搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维直方图θ划分最大Shannon熵图像阈值分割

吴一全 张金矿

引用本文:
Citation:

二维直方图θ划分最大Shannon熵图像阈值分割

吴一全, 张金矿

Image thresholding based on θ-division of 2-D histogram and maximum Shannon entropy

Wu Yi-Quan, Zhang Jin-Kuang
PDF
导出引用
  • 鉴于常用二维直方图区域直分法存在错分,最近提出的斜分法不具普遍性,提出了适用面更广的基于二维直方图θ划分和最大Shannon熵的图像阈值分割算法.首先给出了二维直方图θ划分方法,采用四条平行斜线及一条其法线与灰度级轴成θ角的直线划分二维直方图区域,按灰度级和邻域平均灰度级的加权和进行阈值分割,斜分法可视为该方法中θ=45°的特例;然后导出了二维直方图θ-划分最大Shannon熵阈值选取公式及其快速递推算法;最后给出了θ取不同值时的分割结果及运行时间,θ取较小值时,边界形状准确性较高,θ取较大值时,抗噪性较强,应用时可根据实际图像特点及需求合理选取θ的值.与常规二维直方图直分最大Shannon熵法相比,本文提出的方法所得分割结果更为准确,抵抗噪声更为稳健,且所需运行时间及存储空间也大为减小.
    In view of the obvious wrong segmentation in commonly used region division of 2-D histogram and the non- universality of oblique segmentation method for image thresholding proposed recently, in this paper a much more widely suitable thresholding method is proposed based on the θ-division of 2-D histogram and the maximum Shannon entropy criterion. Firstly, the θ-division method of 2-D histogram is given. The region is divided by four parallel oblique lines and a line, where the angle between its normal line and gray level axis is θ degrees. Image thresholding is performed according to pixel's weighted average value of gray level and neighbour average gray level. The oblique segmentation method can be regarded as a special case of the proposed method at θ=45°. Then the formulae and its fast recursive algorithm of the method are deduced. Finally the segmented results and the running time at different values of θ are listed, which show that the segmented images achieve more accurate borders at smaller values of θ and the anti-noise is better at larger values of θ. The value of θ can be selected according to the real image characteristics and the requirements of segmented results. Compared with the algorithm of conventional 2-D maximum Shannon entropy method, the proposed method not only achieves more accurate segmentation results and more robust anti-noise, but also reduces the running time and memory space significantly.
    • 基金项目: 国家自然科学基金(批准号:60872065)资助的课题.
    [1]

    Liang Y M, Zhai H C, Chang S J, Zhang S Y 2003 Acta Phys. Sin. 52 2655(in Chinese)[梁艳梅、翟宏琛、常胜江、张思远 2003 52 2655]

    [2]

    Tang Y G, Di Q Y, Zhao L X, Guan X P 2009 Acta Phys. Sin. 58 9(in Chinese)[唐英干、邸秋艳、赵立兴、关新平 2009 58 9]

    [3]

    Guo H T, Tian T, Wang L Y, Zhang C T 2006 Acta Optica Sinica 26 506(in Chinese)[郭海涛、田 坦、王连玉、张春田 2006 光学学报 26 506 ]

    [4]

    Wu Y Q, Zhu Z D 1993 Journal of Data Acquisition and Processing 8 193(in Chinese)[吴一全、朱兆达1993 数据采集与处理 8 193]

    [5]

    Wu Y Q, Zhu Z D 1993 Journal of Data Acquisition and Processing 8 268(in Chinese)[吴一全、朱兆达 1993 数据采集与处理 8 268]

    [6]

    Sezgin M, Sankur B 2004 Electronic Imaging 13 146

    [7]

    Bardera A, Boada I, Feixas M, Sbert M 2009 Journal of Signal Processing Systems 54 205

    [8]

    Kapur J N, Sahoo P K, Wong A K C 1985 Computer Vision, Graphics and Image Processing 29 273

    [9]

    Xing X S 2004 Acta Phys. Sin. 53 2852(in Chinese)[邢修三 2004 53 2852 ]

    [10]

    Abutaleb A S 1989 Pattern Recognition 47 22

    [11]

    Brink A D 1992 Pattern Recognition 25 803

    [12]

    Chen W T, Wen C H, Yang C W 1994 Pattern Recognition 27 885

    [13]

    Gong J, Li L Y, Chen W N 1996 Journal of Southeast University 26 31(in Chinese)[龚 坚、李立源、陈维南1996 东南大学学报 26 31]

    [14]

    Zhang Y J, Wu X J, Xia L Z. 1997 Pattern Recognition and Artificial Intelligence 10 259(in Chinese)[张毅军、吴雪菁、夏良正1997 模式识别与人工智能 10 259]

    [15]

    Yan X Q, Ye L Q, Liu J L, Gu W K 1998 Pattern Recognition and Artificial Intelligence 11 352(in Chinese)[严学强、叶秀清、刘济林、顾伟康 1998 模式识别与人工智能 11 352]

    [16]

    Du F, Shi W K. 2005 Pattern Recognition Letters 26 597

    [17]

    Cao Z H, Li Y J, Zhang K 2007 Scope on Acta Photonica Sinica 36 2377

    [18]

    Du F, Shi W K, Deng Y, Zhu Z F 2005 J. Infrared Millim. Waves 24 370 (in Chinese) [杜 峰、施文康、邓 勇、朱振幅 2005 红外与毫米波学报 24 370]

    [19]

    Wu Y Q, Pan Z, Wu W Y 2009 Pattern Recognition and Artificial Intelligence 22 162(in Chinese)[吴一全、潘喆、吴文怡 2009 模式识别与人工智能 22 162]

  • [1]

    Liang Y M, Zhai H C, Chang S J, Zhang S Y 2003 Acta Phys. Sin. 52 2655(in Chinese)[梁艳梅、翟宏琛、常胜江、张思远 2003 52 2655]

    [2]

    Tang Y G, Di Q Y, Zhao L X, Guan X P 2009 Acta Phys. Sin. 58 9(in Chinese)[唐英干、邸秋艳、赵立兴、关新平 2009 58 9]

    [3]

    Guo H T, Tian T, Wang L Y, Zhang C T 2006 Acta Optica Sinica 26 506(in Chinese)[郭海涛、田 坦、王连玉、张春田 2006 光学学报 26 506 ]

    [4]

    Wu Y Q, Zhu Z D 1993 Journal of Data Acquisition and Processing 8 193(in Chinese)[吴一全、朱兆达1993 数据采集与处理 8 193]

    [5]

    Wu Y Q, Zhu Z D 1993 Journal of Data Acquisition and Processing 8 268(in Chinese)[吴一全、朱兆达 1993 数据采集与处理 8 268]

    [6]

    Sezgin M, Sankur B 2004 Electronic Imaging 13 146

    [7]

    Bardera A, Boada I, Feixas M, Sbert M 2009 Journal of Signal Processing Systems 54 205

    [8]

    Kapur J N, Sahoo P K, Wong A K C 1985 Computer Vision, Graphics and Image Processing 29 273

    [9]

    Xing X S 2004 Acta Phys. Sin. 53 2852(in Chinese)[邢修三 2004 53 2852 ]

    [10]

    Abutaleb A S 1989 Pattern Recognition 47 22

    [11]

    Brink A D 1992 Pattern Recognition 25 803

    [12]

    Chen W T, Wen C H, Yang C W 1994 Pattern Recognition 27 885

    [13]

    Gong J, Li L Y, Chen W N 1996 Journal of Southeast University 26 31(in Chinese)[龚 坚、李立源、陈维南1996 东南大学学报 26 31]

    [14]

    Zhang Y J, Wu X J, Xia L Z. 1997 Pattern Recognition and Artificial Intelligence 10 259(in Chinese)[张毅军、吴雪菁、夏良正1997 模式识别与人工智能 10 259]

    [15]

    Yan X Q, Ye L Q, Liu J L, Gu W K 1998 Pattern Recognition and Artificial Intelligence 11 352(in Chinese)[严学强、叶秀清、刘济林、顾伟康 1998 模式识别与人工智能 11 352]

    [16]

    Du F, Shi W K. 2005 Pattern Recognition Letters 26 597

    [17]

    Cao Z H, Li Y J, Zhang K 2007 Scope on Acta Photonica Sinica 36 2377

    [18]

    Du F, Shi W K, Deng Y, Zhu Z F 2005 J. Infrared Millim. Waves 24 370 (in Chinese) [杜 峰、施文康、邓 勇、朱振幅 2005 红外与毫米波学报 24 370]

    [19]

    Wu Y Q, Pan Z, Wu W Y 2009 Pattern Recognition and Artificial Intelligence 22 162(in Chinese)[吴一全、潘喆、吴文怡 2009 模式识别与人工智能 22 162]

  • [1] 何建超, 方明卫, 包芸. 二维湍流热对流最大速度Re数特性及流态突变特征Re.  , 2022, 71(19): 194702. doi: 10.7498/aps.71.20220352
    [2] 黄泽徽, 李亚安, 陈哲, 刘恋. 基于多尺度熵的Duffing混沌系统阈值确定方法.  , 2020, 69(16): 160501. doi: 10.7498/aps.69.20191642
    [3] 王世元, 史春芬, 钱国兵, 王万里. 基于分数阶最大相关熵算法的混沌时间序列预测.  , 2018, 67(1): 018401. doi: 10.7498/aps.67.20171803
    [4] 郭家梁, 钟宁, 马小萌, 张明辉, 周海燕. 基于振幅-周期二维特征的脑电样本熵分析.  , 2016, 65(19): 190501. doi: 10.7498/aps.65.190501
    [5] 范虹, 韦文瑾, 朱艳春. 基于二维集合经验模式分解的距离正则化水平集磁共振图像分割.  , 2016, 65(16): 168701. doi: 10.7498/aps.65.168701
    [6] 刘俊池, 李洪文, 王建立, 刘欣悦, 马鑫雪. 基于最大熵估计Alpha谱缩放与平移量的温度与发射率分离算法.  , 2015, 64(17): 175205. doi: 10.7498/aps.64.175205
    [7] 范虹, 朱艳春, 王芳梅, 张旭梅. 多分辨率水平集算法的乳腺MR图像分割.  , 2014, 63(11): 118701. doi: 10.7498/aps.63.118701
    [8] 彭武, 何怡刚, 方葛丰, 樊晓腾. 二维泊松方程的遗传PSOR改进算法.  , 2013, 62(2): 020301. doi: 10.7498/aps.62.020301
    [9] 王冠宇, 张鹤鸣, 王晓艳, 吴铁峰, 王斌. 亚100 nm应变Si/SiGe nMOSFET阈值电压二维解析模型.  , 2011, 60(7): 077106. doi: 10.7498/aps.60.077106
    [10] 李清都, 杨晓松. 一种二维不稳定流形的新算法及其应用.  , 2010, 59(3): 1416-1422. doi: 10.7498/aps.59.1416
    [11] 李建龙, 朱世富, 傅克祥. 电磁场递推算法及微纳光学元件中的应用.  , 2010, 59(5): 3192-3198. doi: 10.7498/aps.59.3192
    [12] 唐英干, 邸秋艳, 赵立兴, 关新平, 刘福才. 基于二维最小Tsallis交叉熵的图像阈值分割方法.  , 2009, 58(1): 9-15. doi: 10.7498/aps.58.9
    [13] 张冠茂, 张晓萍. 光脉冲传输模拟的快速数值差分递推算法及其应用研究.  , 2007, 56(5): 2678-2683. doi: 10.7498/aps.56.2678
    [14] 钟会林, 吴福根, 姚立宁. 遗传算法在二维声子晶体带隙优化中的应用.  , 2006, 55(1): 275-280. doi: 10.7498/aps.55.275
    [15] 龚志强, 封国林, 万仕全, 李建平. 基于启发式分割算法检测华北和全球气候变化的特征.  , 2006, 55(1): 477-484. doi: 10.7498/aps.55.477
    [16] 刘劲松, 刘 海, 王 春, 吕健滔, 樊 婷, 王晓东. 二维随机激光器的模式选择及阈值与饱和特性.  , 2006, 55(8): 4123-4131. doi: 10.7498/aps.55.4123
    [17] 李艳萍, 徐静平, 陈卫兵, 许胜国, 季 峰. 考虑量子效应的短沟道MOSFET二维阈值电压模型.  , 2006, 55(7): 3670-3676. doi: 10.7498/aps.55.3670
    [18] 封国林, 龚志强, 董文杰, 李建平. 基于启发式分割算法的气候突变检测研究.  , 2005, 54(11): 5494-5499. doi: 10.7498/aps.54.5494
    [19] 吴俊峰, 叶文华, 张维岩, 贺贤土. 二维不可压流体瑞利-泰勒不稳定性的非线性阈值公式.  , 2003, 52(7): 1688-1693. doi: 10.7498/aps.52.1688
    [20] 梁艳梅, 翟宏琛, 常胜江, 张思远. 基于最大隶属度原则的彩色图像分割方法.  , 2003, 52(11): 2655-2659. doi: 10.7498/aps.52.2655
计量
  • 文章访问数:  10368
  • PDF下载量:  1116
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-08-12
  • 修回日期:  2009-11-27
  • 刊出日期:  2010-04-05

/

返回文章
返回
Baidu
map