搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于旋转主方向梯度直方图特征的判别稀疏图映射算法

童莹 沈越泓 魏以民

引用本文:
Citation:

基于旋转主方向梯度直方图特征的判别稀疏图映射算法

童莹, 沈越泓, 魏以民

Discriminative sparsity graph embedding based on histogram of rotated princial orientation gradients

Tong Ying, Shen Yue-Hong, Wei Yi-Min
PDF
HTML
导出引用
  • 非约束环境下采集的人脸图像复杂多变, 将其直接作为字典原子用于稀疏表示分类(sparse representation based classification, SRC), 识别效果不理想. 针对该问题, 本文提出一种基于旋转主方向梯度直方图特征的判别稀疏图映射(discriminative sparse graph embedding based on histogram of rotated principal orientation gradients, DSGE-HRPOG)算法, 用于构建类内紧凑、类间分离的低维判别特征字典, 提高稀疏表示分类准确性. 首先, 采用旋转主方向梯度直方图(histogram of rotated principal orientation gradients, HRPOG)特征算子提取非约束人脸图像的多尺度多方向梯度特征, 有效去除外界干扰和像素间冗余信息, 构建稳定、鉴别的HRPOG特征字典; 其次, 引入判别稀疏图映射(discriminative sparse graph embedding, DSGE)算法, 以类内重构散度最小、类间重构散度最大为目标计算特征字典的最佳低维投影矩阵, 进一步增强低维特征字典的判别性、紧致性; 最后, 提出投影矩阵和稀疏重构关系交替迭代优化算法, 将维数约简过程伴随在稀疏图构建过程中, 使分类效果更理想. 在AR, Extended Yale B, LFW和PubFig这4个数据库上进行大量实验, 验证了本文算法在实验环境数据库和真实环境数据库上的有效性.
    The unconstrained face images collected in the real environments include many complicated and changeable interference factors, and sparsity preserving projections (SPP) cannot well obtain the low-dimensional intrinsic structure embedded in the high-dimensional samples, which is important for subsequent sparse representation classifier (SRC). To deal with this problem, in this paper we propose a new method named discriminative sparsity graph embedding based on histogram of rotated principal orientation gradients (DSGE-HRPOG). Firstly, it extracts multi-scale and multi-directional gradient features of unconstrained face images by HRPOG feature descriptor and incorporates them into a discriminative feature dictionary of sparse representation classifier. Secondly, it seeks an optimal subspace of HRPOG feature dictionary in which the atoms in intra-classes are as compact as possible, while the atoms in inter-classes are as separable as possible by adopting the proposed DSGE dimensionality reduction method. Finally, an optimal algorithm is presented in which the low-dimensional projection and the sparse graph construction are iteratively updated, and the accuracy of unconstrained face recognition is further improved. Extensive experimental results on AR, Extended Yale B, LFW and PubFig databases demonstrate the effectiveness of our proposed method.
      通信作者: 童莹, tongying@njit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61703201, KYTYJJG206),江苏省自然科学基金(批准号: BK20170765)和南京工程学院青年创新基金(批准号: CKJB201602)资助的课题
      Corresponding author: Tong Ying, tongying@njit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61703201, KYTYJJG206), the Natural Science Foundation of Jiangsu Province, China (Grant No.BK20170765), and the NIT fund for Young Scholar, China (Grant No.CKJB201602)
    [1]

    Qian J J, Luo L, Yang J, Zhang F L, Lin Z C 2015 Pattern Recognit. 48 3145Google Scholar

    [2]

    Chen Y, Yang J, Luo L, Zhang H M, Qian J J, Tai Y, Zhang J 2016 Pattern Recognit. 59 26Google Scholar

    [3]

    Wright J, Yang A Y, Ganesh A, Sastry S S, Ma Y 2009 IEEE Trans. Pattern Anal. Mach. Intell. 31 210Google Scholar

    [4]

    Yang M, Zhang L, Feng X C, Zhang D 2014 Int. J. Comput. Vis. 109 209Google Scholar

    [5]

    Vu T H, Monga V 2016 The 23rd IEEE International Conference on Image Processing Phoenix, Arizona, USA, September 25-28, 2016 p4428

    [6]

    Babaee M, Wolf T, Rigoll G 2016 The 23rd IEEE International Conference on Image Processing Phoenix, Arizona, USA, September 25-28, 2016 p704

    [7]

    Huang K K, Dai D Q, Ren C X, Lai Z R 2017 IEEE Trans. Neural Netw. 28 1082Google Scholar

    [8]

    Zheng H, Tao D P 2015 Neurocomputing 162 9Google Scholar

    [9]

    Cai S J, Zuo W M, Zhang L, Feng X C, Wang P 2014 The 13th European Conference on Computer Vision Zurich, Switzerland, September 6−12, 2014 p624

    [10]

    Yang J M, Yang M H 2017 IEEE Trans. Pattern Anal. Mach. Intell. 39 576Google Scholar

    [11]

    Li J, Tao D 2012 IEEE Trans. Image Process. 21 4830Google Scholar

    [12]

    Yan Y, Ricci E, Subramanian R 2014 IEEE Trans. Image Process. 23 5599Google Scholar

    [13]

    Yang M, Zhang L, Shiu S C K, Zhang D 2013 IEEE Trans. Neural Netw. Learn. Syst. 24 900Google Scholar

    [14]

    Yang M, Zhang L, Shiu S C K, Zhang D 2013 Pattern Recognit. 46 1865Google Scholar

    [15]

    Georgakis C, Panagakis Y, Pantic M 2016 IEEE Trans. Image Process. 25 2021Google Scholar

    [16]

    Zafeiriou S, Tzimiropoulos G, Petrou M, Stathaki T 2012 IEEE Trans. Neural Netw. 23 526Google Scholar

    [17]

    Tenenbaum J B, De Silva V, Langford J C 2000 Science 290 2319Google Scholar

    [18]

    Roweis S T, Saul L K 2000 Science 290 2323Google Scholar

    [19]

    Belkin M, Niyogi P 2003 Neural Comput. 15 1373Google Scholar

    [20]

    Lin B B, He X F, Zhang C Y, Ji M 2013 J. Mach. Learn. Res. 14 2945

    [21]

    Lin B B, Yang J, He X F, Ye J P 2014 Int. Conf. Mach. Learn. 145

    [22]

    He X, Niyogi P 2004 Advances in Neural Information Processing Systems 153

    [23]

    He X, Cai D, Yan S 2005 Proc. IEEE Int. Conf. Comput. Vis. 2 1208

    [24]

    Dornaika F, Raduncanu B 2013 The 26th IEEE Conference on Computer Vision and Pattern Recognition Portland, Oregon, USA, Jun 23-28, 2013 p862

    [25]

    Huang S C, Zhuang L 2016 Neurocomputing 218 373

    [26]

    Wan M H, Yang G W, Gai S, Yang Z J 2017 Multimed. Tools Appl. 76 355Google Scholar

    [27]

    Liang J Z, Chen C, Yi Y F, Xu X X, Ding M 2017 IEEE Access 17201

    [28]

    Wang R, Nie F P, Hong R C, Chang X J, Yang X J, Yu W Z 2017 IEEE Trans. Image Process. 26 5019Google Scholar

    [29]

    Yuan X F, Ge Z Q, Ye L J, Song Z H 2016 J. Chemometr. 30 430Google Scholar

    [30]

    Yan S C, Xu D, Zhang B Y, Zhang H J, Yang Q, Lin S 2007 IEEE Trans. Pattern Anal. Mach. Intell. 29 40Google Scholar

    [31]

    Belkin M, Niyogi P 2013 Neural Comput. 15 1373

    [32]

    Cortes C, Mohri M 2007 Advances in Neural Information Processing Systems Vancouver, Canada, December 3-8 2007 p305

    [33]

    Qiao L S, Chen S C, Tan X Y 2010 Pattern Recognit. 43 331Google Scholar

    [34]

    Lai Z H, Wong W K, Xu Y, Yang J, Zhang D 2016 IEEE Trans. Neural Netw. Learn. Syst. 27 723Google Scholar

    [35]

    Yin J, Lai Z H, Zeng W M, Wei L 2018 Multimed. Tools Appl. 77 1069Google Scholar

    [36]

    Zhang Y P, Xiang M, Yang B 2016 Neurocomputing 173 518Google Scholar

    [37]

    Lu G F, Jin Z, Zou J 2012 Knowl-Based Syst. 31 119Google Scholar

    [38]

    Wei L, Xu F F, Wu A H 2014 Knowl-Based Syst. 136

    [39]

    Lou S J, Zhao X M, Chuang Y L, Yu H T, Zhang S Q 2016 Neurocomputing 173 290Google Scholar

    [40]

    Yang J, Chu D L, Zhang L, Xu Y, Yang J Y 2013 IEEE Trans. Neural Netw. 24 1023Google Scholar

    [41]

    Zheng J W, Yang P, Chen S Y, Shen G J, Wang W L 2017 IEEE Trans. Image Process. 26 2408Google Scholar

    [42]

    Gao Q X, Wang Q Q, Huang Y F, Gao X B 2015 IEEE Trans. Image Process. 24 5684Google Scholar

    [43]

    Zhang G Q, Sun H J, Xia G Y, Sun Q S 2016 IEEE Trans. Image Process. 25 4271

    [44]

    Ren C X, Dai D Q, Li X X, Lai Z R 2014 IEEE Trans. on Image Processing 23 725Google Scholar

    [45]

    Yang M, Zhang L, Shiu S C K, Zhang D 2012 IEEE Trans. on Information Forensics and Security 7 1738Google Scholar

    [46]

    Dalal N, Triggs B 2005 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition San Diego, California, June 20-26 2005 p886

    [47]

    Tian S X, Bhattacharya U, Lu S J, Su B L, Wang Q Q, Wei X H, Lu Y, Tan C L 2016 Pattern Recognit. 51 125Google Scholar

    [48]

    Tzimiropoulos G, Zafeiriou S, Pantic M 2012 IEEE Trans. Pattern Anal. Mach. Intell. 34 2454Google Scholar

    [49]

    Ding C X, Choi J, Tao D C, Davis L S 2016 IEEE Trans. Pattern Anal. Mach. Intell. 38 518Google Scholar

    [50]

    Weng D W, Wang Y L, Gong M M, Tao D C 2015 IEEE Trans. Image Process. 24 2287Google Scholar

    [51]

    Yin J, Zeng W M, Wei L 2016 Knowl-Based Syst. 99 112Google Scholar

    [52]

    Huang K K, Dai D Q, Ren C X 2017 Pattern Recognit. 62 87Google Scholar

    [53]

    Liu Y, Gao Q X, Miao S, Gao X B, Nie F, Li Y S 2017 IEEE Trans. Image Process. 26 684Google Scholar

    [54]

    Wang H, Nie F P, Huang H 2014 The 31st International Conference on Machine Learning Beijing, China, June 21-26, 2014 p1836

    [55]

    Learned-Miller E, Huang G B, Roy C A, Li H X, Hua G 2016 Advances in Face Detection and Facial Image Analysis. 189

    [56]

    Kumar N, Berg A C, Belhumeur P N, Nayar S K 2009 Proc. IEEE Int. Conf. Comput. Vis. 365

    [57]

    Yang M, Zhang L, Yang J, Zhang D 2013 IEEE Trans. Image Process. 1753

    [58]

    Tang X, Feng G C, Cai J X 2014 Neurocomputing 402

    [59]

    Li F, Jiang M Y 2018 Neural Process. Lett. 47 661

    [60]

    Tao D P, Guo Y N, Li Y T, Gao X B 2018 IEEE Trans. Image Process. 27 325Google Scholar

  • 图 1  本文算法的实现流程

    Fig. 1.  Flow chart of the proposed algorithm.

    图 2  3-HRPOG算子的梯度卷积模板示意图 (a) ${h_x}$模板; (b) ${h_y}$模板

    Fig. 2.  Gradient convolution masks of 3-HRPOG feature descriptor: (a) ${h_x}$ mask; (b) ${h_y}$ mask.

    图 3  3-HRPOG算子的旋转梯度卷积模板

    Fig. 3.  Rotated gradient convolution masks of 3-HRPOG feature descriptor.

    图 4  旋转不变性分析 (a) 原图及HOG和3-HRPOG的梯度矢量值; (b) 旋转${45^ \circ }$图像及HOG和3-HRPOG的梯度矢量值

    Fig. 4.  Rotation invariance analysis: (a) Original binary image and gradient vectors of HOG and 3-HRPOG; (b) rotated ${45^ \circ }$ binary image and gradient vectors of HOG and 3-HRPOG.

    图 5  5-HRPOG算子的旋转主方向梯度模板

    Fig. 5.  Rotated dominant direction gradient masks of 5-HRPOG feature descriptor.

    图 6  Ms-HRPOG特征提取示意图

    Fig. 6.  The sketch of Ms-HRPOG feature descriptor.

    图 7  LFW数据库中某一图像的SPP稀疏重构权值

    Fig. 7.  Sparsity reconstruction weights of one sample with SPP algorithm on the LFW database.

    图 8  AR数据库部分样本图像

    Fig. 8.  Samples of one person in the AR database.

    图 9  Extended Yale B数据库部分样本图像

    Fig. 9.  Samples of one person in the Extended Yale B database

    图 10  Extended Yale B数据库部分遮挡样本图像

    Fig. 10.  Occlusion samples of one person in the Extended Yale B database.

    图 11  部分样本图像 (a) LFW数据库部分样本; (b) PubFig数据库部分样本

    Fig. 11.  Samples of one person: (a) LFW database; (b) PubFig database.

    图 12  不同初始投影矩阵${{{P}}_0}$的识别率

    Fig. 12.  Recognition rates based on different initial matrix${{{P}}_0}$.

    图 13  目标函数收敛曲线

    Fig. 13.  Convergence curve of the objective function.

    表 1  AR数据库在表情、光照和时间干扰因素下的实验结果

    Table 1.  Experimental results on the AR database with the interference factors of expression, illumination and time.

    MethodLPP[22]NPE[23]SPP[33]DSNPE[37]DP-NFL[51]SRC-DP[40]DSGE-pixelsDSGE-HRPOG
    3-HRPOG5-HRPOGMs-HRPOG
    Recognition Rate/%67.1468.6968.2176.0771.875.276.7988.4588.2188.81
    Dimension1153112201406363322777754774
    下载: 导出CSV

    表 2  AR数据库在遮挡干扰因素下的实验结果

    Table 2.  Experimental results of AR database with the occlusion interference.

    Experiment 1/%Experiment 2/%Experiment 3/%
    LPP[22]71.3968.6869.46
    NPE[23]72.6471.8171.08
    SPP[33]75.9072.9274.07
    DSNPE[37]80.2878.2678.14
    SRC-DP[40]78.3576.5077.80
    SRC-FDC[42]80.9079.9080.30
    DSGE-pixels79.0378.7582.65
    DSGE-HRPOG
    (3-HRPOG)
    88.5489.5190.53
    DSGE-HRPOG
    (5-HRPOG)
    89.3189.5890.98
    DSGE-HRPOG
    (Ms-HRPOG)
    89.3190.0091.06
    下载: 导出CSV

    表 3  AR数据库在混合干扰因素下的实验结果

    Table 3.  Experimental results on the AR database with the mix interference factors.

    Mean/%Std/%Dimension
    LPP[22]95.900.38141
    NPE[23]95.870.55311
    SPP[33]90.390.90151
    DSNPE[37]98.020.33200
    Wang[54]97.850.93
    Gao[53]98.590.53
    DSGE-pixels98.450.27202
    DSGE-HRPOG
    (3-HRPOG)
    99.450.171350
    DSGE-HRPOG
    (5-HRPOG)
    99.370.121297
    DSGE-HRPOG
    (Ms-HRPOG)
    99.550.131385
    下载: 导出CSV

    表 4  Extended Yale B数据库在光照干扰因素下的实验结果

    Table 4.  Experimental results of Extended Yale B database with the illumination interference.

    MethodLPP[22]NPE[23]SPP[33]DSNPE[37]GRSDA[39]RCDA[52]DSGE-pixelsDSGE-HRPOG
    3-HRPOG5-HRPOGMs-HRPOG
    Recognition Rate/%87.8689.3185.7985.7482.79286.0391.3589.7792.48
    Dimension65160958526683355345351
    下载: 导出CSV

    表 5  Extended Yale B数据库在遮挡干扰因素下的实验结果

    Table 5.  Experimental results of Extended Yale B database with the occlusion interference.

    Experiment 1/%Experiment 2/%
    LPP[22]95.51 ± 0.4096.78 ± 0.72
    NPE[23]96.43 ± 0.2397.85 ± 0.31
    SPP[33]92.57 ± 0.8493.05 ± 0.77
    DSNPE[37]94.18 ± 0.4895.29 ± 0.54
    Gao[53]86.91 ± 1.0788.23 ± 0.91
    DSGE-pixels95.83 ± 0.6696.21 ± 0.21
    DSGE-HRPOG(3-HRPOG)97.30 ± 0.2097.73 ± 0.35
    DSGE-HRPOG (5-HRPOG)96.85 ± 0.3896.93 ± 0.60
    DSGE-HRPOG G(Ms-HRPOG)97.98 ± 0.5098.10 ± 0.31
    下载: 导出CSV

    表 6  LFW和PubFig数据库的实验结果

    Table 6.  Experimental results on the LFW database and PubFig database.

    LFW/%PubFig/%
    LPP[22]35.3224.00
    NPE[23]35.1925.00
    SPP[33]31.5229.00
    DSNPE[37]44.0530.90
    WGSC[58]47.6037.50
    RSRC[3]42.8047.00
    RRC[57]53.2042.20
    IRGSC[41]56.3048.50
    DSGE-pixels51.5238.60
    DSGE-HOG69.6249.00
    DSGE-HRPOG(3-HRPOG)76.7154.20
    DSGE-HRPOG (5-HRPOG)76.5853.30
    DSGE-HRPOG (Ms-HRPOG)73.8053.70
    下载: 导出CSV

    表 7  PubFig数据库上有联合优化和无联合优化的实验结果

    Table 7.  Experimental results with joint optimization and without joint optimization on the PubFig database.

    DSGE-HRPOG
    3-HRPOG5-HRPOGMs-HRPOG
    with joint optimization54.20 (630)53.30 (473)53.70 (514)
    without joint optimization53.50 (514)50.90 (423)53.20 (514)
    下载: 导出CSV
    Baidu
  • [1]

    Qian J J, Luo L, Yang J, Zhang F L, Lin Z C 2015 Pattern Recognit. 48 3145Google Scholar

    [2]

    Chen Y, Yang J, Luo L, Zhang H M, Qian J J, Tai Y, Zhang J 2016 Pattern Recognit. 59 26Google Scholar

    [3]

    Wright J, Yang A Y, Ganesh A, Sastry S S, Ma Y 2009 IEEE Trans. Pattern Anal. Mach. Intell. 31 210Google Scholar

    [4]

    Yang M, Zhang L, Feng X C, Zhang D 2014 Int. J. Comput. Vis. 109 209Google Scholar

    [5]

    Vu T H, Monga V 2016 The 23rd IEEE International Conference on Image Processing Phoenix, Arizona, USA, September 25-28, 2016 p4428

    [6]

    Babaee M, Wolf T, Rigoll G 2016 The 23rd IEEE International Conference on Image Processing Phoenix, Arizona, USA, September 25-28, 2016 p704

    [7]

    Huang K K, Dai D Q, Ren C X, Lai Z R 2017 IEEE Trans. Neural Netw. 28 1082Google Scholar

    [8]

    Zheng H, Tao D P 2015 Neurocomputing 162 9Google Scholar

    [9]

    Cai S J, Zuo W M, Zhang L, Feng X C, Wang P 2014 The 13th European Conference on Computer Vision Zurich, Switzerland, September 6−12, 2014 p624

    [10]

    Yang J M, Yang M H 2017 IEEE Trans. Pattern Anal. Mach. Intell. 39 576Google Scholar

    [11]

    Li J, Tao D 2012 IEEE Trans. Image Process. 21 4830Google Scholar

    [12]

    Yan Y, Ricci E, Subramanian R 2014 IEEE Trans. Image Process. 23 5599Google Scholar

    [13]

    Yang M, Zhang L, Shiu S C K, Zhang D 2013 IEEE Trans. Neural Netw. Learn. Syst. 24 900Google Scholar

    [14]

    Yang M, Zhang L, Shiu S C K, Zhang D 2013 Pattern Recognit. 46 1865Google Scholar

    [15]

    Georgakis C, Panagakis Y, Pantic M 2016 IEEE Trans. Image Process. 25 2021Google Scholar

    [16]

    Zafeiriou S, Tzimiropoulos G, Petrou M, Stathaki T 2012 IEEE Trans. Neural Netw. 23 526Google Scholar

    [17]

    Tenenbaum J B, De Silva V, Langford J C 2000 Science 290 2319Google Scholar

    [18]

    Roweis S T, Saul L K 2000 Science 290 2323Google Scholar

    [19]

    Belkin M, Niyogi P 2003 Neural Comput. 15 1373Google Scholar

    [20]

    Lin B B, He X F, Zhang C Y, Ji M 2013 J. Mach. Learn. Res. 14 2945

    [21]

    Lin B B, Yang J, He X F, Ye J P 2014 Int. Conf. Mach. Learn. 145

    [22]

    He X, Niyogi P 2004 Advances in Neural Information Processing Systems 153

    [23]

    He X, Cai D, Yan S 2005 Proc. IEEE Int. Conf. Comput. Vis. 2 1208

    [24]

    Dornaika F, Raduncanu B 2013 The 26th IEEE Conference on Computer Vision and Pattern Recognition Portland, Oregon, USA, Jun 23-28, 2013 p862

    [25]

    Huang S C, Zhuang L 2016 Neurocomputing 218 373

    [26]

    Wan M H, Yang G W, Gai S, Yang Z J 2017 Multimed. Tools Appl. 76 355Google Scholar

    [27]

    Liang J Z, Chen C, Yi Y F, Xu X X, Ding M 2017 IEEE Access 17201

    [28]

    Wang R, Nie F P, Hong R C, Chang X J, Yang X J, Yu W Z 2017 IEEE Trans. Image Process. 26 5019Google Scholar

    [29]

    Yuan X F, Ge Z Q, Ye L J, Song Z H 2016 J. Chemometr. 30 430Google Scholar

    [30]

    Yan S C, Xu D, Zhang B Y, Zhang H J, Yang Q, Lin S 2007 IEEE Trans. Pattern Anal. Mach. Intell. 29 40Google Scholar

    [31]

    Belkin M, Niyogi P 2013 Neural Comput. 15 1373

    [32]

    Cortes C, Mohri M 2007 Advances in Neural Information Processing Systems Vancouver, Canada, December 3-8 2007 p305

    [33]

    Qiao L S, Chen S C, Tan X Y 2010 Pattern Recognit. 43 331Google Scholar

    [34]

    Lai Z H, Wong W K, Xu Y, Yang J, Zhang D 2016 IEEE Trans. Neural Netw. Learn. Syst. 27 723Google Scholar

    [35]

    Yin J, Lai Z H, Zeng W M, Wei L 2018 Multimed. Tools Appl. 77 1069Google Scholar

    [36]

    Zhang Y P, Xiang M, Yang B 2016 Neurocomputing 173 518Google Scholar

    [37]

    Lu G F, Jin Z, Zou J 2012 Knowl-Based Syst. 31 119Google Scholar

    [38]

    Wei L, Xu F F, Wu A H 2014 Knowl-Based Syst. 136

    [39]

    Lou S J, Zhao X M, Chuang Y L, Yu H T, Zhang S Q 2016 Neurocomputing 173 290Google Scholar

    [40]

    Yang J, Chu D L, Zhang L, Xu Y, Yang J Y 2013 IEEE Trans. Neural Netw. 24 1023Google Scholar

    [41]

    Zheng J W, Yang P, Chen S Y, Shen G J, Wang W L 2017 IEEE Trans. Image Process. 26 2408Google Scholar

    [42]

    Gao Q X, Wang Q Q, Huang Y F, Gao X B 2015 IEEE Trans. Image Process. 24 5684Google Scholar

    [43]

    Zhang G Q, Sun H J, Xia G Y, Sun Q S 2016 IEEE Trans. Image Process. 25 4271

    [44]

    Ren C X, Dai D Q, Li X X, Lai Z R 2014 IEEE Trans. on Image Processing 23 725Google Scholar

    [45]

    Yang M, Zhang L, Shiu S C K, Zhang D 2012 IEEE Trans. on Information Forensics and Security 7 1738Google Scholar

    [46]

    Dalal N, Triggs B 2005 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition San Diego, California, June 20-26 2005 p886

    [47]

    Tian S X, Bhattacharya U, Lu S J, Su B L, Wang Q Q, Wei X H, Lu Y, Tan C L 2016 Pattern Recognit. 51 125Google Scholar

    [48]

    Tzimiropoulos G, Zafeiriou S, Pantic M 2012 IEEE Trans. Pattern Anal. Mach. Intell. 34 2454Google Scholar

    [49]

    Ding C X, Choi J, Tao D C, Davis L S 2016 IEEE Trans. Pattern Anal. Mach. Intell. 38 518Google Scholar

    [50]

    Weng D W, Wang Y L, Gong M M, Tao D C 2015 IEEE Trans. Image Process. 24 2287Google Scholar

    [51]

    Yin J, Zeng W M, Wei L 2016 Knowl-Based Syst. 99 112Google Scholar

    [52]

    Huang K K, Dai D Q, Ren C X 2017 Pattern Recognit. 62 87Google Scholar

    [53]

    Liu Y, Gao Q X, Miao S, Gao X B, Nie F, Li Y S 2017 IEEE Trans. Image Process. 26 684Google Scholar

    [54]

    Wang H, Nie F P, Huang H 2014 The 31st International Conference on Machine Learning Beijing, China, June 21-26, 2014 p1836

    [55]

    Learned-Miller E, Huang G B, Roy C A, Li H X, Hua G 2016 Advances in Face Detection and Facial Image Analysis. 189

    [56]

    Kumar N, Berg A C, Belhumeur P N, Nayar S K 2009 Proc. IEEE Int. Conf. Comput. Vis. 365

    [57]

    Yang M, Zhang L, Yang J, Zhang D 2013 IEEE Trans. Image Process. 1753

    [58]

    Tang X, Feng G C, Cai J X 2014 Neurocomputing 402

    [59]

    Li F, Jiang M Y 2018 Neural Process. Lett. 47 661

    [60]

    Tao D P, Guo Y N, Li Y T, Gao X B 2018 IEEE Trans. Image Process. 27 325Google Scholar

  • [1] 王伟, 揭泉林. 基于机器学习J1-J2反铁磁海森伯自旋链相变点的识别方法.  , 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [2] 戴宇佳, 李明亮, 宋超, 高勋, 郝作强, 林景全. 空间约束结合梯度下降法提高铝合金中Fe成分激光诱导击穿光谱技术检测精度.  , 2021, 70(20): 205204. doi: 10.7498/aps.70.20210792
    [3] 刘飞, 孙少杰, 韩平丽, 赵琳, 邵晓鹏. 基于稀疏低秩特性的水下非均匀光场偏振成像技术研究.  , 2021, 70(16): 164201. doi: 10.7498/aps.70.20210314
    [4] 刘武, 朱成皖, 李昊天, 赵谡玲, 乔泊, 徐征, 宋丹丹. 基于机器学习和器件模拟对Cu(In,Ga)Se2电池中Ga含量梯度的优化分析.  , 2021, 70(23): 238802. doi: 10.7498/aps.70.20211234
    [5] 刘良友, 高嵩, 李莎, 李兆同, 夏一帆. 磁共振扩散张量成像中扩散敏感梯度磁场方向分布方案的研究进展.  , 2020, 69(3): 038702. doi: 10.7498/aps.69.20191346
    [6] 张艳艳, 陈苏婷, 葛俊祥, 万发雨, 梅永, 周晓彦. 自适应非凸稀疏正则化下自适应光学系统加性噪声的去除.  , 2017, 66(12): 129501. doi: 10.7498/aps.66.129501
    [7] 焦宝宝. 用重正交化Lanczos法求解大型非正交归一基稀疏矩阵的特征值问题.  , 2016, 65(19): 192101. doi: 10.7498/aps.65.192101
    [8] 刘振, 孙超, 刘雄厚, 郭祺丽. 一种加权稀疏约束稳健Capon波束形成方法.  , 2016, 65(10): 104303. doi: 10.7498/aps.65.104303
    [9] 郑伟真, 赵斌, 胡广月, 郑坚. 稀疏膨胀过程中几何位形对于电子非局域热传导的影响.  , 2015, 64(19): 195201. doi: 10.7498/aps.64.195201
    [10] 文方青, 张弓, 贲德. 基于块稀疏贝叶斯学习的多任务压缩感知重构算法.  , 2015, 64(7): 070201. doi: 10.7498/aps.64.070201
    [11] 高嵩, 朱艳春, 李硕, 包尚联. 核磁共振水分子扩散张量成像中基于广义Fibonacci数列的扩散敏感梯度磁场方向分布方案.  , 2014, 63(4): 048704. doi: 10.7498/aps.63.048704
    [12] 邓承志, 田伟, 陈盼, 汪胜前, 朱华生, 胡赛凤. 基于局部约束群稀疏的红外图像超分辨率重建.  , 2014, 63(4): 044202. doi: 10.7498/aps.63.044202
    [13] 王林元, 张瀚铭, 蔡爱龙, 闫镔, 李磊, 胡国恩. 非精确交替方向总变分最小化重建算法.  , 2013, 62(19): 198701. doi: 10.7498/aps.62.198701
    [14] 宋长新, 马克, 秦川, 肖鹏. 结合稀疏编码和空间约束的红外图像聚类分割研究.  , 2013, 62(4): 040702. doi: 10.7498/aps.62.040702
    [15] 郝崇清, 王江, 邓斌, 魏熙乐. 基于稀疏贝叶斯学习的复杂网络拓扑估计.  , 2012, 61(14): 148901. doi: 10.7498/aps.61.148901
    [16] 刘辉, 杨俊安, 王一. 基于流形学习的声目标特征提取方法研究.  , 2011, 60(7): 074302. doi: 10.7498/aps.60.074302
    [17] 魏高峰, 李开泰, 冯 伟, 高洪芬. 非协调数值流形方法的稳定性和收敛性分析.  , 2008, 57(2): 639-647. doi: 10.7498/aps.57.639
    [18] 张便利, 常胜江, 李江卫, 王 凯, 申会庭, 张延炘, 翟宏琛. 基于彩色直方图分析的智能视频监控系统.  , 2006, 55(12): 6399-6404. doi: 10.7498/aps.55.6399
    [19] 王龙. 非均匀磁场磁镜粒子约束的Monte-Carlo模拟.  , 1986, 35(10): 1281-1289. doi: 10.7498/aps.35.1281
    [20] 霍裕平. 用光学方法实现么正变换及一般线性变换(Ⅳ)——图形识别及投影算子.  , 1980, 29(2): 153-160. doi: 10.7498/aps.29.153
计量
  • 文章访问数:  8632
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-20
  • 修回日期:  2019-07-29
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回
Baidu
map