-
在基于太赫兹技术的生物化学传感应用中, 折射率传感逐步引起了广泛的研究兴趣. 为了提升太赫兹传感器的性能, 本文提出了基于向日葵型的圆形光子晶体折射率传感器. 所设计的传感器包括两个在光子晶体谐振腔中心对称分布的样品池. 研究了传感器性能与结构参数之间的依赖关系, 并讨论了这些参数的选择从而优化了传感器的性能. 最后, 所设计的折射率传感器在不同参数下获得的最大灵敏度为10.4 μm/RIU, 最大的Q因子为62.21, 最大的品质因数为1.46. 该项工作将圆形光子晶体传感器扩展到太赫兹波段, 实现了高性能太赫兹波折射率传感器.Refractive index sensing is attracting extensive attention in biochemical sensing using terahertz technology. Various structures with strong confinements have been used to design sensors for improving the interaction between the terahertz wave field and the analytes, such as photonic crystals, nanowires, plasmonic structures, and metamaterials. Terahertz wave sensors based on two-dimensional photonic crystal have been used in various areas ranging from disease diagnostics to environmental pollution detection. For improving the performance of terahertz sensor, a sensing scheme based on high-density polyethylene sunflower-typecircular photonic crystal structure is proposed. The designed sensor contains two symmetrical sample cells surrounding a cavity in a circular photonic crystal. The transmission properties of the terahertz wave sensor are analyzed based on COMSOL Multiphysics when the central sample cells are filled with analyte with different refractive indices. The sensor characteristics depending on the structure parameters are analyzed. The choice of these parameters is discussed. Finally, a sensitivity of 10.4 μm/RIU, Q-factor of 62.21, and figure-of-merit of 1.46 are realized. The results in this work are expected to be able to extend the circular photonic crystal-based sensor to terahertz wave region.
[1] Wu F, Wu J J, Guo Z W, Jiang H T, Sun Y, Ren J, Chen H 2019 Phys. Rev. Appl. 12 014028Google Scholar
[2] Wang X P, Sang M H, Yuan W, Nie Y Y, Luo H M 2016 IEEE Photonics Technol. Lett. 28 264Google Scholar
[3] Zhang Y B, Liu W W, Li Z C, Zhi L, Cheng H, Chen S Q, Tian J G 2018 Opt. Lett. 43 1842Google Scholar
[4] Liang L, Hu X, Wen L, Zhu Y H, Yang X G, Zhou J, Zhang Y X, Carranza I E, Grant J, Jiang C P, Cumming D R S, Li B J, Chen Q 2018 Laser Photonics Rev. 12 1800078Google Scholar
[5] Xu S, Fan F, Ji Y Y, Cheng J R, Chang S J 2019 Opt. Lett. 44 2450Google Scholar
[6] 李绍和, 李九生, 孙建忠 2019 68 104203Google Scholar
Li S H, Li J S, Sun J Z 2019 Acta Phys. Sin. 68 104203Google Scholar
[7] Chen J, Nie H, Tang C J, Cui Y H, Yan B, Zhang Z Y, Kong Y R, Xu Z J, Cai P G 2019 Appl. Phys. Express 12 052015Google Scholar
[8] 田伟, 文岐业, 陈智, 杨青慧, 荆玉兰, 张怀武 2015 64 028401Google Scholar
Tian W, Wen Q Y, Chen Z, Yang Q H, Jing Y L, Zhang H W 2015 Acta Phys. Sin. 64 028401Google Scholar
[9] Cheng W, Han Z H, Du Y, Qin J Y 2019 Opt. Express 27 16071Google Scholar
[10] Xiang Y J, Zhu J Q, Wu L M, You Q, Ruan B X, Dai X Y 2018 IEEE Photonics J. 10 6800507
[11] Keshavarz M M, Alighanbari A 2019 Appl. Opt. 58 3604Google Scholar
[12] Padhy P, Sahu P K, Jha R 2016 Sens. Actuators B 225 115Google Scholar
[13] Janneh M, Marcellis A D, Palange E, Tenggara A T, Byun D 2018 Opt. Commun. 416 152Google Scholar
[14] Wang S H, Sun X H, Wang C, Peng G D, Qi Y L, Wang X S 2017 J. Phys. D: Appl. Phys. 50 365102Google Scholar
[15] Yan D X, Li J S, Jin L F 2019 Laser Phys. 29 025401Google Scholar
[16] Tavousi A, Rakhshani M R, Mansouri-Birjandi M A 2018 Opt. Commun. 429 166Google Scholar
[17] 王昌辉, 赵国华, 常胜江 2012 61 157805Google Scholar
Wang C H, Zhao G H, Chang S J 2012 Acta Phys. Sin. 61 157805Google Scholar
[18] Fink Y, Winn J N, Fan S H, Chen C P, Michel J, Joannopoulos J D, Thomas E L 1998 Science 282 1679Google Scholar
[19] Wu F, Lu G, Guo Z W, Jiang H T, Xue C H, Zheng M J, Chen C X, Du G Q, Chen H 2018 Phys. Rev. Appl. 10 064022Google Scholar
[20] Wang X, Jiang X, You Q, Guo J, Dai X Y, Xiang Y J 2017 Photonics Res. 5 536Google Scholar
[21] Kraeh C, Martinez-Hurtado J L, Popescu A, Hedler H, Finley J J 2018 Opt. Mater. 76 106Google Scholar
[22] Caër C, Serna-Otálvaro S F, Zhang W W, Roux X L, Cassan E 2014 Opt. Lett. 39 5792Google Scholar
[23] Li L Q, Li T L, Ji F T, Song W P, Zhang G Y, Li Y 2017 Microsyst. Technol. 23 3271Google Scholar
[24] Ghanaatshoar M, Zamani M 2015 J. Supercond. Novel Magn. 28 1365Google Scholar
[25] Wang B, Jin H T, Zheng Z Q, Zhou Y H, Gao C 2017 Sens. Actuators B 244 344Google Scholar
[26] Li K, Feng X, Cui K Y, Zhang W, Liu F, Huang Y D 2017 Appl. Opt. 56 3096Google Scholar
[27] Ouerghi F, AbdelMalek F, Haxha S, Abid R, Mejatty H, Dayoub I 2009 J. Lightwave Technol. 27 3269Google Scholar
[28] Ge R, Xie J L, Yan B, Liu E X, Tan W, Liu J J 2018 J. Opt. Soc. Am. A 35 992Google Scholar
[29] Lee P T, Lu T W, Fan J H, Tsai F M 2007 Appl. Phys. Lett. 90 151125Google Scholar
-
-
[1] Wu F, Wu J J, Guo Z W, Jiang H T, Sun Y, Ren J, Chen H 2019 Phys. Rev. Appl. 12 014028Google Scholar
[2] Wang X P, Sang M H, Yuan W, Nie Y Y, Luo H M 2016 IEEE Photonics Technol. Lett. 28 264Google Scholar
[3] Zhang Y B, Liu W W, Li Z C, Zhi L, Cheng H, Chen S Q, Tian J G 2018 Opt. Lett. 43 1842Google Scholar
[4] Liang L, Hu X, Wen L, Zhu Y H, Yang X G, Zhou J, Zhang Y X, Carranza I E, Grant J, Jiang C P, Cumming D R S, Li B J, Chen Q 2018 Laser Photonics Rev. 12 1800078Google Scholar
[5] Xu S, Fan F, Ji Y Y, Cheng J R, Chang S J 2019 Opt. Lett. 44 2450Google Scholar
[6] 李绍和, 李九生, 孙建忠 2019 68 104203Google Scholar
Li S H, Li J S, Sun J Z 2019 Acta Phys. Sin. 68 104203Google Scholar
[7] Chen J, Nie H, Tang C J, Cui Y H, Yan B, Zhang Z Y, Kong Y R, Xu Z J, Cai P G 2019 Appl. Phys. Express 12 052015Google Scholar
[8] 田伟, 文岐业, 陈智, 杨青慧, 荆玉兰, 张怀武 2015 64 028401Google Scholar
Tian W, Wen Q Y, Chen Z, Yang Q H, Jing Y L, Zhang H W 2015 Acta Phys. Sin. 64 028401Google Scholar
[9] Cheng W, Han Z H, Du Y, Qin J Y 2019 Opt. Express 27 16071Google Scholar
[10] Xiang Y J, Zhu J Q, Wu L M, You Q, Ruan B X, Dai X Y 2018 IEEE Photonics J. 10 6800507
[11] Keshavarz M M, Alighanbari A 2019 Appl. Opt. 58 3604Google Scholar
[12] Padhy P, Sahu P K, Jha R 2016 Sens. Actuators B 225 115Google Scholar
[13] Janneh M, Marcellis A D, Palange E, Tenggara A T, Byun D 2018 Opt. Commun. 416 152Google Scholar
[14] Wang S H, Sun X H, Wang C, Peng G D, Qi Y L, Wang X S 2017 J. Phys. D: Appl. Phys. 50 365102Google Scholar
[15] Yan D X, Li J S, Jin L F 2019 Laser Phys. 29 025401Google Scholar
[16] Tavousi A, Rakhshani M R, Mansouri-Birjandi M A 2018 Opt. Commun. 429 166Google Scholar
[17] 王昌辉, 赵国华, 常胜江 2012 61 157805Google Scholar
Wang C H, Zhao G H, Chang S J 2012 Acta Phys. Sin. 61 157805Google Scholar
[18] Fink Y, Winn J N, Fan S H, Chen C P, Michel J, Joannopoulos J D, Thomas E L 1998 Science 282 1679Google Scholar
[19] Wu F, Lu G, Guo Z W, Jiang H T, Xue C H, Zheng M J, Chen C X, Du G Q, Chen H 2018 Phys. Rev. Appl. 10 064022Google Scholar
[20] Wang X, Jiang X, You Q, Guo J, Dai X Y, Xiang Y J 2017 Photonics Res. 5 536Google Scholar
[21] Kraeh C, Martinez-Hurtado J L, Popescu A, Hedler H, Finley J J 2018 Opt. Mater. 76 106Google Scholar
[22] Caër C, Serna-Otálvaro S F, Zhang W W, Roux X L, Cassan E 2014 Opt. Lett. 39 5792Google Scholar
[23] Li L Q, Li T L, Ji F T, Song W P, Zhang G Y, Li Y 2017 Microsyst. Technol. 23 3271Google Scholar
[24] Ghanaatshoar M, Zamani M 2015 J. Supercond. Novel Magn. 28 1365Google Scholar
[25] Wang B, Jin H T, Zheng Z Q, Zhou Y H, Gao C 2017 Sens. Actuators B 244 344Google Scholar
[26] Li K, Feng X, Cui K Y, Zhang W, Liu F, Huang Y D 2017 Appl. Opt. 56 3096Google Scholar
[27] Ouerghi F, AbdelMalek F, Haxha S, Abid R, Mejatty H, Dayoub I 2009 J. Lightwave Technol. 27 3269Google Scholar
[28] Ge R, Xie J L, Yan B, Liu E X, Tan W, Liu J J 2018 J. Opt. Soc. Am. A 35 992Google Scholar
[29] Lee P T, Lu T W, Fan J H, Tsai F M 2007 Appl. Phys. Lett. 90 151125Google Scholar
计量
- 文章访问数: 10439
- PDF下载量: 157
- 被引次数: 0