-
基于心脏电影磁共振图像的右心室(RV)分割, 对心脏疾病的诊疗及预后有着十分重要的意义. 右心室结构复杂, 传统图像分割方法始终未能达到较高的精度. 多图谱方法通过配准和融合来实现RV分割, 是近几年RV分割中的主要方法之一. 本文提出一种新的右心室多图谱分割方法, 能够实现RV的全自动准分割. 本文首先采用自适应仿射传播算法获取一系列图谱集, 并基于豪斯多夫距离和归一化互信息选择与目标图像最相似的图谱集; 然后, 依次采用多分辨率的仿射变换和Diffeomorphic demons算法将目标图像配准到最相似图谱集, 并将配准得到的形变场应用于标记图像获得粗分割结果; 最后, 本文采用COLLATE算法融合粗分割结果得到RV轮廓. 30例心脏电影磁共振数据被用于回顾性分析. 本文算法与放射专家手工分割的RV 相比, Dice指标和豪斯多夫距离的平均值分别为0.84, 11.46 mm; 舒张末期容积, 收缩末期容积, 射血分数的相关系数和偏差均值分别是0.94, 0.90, 0.86; 2.5113, –3.4783, 0.0341. 与卷积神经网络相比, 本文算法在收缩末期的分割精度更接近手动分割结果. 实验结果表明, 该方法从有效的图谱选择和基于多分辨率的Diffeomorphic demons算法的多级配准提高了右心室分割的精度, 有望应用于临床辅助诊断.
-
关键词:
- 心脏磁共振图像 /
- 右心室 /
- 多图谱分割 /
- 微分同胚demons
Segmentation of right ventricle (RV) in a cine cardiac magnetic resonance (CMR) image is essential for the diagnosis and therapy of cardiac diseases. Traditional image segmentation methods fail to achieve high accuracy due to the complex structure of RV. Multi-atlas frame, which transforms the segmentation into registration and fusion, has become one of the main segmentation methods of RV in recent years. In this paper, we suggest a new multi-atlas frame for the automatical and accurate segmentation of RV. Firstly, an adaptive affinity propagation algorithm is used to obtain a series of atlases, in which the atlas set most similar to the target image based on hausdorff distance and normalized mutual information is selected. Then, the target image is registered onto the selected atlas by using multi-resolution strategy-based affine transform and Diffeomorphic demons algorithm to generate a deformation field, which is applied to the label image to obtain coarse segmentation results of RV. Finally, the Consensus Level, Labeler Accuracy and Truth Estimation (COLLATE) algorithm is used to fuse the coarse segmentation result to obtain the RV. The 30 cine CMR datasets are applied to the retrospective analysis. The comparison between RV value from the present algorithm and that from the manual segmentation shows that the average dice index and hausdorff distance are 0.84 and 11.46 mm, respectively, the correlation coefficients and deviation means of endo-diastolic volume, endo-systolic volume and ejection fraction are 0.94, 0.90, 0.86, and 2.5113, –3.4783, 0.0341, respectively. Compared with convolutional neural networks, the new multi-atlas frame has an endo-systolic volume close to the manual result. The results show that the suggested method improves the accuracy and robustness of segmentation of RV from the effective atlas selection and multi-resolution Diffeomorphic demons algorithm-based registration, and it promises to be applied to clinical diagnosis.-
Keywords:
- cardiac magnetic resonance imaging /
- right ventricle /
- multi-atlas segmentation /
- diffeomorphic demons
[1] World Health Organization, http://origin.who.int/mediacentrse/factsheets/fs317/en/ [2019−4−17]
[2] 胡盛寿, 高润霖, 刘力生, 朱曼璐, 王文, 王拥军, 吴兆苏, 李惠君, 顾东风, 杨跃进, 郑哲, 陈伟伟 2019 中国循环杂志 34 209Google Scholar
Hu S S, Gao R L, Liu L S, Zhu M L, Wang W, Wang Y J, Wu Z S, Li H J, Gu D F, Yang Y J, Zheng Z, Chen W W 2019 Chin. Circ. J. 34 209Google Scholar
[3] Haddad F, Hunt S A, Rosenthal D N, Murphy D J 2008 Circulation 117 1436Google Scholar
[4] Kutty S, Shang Q, Joseph N, Kowallick J T, Schuster A, Steinmetz M, Danford D A, Beerbaum P, Sarikouch S 2017 Int. J. Cardiol. 248 136Google Scholar
[5] Frey B J, Dueck D 2007 Science 315 972Google Scholar
[6] 张耀楠, 陈传慎, 康雁 2014 东北大学学报(自然科学版) 35 795Google Scholar
Zhang Y N, Chen C S, Kang Y 2014 J. Northeast. Univ. 35 795Google Scholar
[7] 王开军, 张军英, 李丹, 张新娜, 郭涛 2007 自动化学报 12 1242
Wang K J, Zhang J Y, Li D, Zhang X N, Guo T 2007 Acta Automatica Sin. 12 1242
[8] Zuluaga M A, Cardoso M J, Modat M, Ourselin S 2013 International Conference, FIMH London, UK, June 20−22, 2013 p174
[9] Lorenzovaldes M, Sanchezortiz G I, Mohiaddin R H, Rueckert D 2002 MICCAI Tokyo, Japan September 25−28, 2002 p642
[10] Bai W, Shi W, Oregan D P, Tong T, Wang H, Jamilcopley S, Peters N S, Rueckert D 2013 IEEE Trans. Med. Imaging 32 1302Google Scholar
[11] Ou Y, Sotiras A, Paragios N, Davatzikos C 2011 Med. Image Anal. 15 622Google Scholar
[12] Shi W Z, Zhuang X H, Pizarro L, Bai W J, Wang H Y, Tung K P, Edwards P J, Rueckert D 2012 MICCAI Nice, France October 1−5, 2012 p659
[13] Thirion J 1998 Med. Image Anal. 2 243Google Scholar
[14] 周先春, 汪美玲, 周林锋, 吴琴 2015 64 024205Google Scholar
Zhou X C, Wang M L, Zhou L F, Wu Q 2015 Acta Phys. Sin. 64 024205Google Scholar
[15] Vercauteren T, Pennec X, Perchant A, Ayache N 2009 NeuroImage 45 S61Google Scholar
[16] Asman A J, Landman B A 2011 IEEE Trans. Med. Imaging 30 1779Google Scholar
[17] 王丽嘉, 苏新宇, 李亚, 胡立伟, 聂生东 2018 波谱学杂志 35 407Google Scholar
Wang L J, Su X Y, Li Y, Hu L W, Nie S D 2018 Chin. J. Magn. Reson. 35 407Google Scholar
[18] Awate S P, Zhu P, Whitaker R T 2012 MICCAI Nice, France October 1−5, 2012 p 103
[19] Kyhl K, Ahtarovski K A, Iversen K, Thomsen C, Vejlstrup N, Engstrom T, Madsen P 2013 Am. J. Physiol Heart Circ. Physiol. 305 H1004Google Scholar
[20] Lei X L, Liu H, Han Y C, Cheng W, Sun J Y, Luo Y, Yang D, Dong Y, Chung Y C, Chen Y H 2017 J. Magn. Reson. Imaging 45 1684Google Scholar
-
表 1 ED, ES的平均Dice指数和豪斯多夫距离
Table 1. Average Dice index and Hausdorff distance of ED and ES.
Dice HD/mm ED 0.87(0.10) 10.76(4.5) ES 0.81(0.16) 12.16(6.54) -
[1] World Health Organization, http://origin.who.int/mediacentrse/factsheets/fs317/en/ [2019−4−17]
[2] 胡盛寿, 高润霖, 刘力生, 朱曼璐, 王文, 王拥军, 吴兆苏, 李惠君, 顾东风, 杨跃进, 郑哲, 陈伟伟 2019 中国循环杂志 34 209Google Scholar
Hu S S, Gao R L, Liu L S, Zhu M L, Wang W, Wang Y J, Wu Z S, Li H J, Gu D F, Yang Y J, Zheng Z, Chen W W 2019 Chin. Circ. J. 34 209Google Scholar
[3] Haddad F, Hunt S A, Rosenthal D N, Murphy D J 2008 Circulation 117 1436Google Scholar
[4] Kutty S, Shang Q, Joseph N, Kowallick J T, Schuster A, Steinmetz M, Danford D A, Beerbaum P, Sarikouch S 2017 Int. J. Cardiol. 248 136Google Scholar
[5] Frey B J, Dueck D 2007 Science 315 972Google Scholar
[6] 张耀楠, 陈传慎, 康雁 2014 东北大学学报(自然科学版) 35 795Google Scholar
Zhang Y N, Chen C S, Kang Y 2014 J. Northeast. Univ. 35 795Google Scholar
[7] 王开军, 张军英, 李丹, 张新娜, 郭涛 2007 自动化学报 12 1242
Wang K J, Zhang J Y, Li D, Zhang X N, Guo T 2007 Acta Automatica Sin. 12 1242
[8] Zuluaga M A, Cardoso M J, Modat M, Ourselin S 2013 International Conference, FIMH London, UK, June 20−22, 2013 p174
[9] Lorenzovaldes M, Sanchezortiz G I, Mohiaddin R H, Rueckert D 2002 MICCAI Tokyo, Japan September 25−28, 2002 p642
[10] Bai W, Shi W, Oregan D P, Tong T, Wang H, Jamilcopley S, Peters N S, Rueckert D 2013 IEEE Trans. Med. Imaging 32 1302Google Scholar
[11] Ou Y, Sotiras A, Paragios N, Davatzikos C 2011 Med. Image Anal. 15 622Google Scholar
[12] Shi W Z, Zhuang X H, Pizarro L, Bai W J, Wang H Y, Tung K P, Edwards P J, Rueckert D 2012 MICCAI Nice, France October 1−5, 2012 p659
[13] Thirion J 1998 Med. Image Anal. 2 243Google Scholar
[14] 周先春, 汪美玲, 周林锋, 吴琴 2015 64 024205Google Scholar
Zhou X C, Wang M L, Zhou L F, Wu Q 2015 Acta Phys. Sin. 64 024205Google Scholar
[15] Vercauteren T, Pennec X, Perchant A, Ayache N 2009 NeuroImage 45 S61Google Scholar
[16] Asman A J, Landman B A 2011 IEEE Trans. Med. Imaging 30 1779Google Scholar
[17] 王丽嘉, 苏新宇, 李亚, 胡立伟, 聂生东 2018 波谱学杂志 35 407Google Scholar
Wang L J, Su X Y, Li Y, Hu L W, Nie S D 2018 Chin. J. Magn. Reson. 35 407Google Scholar
[18] Awate S P, Zhu P, Whitaker R T 2012 MICCAI Nice, France October 1−5, 2012 p 103
[19] Kyhl K, Ahtarovski K A, Iversen K, Thomsen C, Vejlstrup N, Engstrom T, Madsen P 2013 Am. J. Physiol Heart Circ. Physiol. 305 H1004Google Scholar
[20] Lei X L, Liu H, Han Y C, Cheng W, Sun J Y, Luo Y, Yang D, Dong Y, Chung Y C, Chen Y H 2017 J. Magn. Reson. Imaging 45 1684Google Scholar
计量
- 文章访问数: 10397
- PDF下载量: 63
- 被引次数: 0