搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多分辨率水平集算法的乳腺MR图像分割

范虹 朱艳春 王芳梅 张旭梅

引用本文:
Citation:

多分辨率水平集算法的乳腺MR图像分割

范虹, 朱艳春, 王芳梅, 张旭梅

Segmentation of breast MR images based on multiresolution level set algorithm

Fan Hong, Zhu Yan-Chun, Wang Fang-Mei, Zhang Xu-Mei
PDF
导出引用
  • 针对乳腺MR图像信息量大、灰度不均匀、边界模糊、难分割的特点,提出一种多分辨率水平集乳腺MR图像分割算法. 算法的核心是首先利用小波多尺度分解对图像进行多尺度空间分析,得到粗尺度图像;然后对粗尺度图像利用改进CV 模型进行分割. 为了去除乳腺MR图像中灰度偏移场对分割效果的影响,算法中引入局部拟合项,并用核函数进一步改进CV模型,进而对粗尺度分割效果进行优化处理. 仿真和临床数据分割结果表明,所提算法分割灰度不均匀图像具有较高的分割精度和鲁棒性,能够有效的实现乳腺MR图像的分割.
    This paper proposes a novel multiresolution level set algorithm to segment breast MR images, which have a large amount of information, intensity inhomogeneities, and weak boundary. The core of the algorithm is to get the coarse scale image by analyzing the image in multi-scale space with wavelet multiscale decomposition. Then, to segment the analysed results in terms of improved CV model. In order to deal with the effect of bias field on the global images, the algorithm introduces a local fitting term into the improved CV model and optimizes the coarse-scale segmentation result by using the Kernel function to further improve the CV model. Experimental results on both synthetic and real breast MR images demonstrate that the proposed algorithm can segment the images with intensity inhomogeneity effectively and efficiently, also it can segment the images far more accurately, computationally efficiently, and much less sensitively to the initial contour.
    • 基金项目: 陕西省科学技术研究发展计划(批准号:2012K06-36)和陕西师范大学中央高校基本科研业务费(批准号:GK201102006)资助的课题.
    • Funds: Project supported by the Shaanxi province science and technology research and development program, China (Grant No. 2012K06-36), the Fundamental Research Funds for the Central Universities, China (Grant No. GK201102006).
    [1]

    Bao S L, Zhou C N, Guo Z G 2010 Biology Fundamental Theory of Medical Imaging (1st Ed.) (Beijing: Higher Education Press) p307 (in Chinese) [包尚联, 周传农, 郭占国 2010 医学影像生物学基础(第1版) (北京: 高等教育出版社) p307]

    [2]

    Cui Y F, Tan Y Q, Zhao B S, Liberman L, Parbhu R, Kaplan J, Theodoulou M, Hudis C, Schwartz LH 2009 Med. Phys. 36 4359

    [3]

    Seiko KS, Kuroki Y, Nasu K, Nawano S, Moriyama N, Okazaki M 2007 Magn. Reson. Ned Sci. 6 21

    [4]

    Tang X, Hong L M, Zu D L 2010 Chin. Phys. B 19 078702

    [5]

    Xu Y, Wang W T, Wang W M 2012 Chin. Phys. B 21 118704

    [6]

    Zu Z L, Zhou K, Zhang S G, Gao S, Bao S L 2008 Chin. Phys. B 17 328

    [7]

    Bao S L, Du J, Gao S 2013 Acta Phys. Sin. 62 088701 (in Chinese)[包尚联, 杜江, 高嵩 2013 62 088701]

    [8]

    Zhang S Y, Bao S L, Kang X J 2013 Acta Phys. Sin. 62 208703 (in Chinese)[张首誉, 包尚联, 康孝俭, 高嵩 2013 62 208703]

    [9]

    Fang S, Wu W C, Ying K, Guo H 2013 Acta Phys. Sin. 62 048702 (in Chinese)[方晟, 吴文川, 应葵, 郭华 2013 62 048702]

    [10]

    Osher S, Sethian J 1988 A Journal of Computational Physics 79 12

    [11]

    Qian Y, Zhang Y J 2008 Journal of Image and Graphic 13 7) (in Chinese) [钱芸, 张英杰 2008 中国图象图形学报 13 7]

    [12]

    Chan F T, Vese L 2001 IEEE Transactions on Image Processing 10 266

    [13]

    Klifa C, Carballido-Gamio J, Wilmes L, Laprieb A, Shepherda J, Gibbsa J, Fana B, Noworolskia S, Hyltona N 2010 Magnetic Resonance Imaging 28 8

    [14]

    Gwo C Y, Wei C H, Li Y, Huang PJ 2013 European Journal of Radiology 82 e176

    [15]

    Hayton P, Brady M, Tarassenko L, Moore N 1997 Med. Image Anal. 1 207

    [16]

    Twellmann T, Lichte O, Nattkemper TW 2005 IEEE Trans. Med. Imaging 24 1256

    [17]

    Otsu N 1979 IEEE Trans. Syst. Man. Cybernet. 9 62

    [18]

    Li C M, Kao C Y, John Gore C, Ding Z H 2008 IEEE Transactions on Image Processing 17 1940

    [19]

    Liu H H, Chen Z H, Chen X H Chen Y G 2005 Proceeding of IEEE Engineering in Medicine and Biology 27th Annual Conference Shanghai, China, Septembei 1-4, 2005

    [20]

    Olivier B, Denis F, Philippe T, Michael U 2009 IEEE Transactions on Image Processing 18 1179

    [21]

    Li C M, Huan R, Ding Z H, Chris Gatenby J, Metaxas D N, Gorel J C 2011 IEEE Transactions on Image Processing 20 2007

  • [1]

    Bao S L, Zhou C N, Guo Z G 2010 Biology Fundamental Theory of Medical Imaging (1st Ed.) (Beijing: Higher Education Press) p307 (in Chinese) [包尚联, 周传农, 郭占国 2010 医学影像生物学基础(第1版) (北京: 高等教育出版社) p307]

    [2]

    Cui Y F, Tan Y Q, Zhao B S, Liberman L, Parbhu R, Kaplan J, Theodoulou M, Hudis C, Schwartz LH 2009 Med. Phys. 36 4359

    [3]

    Seiko KS, Kuroki Y, Nasu K, Nawano S, Moriyama N, Okazaki M 2007 Magn. Reson. Ned Sci. 6 21

    [4]

    Tang X, Hong L M, Zu D L 2010 Chin. Phys. B 19 078702

    [5]

    Xu Y, Wang W T, Wang W M 2012 Chin. Phys. B 21 118704

    [6]

    Zu Z L, Zhou K, Zhang S G, Gao S, Bao S L 2008 Chin. Phys. B 17 328

    [7]

    Bao S L, Du J, Gao S 2013 Acta Phys. Sin. 62 088701 (in Chinese)[包尚联, 杜江, 高嵩 2013 62 088701]

    [8]

    Zhang S Y, Bao S L, Kang X J 2013 Acta Phys. Sin. 62 208703 (in Chinese)[张首誉, 包尚联, 康孝俭, 高嵩 2013 62 208703]

    [9]

    Fang S, Wu W C, Ying K, Guo H 2013 Acta Phys. Sin. 62 048702 (in Chinese)[方晟, 吴文川, 应葵, 郭华 2013 62 048702]

    [10]

    Osher S, Sethian J 1988 A Journal of Computational Physics 79 12

    [11]

    Qian Y, Zhang Y J 2008 Journal of Image and Graphic 13 7) (in Chinese) [钱芸, 张英杰 2008 中国图象图形学报 13 7]

    [12]

    Chan F T, Vese L 2001 IEEE Transactions on Image Processing 10 266

    [13]

    Klifa C, Carballido-Gamio J, Wilmes L, Laprieb A, Shepherda J, Gibbsa J, Fana B, Noworolskia S, Hyltona N 2010 Magnetic Resonance Imaging 28 8

    [14]

    Gwo C Y, Wei C H, Li Y, Huang PJ 2013 European Journal of Radiology 82 e176

    [15]

    Hayton P, Brady M, Tarassenko L, Moore N 1997 Med. Image Anal. 1 207

    [16]

    Twellmann T, Lichte O, Nattkemper TW 2005 IEEE Trans. Med. Imaging 24 1256

    [17]

    Otsu N 1979 IEEE Trans. Syst. Man. Cybernet. 9 62

    [18]

    Li C M, Kao C Y, John Gore C, Ding Z H 2008 IEEE Transactions on Image Processing 17 1940

    [19]

    Liu H H, Chen Z H, Chen X H Chen Y G 2005 Proceeding of IEEE Engineering in Medicine and Biology 27th Annual Conference Shanghai, China, Septembei 1-4, 2005

    [20]

    Olivier B, Denis F, Philippe T, Michael U 2009 IEEE Transactions on Image Processing 18 1179

    [21]

    Li C M, Huan R, Ding Z H, Chris Gatenby J, Metaxas D N, Gorel J C 2011 IEEE Transactions on Image Processing 20 2007

  • [1] 于博, 梁伟, 焦蛟, 康小录, 赵青. 稍不均匀电场中低气压击穿的起始路径研究.  , 2019, 68(7): 070201. doi: 10.7498/aps.68.20181999
    [2] 吕立斌, 李清亮, 郝书吉, 吴振森. 人工沿场不均匀体对短波垂直探测影响的理论分析.  , 2017, 66(5): 059401. doi: 10.7498/aps.66.059401
    [3] 管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪. 不均匀性:非晶合金的灵魂.  , 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [4] 高继华, 史文茂, 汤艳丰, 肖骐, 杨海涛. 局部不均匀性对时空系统振荡频率的影响.  , 2016, 65(15): 150503. doi: 10.7498/aps.65.150503
    [5] 何林阳, 刘晶红, 李刚. 基于多相组重建的航空图像超分辨率算法.  , 2015, 64(11): 114208. doi: 10.7498/aps.64.114208
    [6] 邓承志, 田伟, 陈盼, 汪胜前, 朱华生, 胡赛凤. 基于局部约束群稀疏的红外图像超分辨率重建.  , 2014, 63(4): 044202. doi: 10.7498/aps.63.044202
    [7] 韩振中, 陈后金, 李艳凤, 李居朋, 姚畅, 程琳. 基于SPCNN与改进型矢量CV模型的乳腺X射线肿块分割方法.  , 2014, 63(7): 078703. doi: 10.7498/aps.63.078703
    [8] 何永周. 永磁体外部磁场的不均匀性研究.  , 2013, 62(8): 084105. doi: 10.7498/aps.62.084105
    [9] 周树波, 袁艳, 苏丽娟. 基于双阈值Huber范数估计的图像正则化超分辨率算法.  , 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [10] 孙增国, 韩崇昭. 基于拖尾分布的高分辨率合成孔径雷达图像建模.  , 2010, 59(2): 998-1008. doi: 10.7498/aps.59.998
    [11] 向良忠, 邢达, 郭华, 杨思华. 高分辨率快速数字化光声CT乳腺肿瘤成像.  , 2009, 58(7): 4610-4617. doi: 10.7498/aps.58.4610
    [12] 吕克璞, 段文山, 赵金保, 王本仁, 魏荣爵. 不均匀等离子体中孤子的传播.  , 1999, 48(11): 1969-1975. doi: 10.7498/aps.48.1969
    [13] 段文山, 吕克朴, 王本仁, 魏荣爵. 不均匀等离子体中孤子的反射与透射.  , 1998, 47(5): 705-711. doi: 10.7498/aps.47.705
    [14] 黄朝松, 李钧, M .C. KELLEY. 大气重力波产生中纬电离层不均匀体的理论.  , 1994, 43(9): 1476-1485. doi: 10.7498/aps.43.1476
    [15] 朱家珍, 王耕国. 离子声孤子在不均匀等离子体中的传播特性.  , 1990, 39(11): 1764-1771. doi: 10.7498/aps.39.1764
    [16] 徐至展, 余玮, 张文琦, 徐铁峰. 双频激光在不均匀等离子体中的耦合.  , 1988, 37(7): 1144-1149. doi: 10.7498/aps.37.1144
    [17] 余玮, 徐至展, 陈泽尊. 磁化不均匀等离子体中的两种模式转换.  , 1987, 36(3): 382-385. doi: 10.7498/aps.36.382
    [18] 陈开茅, 秦国刚, 王忠安, 金泗轩. 消除载流子分布的不均匀性的影响准确测量深中心俘获载流子的截面.  , 1984, 33(4): 486-495. doi: 10.7498/aps.33.486
    [19] 张昭庆. 不均匀的无规系统处理方法.  , 1980, 29(9): 1193-1203. doi: 10.7498/aps.29.1193
    [20] 刘福绥. 不均匀超导体基本方程及微粒解.  , 1978, 27(5): 569-575. doi: 10.7498/aps.27.569
计量
  • 文章访问数:  6117
  • PDF下载量:  513
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-14
  • 修回日期:  2014-01-15
  • 刊出日期:  2014-06-05

/

返回文章
返回
Baidu
map