Google Scholar

    [75]

    Puchala B, Morgan D 2012 Phys. Rev. B 85 195207Google Scholar

    [76]

    Limpijumnong S, Zhang S B, Wei S H, Park C H 2004 Phys. Rev. Lett. 92 155504Google Scholar

    [77]

    Li J, Wei S H, Li S S, Xia J B 2006 Phys. Rev. B 74 081201Google Scholar

    [78]

    Gai Y Q, Li J B, Li S S, Xia J B, Yan Y F, Wei S H 2009 Phys. Rev. B 80 153201Google Scholar

    [79]

    Xie X H, Li B H, Zhang Z Z, Shen D Z 2018 AIP Adv. 8 035115

    [80]

    Lautenschlaeger S, Sann J, Volbers N, Meyer B K, Hoffmann A, Haboeck U, Wagner M R 2008 Phys. Rev. B 77 144108

    [81]

    Akasaka S, Nakahara K, Yuji H, Tsukazaki A, Ohtomo A, Kawasaki M 2011 Appl. Phys. Express 4 035701

    [82]

    Kozuka Y, Tsukazaki A, Kawasaki M 2014 Appl. Phys. Rev. 1 011303

    [83]

    Akasaka S, Tsukazaki A, Nakahara K, Ohtomo A, Kawasaki M 2011 Jpn. J. Appl. Phys. 50 080215

    [84]

    Oba F, Choi M, Togo A, Tanaka I 2011 Sci. Technol. Adv. Mater. 12 034302Google Scholar

    [85]

    Ellmer K, Bikowski A 2016 J. Phys. D-Appl. Phys. 49 413002Google Scholar

    [86]

    McCluskey M D, Jokela S J 2009 J. Appl. Phys. 106 071101Google Scholar

    [87]

    Janotti A, Van de Walle C G 2009 Rep. Prog. Phys. 72 126501Google Scholar

    [88]

    Janotti A, Van de Walle C G 2007 Phys. Rev. B 76 165202Google Scholar

    [89]

    Oba F, Togo A, Tanaka I, Paier J, Kresse G 2008 Phys. Rev. B 77 245202Google Scholar

    [90]

    Oba F, Nishitani S R, Isotani S, Adachi H, Tanaka I 2001 J. Appl. Phys. 90 824Google Scholar

    [91]

    Borseth T M, Svensson B G, Kuznetsov A Y, Klason P, Zhao Q X, Willander M 2006 Appl. Phys. Lett. 89 262112Google Scholar

    [92]

    Look D C, Leedy K D, Vines L, Svensson B G, Zubiaga A, Tuomisto F, Doutt D R, Brillson L J 2011 Phys. Rev. B 84 115202Google Scholar

    [93]

    Vidya R, Ravindran P, Fjellvag H, Svensson B G, Monakhov E, Ganchenkova M, Nieminen R M 2011 Phys. Rev. B 83 045206Google Scholar

    [94]

    Ton-That C, Weston L, Phillips M R 2012 Phys. Rev. B 86 115205Google Scholar

    [95]

    Alkauskas A, Pasquarello A 2011 Phys. Rev. B 84 125206Google Scholar

    [96]

    Knutsen K E, Galeckas A, Zubiaga A, Tuomisto F, Farlow G C, Svensson B G, Kuznetsov A Y 2012 Phys. Rev. B 86 121203Google Scholar

    [97]

    Can M M, Shah S I, Doty M F, Haughn C R, Firat T 2012 J. Phys. D-Appl. Phys. 45 195104Google Scholar

    [98]

    Kim D H, Lee G W, Kim Y C 2012 Solid State Commun. 152 1711Google Scholar

    [99]

    Travlos A, Boukos N, Chandrinou C, Kwack H S, Dang L S 2009 J. Appl. Phys. 106 104307Google Scholar

    [100]

    Selim F A, Weber M H, Solodovnikov D, Lynn K G 2007 Phys. Rev. Lett. 99 085502Google Scholar

    [101]

    Erhart P, Albe K 2006 Appl. Phys. Lett. 88 201918Google Scholar

    [102]

    Vlasenko L S, Watkins G D 2005 Phys. Rev. B 72 035203Google Scholar

    [103]

    Liu H Y, Izyumskaya N, Avrutin V 2012 J. Appl. Phys. 112 033706Google Scholar

    [104]

    Liu L, Xu J L, Wang D D, Jiang M M, Wang S P, Li B H, Zhang Z Z, Zhao D X, Shan C X, Yao B, Shen D Z 2012 Phys. Rev. Lett. 108 215501Google Scholar

    [105]

    Xie X H, Li B H, Zhang Z Z, Shen D Z 2017 J. Phys. D-Appl. Phys. 50 325304Google Scholar

    [106]

    Sanyal D, Roy T K, Chakrabarti M, Dechoudhury S, Bhowmick D, Chakrabarti A 2008 J. Phys.-Condes. Matter 20 045217Google Scholar

    [107]

    Ono R, Togimitsu T, Sato W 2015 J. Radioanal. Nucl. Chem. 303 1223Google Scholar

    [108]

    Khan E H, Weber M H, McCluskey M D 2013 Phys. Rev. Lett. 111 017401Google Scholar

    [109]

    Makkonen I, Korhonen E, Prozheeva V, Tuomisto F 2016 J. Phys.-Condes. Matter 28 224002Google Scholar

    [110]

    Chakrabarti M, Jana D, Sanyal D 2013 Vacuum 87 16Google Scholar

    [111]

    Sarkar A, Chakrabarti M, Ray S K, Bhowmick D, Sanyal D 2011 J. Phys.-Condes. Matter 23 155801Google Scholar

    [112]

    Zubiaga A, Garcia J A, Plazaola F, Tuomisto F, Zuniga-Perez J, Munoz-Sanjose V 2007 Phys. Rev. B 75 205305Google Scholar

    [113]

    Chen Z Q, Betsuyaku K, Kawasuso A 2008 Phys. Rev. B 77 113204Google Scholar

    [114]

    Erdem E 2017 Nanoscale 9 10983Google Scholar

    [115]

    Lambrecht W R L, Boonchun A 2013 Phys. Rev. B 87 195207Google Scholar

    [116]

    Parashar S K S, Murty B S, Repp S, Weber S, Erdem E 2012 J. Appl. Phys. 111 113712Google Scholar

    [117]

    Vlasenko L S 2010 Appl. Magn. Reson. 39 103Google Scholar

    [118]

    Vlasenko L S 2009 Physica B 404 4774Google Scholar

    [119]

    Zheng H, Weismann A, Berndt R 2013 Phys. Rev. Lett. 110 226101Google Scholar

    [120]

    Xu H, Dong L, Shi X Q, Van Hove M A, Ho W K, Lin N, Wu H S, Tong S Y 2014 Phys. Rev. B 89 235403Google Scholar

    [121]

    Stavale F, Nilius N, Freund H J 2013 J. Phys. Chem. Lett. 4 3972Google Scholar

    [122]

    Dulub O, Boatner L A, Diebold U 2002 Surf. Sci. 519 201Google Scholar

    [123]

    Zubiaga A, Garcia J A, Plazaola F, Tuomisto F, Saarinen K, Zuniga Perez J, Munoz-Sanjose V 2006 J. Appl. Phys. 99 053516Google Scholar

    [124]

    Lin B X, Fu Z X, Jia Y B 2001 Appl. Phys. Lett. 79 943Google Scholar

    [125]

    Dong Y F, Tuomisto F, Svensson B G, Kuznetsov A Y, Brillson L J 2010 Phys. Rev. B 81 081201Google Scholar

    [126]

    Reshchikov M A 2014 J. Appl. Phys. 115 012010Google Scholar

    [127]

    Zhu L C, Lockrey M, Phillips M R, Cuong T T 2018 Phys. Status Solidi A-Appl. Mat. 215 1800389Google Scholar

    [128]

    Wu X L, Siu G G, Fu C L, Ong H C 2001 Appl. Phys. Lett. 78 2285Google Scholar

    [129]

    Liu X Y, Shan C X, Zhu H, Li B H, Jiang M M, Yu S F, Shen D Z 2015 Sci. Rep. 5 13641Google Scholar

    [130]

    Zhu H, Shan C X, Li B H, Zhang Z Z, Shen D Z, Choy K L 2011 J. Mater. Chem. 21 2848Google Scholar

    [131]

    McCluskey M D, Corolewski C D, Lv J P, Tarun M C, Teklemichael S T, Walter E D, Norton M G, Harrison K W, Ha S 2015 J. Appl. Phys. 117 112802Google Scholar

    [132]

    Fan J C, Sreekanth K M, Xie Z, Chang S L, Rao K V 2013 Prog. Mater. Sci. 58 874Google Scholar

    [133]

    Reynolds J G, Reynolds C L 2014 Adv. Condens. Matter Phys. 2014 457058

    [134]

    Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M 2005 Nat. Mater. 4 42

    [135]

    Jiao S J, Zhang Z Z, Lu Y M, Shen D Z, Yao B, Zhang J Y, Li B H, Zhao D X, Fan X W, Tang Z K 2006 Appl. Phys. Lett. 88 031911Google Scholar

    [136]

    Chu S, Olmedo M, Yang Z, Kong J Y, Liu J L 2008 Appl. Phys. Lett. 93 181106Google Scholar

    [137]

    Chu S, Wang G P, Zhou W H, Lin Y Q, Chernyak L, Zhao J Z, Kong J Y, Li L, Ren J J, Liu J L 2011 Nat. Nanotechnol. 6 506Google Scholar

    [138]

    Xie X H, Li B H, Zhang Z Z, Shen D Z 2018 J. Phys. D-Appl. Phys. 51 225104Google Scholar

    [139]

    Stehr J E, Wang X J, Filippov S, Pearton S J, Ivanov I G, Chen W M, Buyanova I A 2013 J. Appl. Phys. 113 103509Google Scholar

    [140]

    Yong D Y, He H Y, Tang Z K, Wei S H, Pan B C 2015 Phys. Rev. B 92 235207Google Scholar

    [141]

    Chavillon B, Cario L, Renaud A, Tessier F, Chevire F, Boujtita M, Pellegrin Y, Blart E, Smeigh A 2012 J. Am. Chem. Soc. 134 464Google Scholar

    [142]

    Ye Z Z, He H P, Jiang L 2018 Nano Energy 52 527Google Scholar

    [143]

    Chen A Q, Zhu H, Wu Y Y, Chen M M, Zhu Y, Gui X C, Tang Z K 2016 Adv. Funct. Mater. 26 3696Google Scholar

    [144]

    Sun F, Shan C X, Li B H, Zhang Z Z, Shen D Z, Zhang Z Y, Fan D 2011 Opt. Lett. 36 499Google Scholar

    [145]

    Liu J S, Shan C X, Shen H, Li B H, Zhang Z Z, Liu L, Zhang L G, Shen D Z 2012 Appl. Phys. Lett. 101 011106Google Scholar

  • [1] 闫丽彬, 白雨蓉, 李培, 柳文波, 何欢, 贺朝会, 赵小红. InP中点缺陷迁移机制的第一性原理计算.  , 2024, 73(18): 183101. doi: 10.7498/aps.73.20240754
    [2] 吕永杰, 陈燕, 叶方成, 蔡李彬, 戴子杰, 任云鹏. 外加电场和B/N掺杂对锡烯带隙的影响.  , 2024, 73(8): 083101. doi: 10.7498/aps.73.20231935
    [3] 马荣荣, 马晨蕊, 葛梅, 郭世祺, 张均锋. 单层蓝磷带电点缺陷的结构稳定性及电子性质.  , 2024, 73(13): 137301. doi: 10.7498/aps.73.20240011
    [4] 邓晨华, 于忠海, 王宇涛, 孔森, 周超, 杨森. Ti掺杂Nd2Fe14B/α-Fe纳米双相复合永磁体晶化动力学.  , 2023, 72(2): 027501. doi: 10.7498/aps.72.20221479
    [5] 智文强, 费宏明, 韩雨辉, 武敏, 张明达, 刘欣, 曹斌照, 杨毅彪. 漏斗型完全光子带隙光波导单向传输.  , 2022, 71(3): 038501. doi: 10.7498/aps.71.20211299
    [6] 智文强, 费宏明, 韩雨辉, 武敏, 张明达, 刘欣, 曹斌照, 杨毅彪. 漏斗型完全光子带隙光波导单向传输研究.  , 2021, (): . doi: 10.7498/aps.70.20211299
    [7] 张华林, 何鑫, 张振华. 过渡金属原子掺杂的锯齿型磷烯纳米带的磁电子学特性.  , 2021, 70(5): 056101. doi: 10.7498/aps.70.20201408
    [8] 莫曼, 曾纪术, 何浩, 张喨, 杜龙, 方志杰. Be, Mg, Mn掺杂CuInO2形成能的第一性原理研究.  , 2019, 68(10): 106102. doi: 10.7498/aps.68.20182255
    [9] 王冠仕, 林彦明, 赵亚丽, 姜振益, 张晓东. (Cu,N)共掺杂TiO2/MoS2异质结的电子和光学性能:杂化泛函HSE06.  , 2018, 67(23): 233101. doi: 10.7498/aps.67.20181520
    [10] 张越, 赵剑, 董鹏, 田达晰, 梁兴勃, 马向阳, 杨德仁. 掺杂剂对重掺n型直拉硅片的氧化诱生层错生长的影响.  , 2015, 64(9): 096105. doi: 10.7498/aps.64.096105
    [11] 刘海云, 刘湘涟, 田定琪, 杜正良, 崔教林. 含硫宽禁带Ga2Te3基热电半导体的声电输运特性.  , 2015, 64(19): 197201. doi: 10.7498/aps.64.197201
    [12] 曹永军, 谭伟, 刘燕. 二维磁振子晶体中点缺陷模的耦合性质研究.  , 2012, 61(11): 117501. doi: 10.7498/aps.61.117501
    [13] 胡小会, 许俊敏, 孙立涛. 金掺杂锯齿型石墨烯纳米带的电磁学特性研究.  , 2012, 61(4): 047106. doi: 10.7498/aps.61.047106
    [14] 吉川, 徐进. 点缺陷对硼掺杂直拉硅单晶p/p+ 外延片中铜沉淀的影响.  , 2012, 61(23): 236102. doi: 10.7498/aps.61.236102
    [15] 魏琦, 程营, 刘晓峻. 点缺陷阵列对声子晶体波导定向辐射性能的影响.  , 2011, 60(12): 124301. doi: 10.7498/aps.60.124301
    [16] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算.  , 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [17] 敖冰云, 汪小琳, 陈丕恒, 史鹏, 胡望宇, 杨剑瑜. 嵌入原子法计算金属钚中点缺陷的能量.  , 2010, 59(7): 4818-4825. doi: 10.7498/aps.59.4818
    [18] 马新国, 江建军, 梁 培. 锐钛矿型TiO2(101)面本征点缺陷的理论研究.  , 2008, 57(5): 3120-3125. doi: 10.7498/aps.57.3120
    [19] 宜晨虹, 慕青松, 苗天德. 带有点缺陷的二维颗粒系统离散元模拟.  , 2008, 57(6): 3636-3640. doi: 10.7498/aps.57.3636
    [20] 胡晓君, 李荣斌, 沈荷生, 何贤昶, 邓 文, 罗里熊. 掺杂金刚石薄膜的缺陷研究.  , 2004, 53(6): 2014-2018. doi: 10.7498/aps.53.2014
计量
  • 文章访问数:  13524
  • PDF下载量:  306
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-08
  • 修回日期:  2019-08-06
  • 上网日期:  2019-08-19
  • 刊出日期:  2019-08-20

/

返回文章
返回
Baidu
map