搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率单孔柱-孔汇聚传输结构的电磁粒子仿真

吴撼宇 曾正中 邱孟通 张信军 郭宁 魏浩

引用本文:
Citation:

高功率单孔柱-孔汇聚传输结构的电磁粒子仿真

吴撼宇, 曾正中, 邱孟通, 张信军, 郭宁, 魏浩

Electromagnetic particle-in-cell simulation of high-power single-hole post-hole convolute

Wu Han-Yu, Zeng Zheng-Zhong, Qiu Meng-Tong, Zhang Xin-Jun, Guo Ning, Wei Hao
PDF
HTML
导出引用
  • 柱-孔汇聚结构(PHC)附近高功率脉冲电流的损失是脉冲功率技术领域的研究热点, 是研制下一代大型脉冲功率装置的技术瓶颈. 本文建立了单孔柱-孔汇聚结构的3维仿真模型, 采用粒子(PIC)仿真算法, 分别在阴极发射电子以及阴极等离子体等情况下, 计算了单孔柱-孔汇聚结构的电流传输特性, 首次在仿真过程中考虑了阴极负离子的运动对单孔PHC阴阳极间隙闭合的影响. 仿真结果表明阴极等离子体导致了阴阳极间距明显地缩短, 从而引起电流损失. 同时获得了阴极等离子体平均扩展速度为3.76 cm/μs. 更为重要的是, 当阴极等离子体中含有负离子时, 单孔柱-孔汇聚结构电流损失的现象更为显著. 同时获得了负离子平均漂移速度约为10 cm/μs. 仿真结果显示阴极负离子在PHC阴阳极间隙闭合过程中, 同样发挥了显著的作用, 是阴阳极间隙闭合的重要因素之一. 研究结果有助于深入理解高功率PHC电流损失的物理机理, 也可为高功率PHC的设计提供重要理论基础.
    The post-hole convolutes (PHCs) are used in pulsed high-power generators to add the output currents of the magnetically insulated transmission lines (MITLs) and deliver the combined current to a single MITL. Then the single MITL delivers the combined current to the load. Magnetic insulation of electron flow is lost near the post-hole convolute (PHC) in the high-power generator. Although cathode plasma and anode ions are widely considered as the factors of the magnetic insulation collapse, there are some other factors that are needed to study. In this paper, the cathode negative ions are considered in the PIC simulation of a single-hole PHC. In this work, we examine the evolution and dynamics of the negative ions in the PHC. The simulation results demonstrate that there are no current losses while the cathode emits only electrons, little current losses (10 kA out of a total current of 900 kA) while the cathode emits plasma including electrons and ions, and obvious current losses (20 kA out of a total current of 900 kA) while the cathode emits plasma including the electrons, ions and negative ions. The results also indicate that the velocity of the negative ions is about 10 cm/μs, larger than that of the cathode plasma including the electrons and the ions. All results suggest that the cathode negative ions can play an important role in the magnetic insulation collapse, and should be considered carefully in experiment.
      通信作者: 吴撼宇, wuhanyu@nint.ac.cn ; 邱孟通, Qiumengtong@nint.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 51790521, 51577156)和强脉冲辐射环境模拟与效应国家重点实验室基金(批准号: SKLIPR1701Z)资助的课题.
      Corresponding author: Wu Han-Yu, wuhanyu@nint.ac.cn ; Qiu Meng-Tong, Qiumengtong@nint.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51790521, 51577156) and the Foundation of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, China (Grant No. SKLIPR1701Z).
    [1]

    Rose D V, Welch D R, Madrid E A, Miller C L, Clark R E, Stygar W A, Savage M E, Rochau G A, Bailey J E, Nash T J, Sceiford M E, Struve K W 2010 Phys. Rev. Spec. Top. Accel. Beams 13 010402Google Scholar

    [2]

    Mcbride R D, Jennings C A, Vesey R A, Rochau G A, Savage M E, Stygar W A, Cuneo M E, Sinars D B, Jones M, LeChien K R, Lopez M R, Moore J K, Struve K W, Wagoner T C, Waisman E M 2010 Phys. Rev. Spec. Top. Accel. Beams 13 120401Google Scholar

    [3]

    邹文康, 郭帆, 王贵林, 陈林, 卫兵, 宋盛义 2015 高电压技术 41 1844

    Zou W K, Guo F, Wang G L, Chen L, Wei B, Song S Y 2015 High Voltage Engineering 41 1844

    [4]

    Stygar W A, Cuneo M E, Headley D I, Ives H C, Leeper R J, Mazarakis M G, Olson C L, Porter J L, Wagoner T C, Woodworth J R 2007 Phys. Rev. Spec. Top. Accel. Beams 10 030401Google Scholar

    [5]

    Stygar W A, Awe T J, Bailey J E, et al. 2015 Phys. Rev. Spec. Top. Accel. Beams 18 110401Google Scholar

    [6]

    Jennings C A, Chittenden J P, Cuneo M E, Stygar W A, Ampleford D J, Waisman E M, Jones M, Savage M E, LeChien K R, Wagoner T C 2010 IEEE Trans. Plasma Sci. 38 529Google Scholar

    [7]

    Gomez M R, Gilgenbach R M, Cuneo M E, Jennings C A, McBride R D, Waisman E M, Hutsel B T, Stygar W A, Rose D V, Maron Y 2017 Phys. Rev. Spec. Top. Accel. Beams 20 010401Google Scholar

    [8]

    廖臣, 刘大刚, 刘盛刚 2009 58 6709Google Scholar

    Liao C, Liu D G, Liu S G 2009 Acta Phys. Sin. 58 6709Google Scholar

    [9]

    Rose D V, Welch D R, Hughes T P, Clark R E, Stygar W A 2008 Phy. Rev. Spec. Top. Accel. Beams 11 060401Google Scholar

    [10]

    Madrid E A, Rose D V, Welch D R, Clark R E, Mostrom C B 2013 Phys. Rev. Spec. Top. Accel. Beams 16 120401Google Scholar

    [11]

    Rose D V, Madrid E A, Welch D R, Clark R E, Mostrom C B 2015 Phys. Rev. Spec. Top. Accel. Beams 18 030402Google Scholar

    [12]

    Pointon T D, Stygar W A, Spielman R B, Ives H C, Struve K W 2001 Phys. Plasmas 8 4534Google Scholar

    [13]

    Oliver B V, Ottinger P F, Genoni T C, Schumer J W, Strasburg S, Swanekamp S B, Cooperstein G 2004 Phys. Plasmas 11 3976Google Scholar

    [14]

    Ottinger P F, Schumer J W 2006 Phys. Plasmas 13 063109Google Scholar

    [15]

    刘腊群, 蒙林, 邓建军, 宋盛义, 邹文康, 刘大刚, 刘盛刚 2010 59 1643Google Scholar

    Liu L Q, Meng L, Deng J J, Song S Y, Zou W K, Liu D G, Liu S G 2010 Acta Phys. Sin. 59 1643Google Scholar

    [16]

    张鹏飞, 李永东, 杨海亮, 邱爱慈, 刘纯亮, 王洪广, 郭帆, 苏兆锋, 孙剑锋, 孙江, 高屹 2011 强激光与粒子束 23 2239

    Zhang P F, Li Y D, Yang H L, Qiu A C, Liu C L, Wang H G, Guo F, Su Z F, Sun J F, Sun J, Gao Y 2011 High Power Laser and Particle Beams 23 2239

    [17]

    吴撼宇, 曾正中, 丛培天, 张信军 2011 强激光与粒子束 23 845

    Wu H Y, Zeng Z Z, Cong P T, Zhang X J 2011 High Power Laser and Particle Beams 23 845

    [18]

    郭帆, 邹文康, 陈林 2014 强激光与粒子束 26 045010

    Guo F, Zou W K, Chen L 2014 High Power Laser and Particle Beams 26 045010

    [19]

    魏浩, 孙凤举, 呼义翔, 梁天学, 丛培天, 邱爱慈 2017 66 038402Google Scholar

    Wei H, Sun F J, Hu Y X, Liang T X, Cong P T, Qiu A C 2017 Acta Phys. Sin. 66 038402Google Scholar

    [20]

    Vandevender J P, Stinnett R W, Anderson R J 1981 Appl. Phys. Lett. 38 229Google Scholar

    [21]

    Swegle J 1983 J. Appl. Phys. 54 3534Google Scholar

    [22]

    Zhu D N, Zhang J, Zhong H H, Gao J M, Bai Z 2018 Chin. Phys. B 27 020501Google Scholar

  • 图 1  仿真模型的结构示意图 (a) 单孔PHC及三板传输线剖面图(单位: mm); (b) 单孔PHC及三板传输线俯视图(单位: mm)

    Fig. 1.  The configuration of the simulated model: (a) The cutaway drawing of the single-hole PHC and the tri-plated transmission line (units: mm); (b) the vertical drawing of the single-hole PHC and the tri-plated transmission line (units: mm).

    图 2  仿真计算时馈入的理想电压信号

    Fig. 2.  The forward voltage waveform used in simulation.

    图 3  阴极发射电子时, 单孔PHC的上/下游电流

    Fig. 3.  The upstream and the downstream currents of the single-hole PHC while the cathode emitted only electrons

    图 4  阴极发射等离子体时, 单孔PHC的上/下游电流

    Fig. 4.  The upstream and the downstream currents of the single-hole PHC while the cathode emitted electrons and ions.

    图 5  柱-孔附近等离子体随时间运动分布的二维图, 紫色代表电子, 黄色代表质子(横坐标和纵坐标单位: m) (a) t = 15.8535 ns; (b) t = 23.7802 ns; (c) t = 31.7069 ns; (d) t = 55.4871 ns; (e) t = 71.3401 ns; (f) t = 103.0475 ns

    Fig. 5.  Particles distribution near the convolute of the plasmas motion, the purple is electrons, the yellow is ions (unit of the Y/Z-axis: m): (a) t = 15.8535 ns; (b) t = 23.7802 ns; (c) t = 31.7069 ns; (d) t = 55.4871 ns; (e) t = 71.3401 ns; (f) t = 103.0475 ns.

    图 6  20 ns时刻, 阴极等离子体的密度分布

    Fig. 6.  Density distribution of the cathode plasma when time is 20 ns.

    图 7  等离子体密度前沿位置随时间变化曲线

    Fig. 7.  Motion curve of the front of the plasma density.

    图 8  阴极等离子体含负离子时, 单孔PHC的上/下游电流

    Fig. 8.  The upstream and the downstream currents of the single-hole PHC while the cathode emitted electrons, ions, and negative ions.

    图 9  柱-孔附近等离子体随时间运动分布的二维图(横坐标和纵坐标单位: m) (a) t = 15.4005 ns; (b) t = 21.7419 ns; (c) t = 34.4247 ns; (d) t = 59.7902 ns; (e) t = 97.8381 ns; (f) t = 108.6064 ns

    Fig. 9.  Particles distribution near the convolute of the plasmas motion (unit of the Y/Z-axis: m): (a) t = 15.4005 ns; (b) t = 21.7419 ns; (c) t = 34.4247 ns; (d) t = 59.7902 ns; (e) t = 97.8381 ns; (f) t = 108.6064 ns.

    图 10  负离子密度前沿位置随时间变化曲线

    Fig. 10.  Motion curve of the front of the negative density.

    图 11  阴阳极间隙闭合速率

    Fig. 11.  Experimental data of the gap closure speed.

    Baidu
  • [1]

    Rose D V, Welch D R, Madrid E A, Miller C L, Clark R E, Stygar W A, Savage M E, Rochau G A, Bailey J E, Nash T J, Sceiford M E, Struve K W 2010 Phys. Rev. Spec. Top. Accel. Beams 13 010402Google Scholar

    [2]

    Mcbride R D, Jennings C A, Vesey R A, Rochau G A, Savage M E, Stygar W A, Cuneo M E, Sinars D B, Jones M, LeChien K R, Lopez M R, Moore J K, Struve K W, Wagoner T C, Waisman E M 2010 Phys. Rev. Spec. Top. Accel. Beams 13 120401Google Scholar

    [3]

    邹文康, 郭帆, 王贵林, 陈林, 卫兵, 宋盛义 2015 高电压技术 41 1844

    Zou W K, Guo F, Wang G L, Chen L, Wei B, Song S Y 2015 High Voltage Engineering 41 1844

    [4]

    Stygar W A, Cuneo M E, Headley D I, Ives H C, Leeper R J, Mazarakis M G, Olson C L, Porter J L, Wagoner T C, Woodworth J R 2007 Phys. Rev. Spec. Top. Accel. Beams 10 030401Google Scholar

    [5]

    Stygar W A, Awe T J, Bailey J E, et al. 2015 Phys. Rev. Spec. Top. Accel. Beams 18 110401Google Scholar

    [6]

    Jennings C A, Chittenden J P, Cuneo M E, Stygar W A, Ampleford D J, Waisman E M, Jones M, Savage M E, LeChien K R, Wagoner T C 2010 IEEE Trans. Plasma Sci. 38 529Google Scholar

    [7]

    Gomez M R, Gilgenbach R M, Cuneo M E, Jennings C A, McBride R D, Waisman E M, Hutsel B T, Stygar W A, Rose D V, Maron Y 2017 Phys. Rev. Spec. Top. Accel. Beams 20 010401Google Scholar

    [8]

    廖臣, 刘大刚, 刘盛刚 2009 58 6709Google Scholar

    Liao C, Liu D G, Liu S G 2009 Acta Phys. Sin. 58 6709Google Scholar

    [9]

    Rose D V, Welch D R, Hughes T P, Clark R E, Stygar W A 2008 Phy. Rev. Spec. Top. Accel. Beams 11 060401Google Scholar

    [10]

    Madrid E A, Rose D V, Welch D R, Clark R E, Mostrom C B 2013 Phys. Rev. Spec. Top. Accel. Beams 16 120401Google Scholar

    [11]

    Rose D V, Madrid E A, Welch D R, Clark R E, Mostrom C B 2015 Phys. Rev. Spec. Top. Accel. Beams 18 030402Google Scholar

    [12]

    Pointon T D, Stygar W A, Spielman R B, Ives H C, Struve K W 2001 Phys. Plasmas 8 4534Google Scholar

    [13]

    Oliver B V, Ottinger P F, Genoni T C, Schumer J W, Strasburg S, Swanekamp S B, Cooperstein G 2004 Phys. Plasmas 11 3976Google Scholar

    [14]

    Ottinger P F, Schumer J W 2006 Phys. Plasmas 13 063109Google Scholar

    [15]

    刘腊群, 蒙林, 邓建军, 宋盛义, 邹文康, 刘大刚, 刘盛刚 2010 59 1643Google Scholar

    Liu L Q, Meng L, Deng J J, Song S Y, Zou W K, Liu D G, Liu S G 2010 Acta Phys. Sin. 59 1643Google Scholar

    [16]

    张鹏飞, 李永东, 杨海亮, 邱爱慈, 刘纯亮, 王洪广, 郭帆, 苏兆锋, 孙剑锋, 孙江, 高屹 2011 强激光与粒子束 23 2239

    Zhang P F, Li Y D, Yang H L, Qiu A C, Liu C L, Wang H G, Guo F, Su Z F, Sun J F, Sun J, Gao Y 2011 High Power Laser and Particle Beams 23 2239

    [17]

    吴撼宇, 曾正中, 丛培天, 张信军 2011 强激光与粒子束 23 845

    Wu H Y, Zeng Z Z, Cong P T, Zhang X J 2011 High Power Laser and Particle Beams 23 845

    [18]

    郭帆, 邹文康, 陈林 2014 强激光与粒子束 26 045010

    Guo F, Zou W K, Chen L 2014 High Power Laser and Particle Beams 26 045010

    [19]

    魏浩, 孙凤举, 呼义翔, 梁天学, 丛培天, 邱爱慈 2017 66 038402Google Scholar

    Wei H, Sun F J, Hu Y X, Liang T X, Cong P T, Qiu A C 2017 Acta Phys. Sin. 66 038402Google Scholar

    [20]

    Vandevender J P, Stinnett R W, Anderson R J 1981 Appl. Phys. Lett. 38 229Google Scholar

    [21]

    Swegle J 1983 J. Appl. Phys. 54 3534Google Scholar

    [22]

    Zhu D N, Zhang J, Zhong H H, Gao J M, Bai Z 2018 Chin. Phys. B 27 020501Google Scholar

  • [1] 杨雨森, 王林, 苟德梽, 唐正明. 等离子体-光子晶体阵列结构波导模型的电磁特性研究.  , 2024, 73(24): . doi: 10.7498/aps.73.20241300
    [2] 牛书通, 詹欣, 华强, 李文腾, 周利华, 杨廷贵. 16 keV C离子在锥形玻璃管中的输运过程.  , 2024, 73(5): 053401. doi: 10.7498/aps.73.20231513
    [3] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性.  , 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [4] 邹秀, 刘惠平, 张小楠, 邱明辉. 具有非广延分布电子的碰撞等离子体磁鞘的结构.  , 2021, 70(1): 015201. doi: 10.7498/aps.70.20200794
    [5] 李文秋, 王刚, 苏小保. 非磁化冷等离子体柱中的模式辐射特性分析.  , 2017, 66(5): 055201. doi: 10.7498/aps.66.055201
    [6] 汤明杰, 杨涓, 金逸舟, 罗立涛, 冯冰冰. 微型电子回旋共振离子推力器离子源结构优化实验研究.  , 2015, 64(21): 215202. doi: 10.7498/aps.64.215202
    [7] 陈丽娟, 鲁世平, 莫嘉琪. 磁层-电离层耦合过程中等离子体粒子运动的周期轨.  , 2013, 62(9): 090201. doi: 10.7498/aps.62.090201
    [8] 刘惠平, 邹秀, 邹滨雁, 邱明辉. 电负性等离子体磁鞘的玻姆判据.  , 2012, 61(3): 035201. doi: 10.7498/aps.61.035201
    [9] 刘腊群, 蒙林, 邓建军, 宋盛义, 邹文康, 刘大刚, 刘盛纲. 磁绝缘传输线中心汇流区数值模拟的实现.  , 2010, 59(3): 1643-1650. doi: 10.7498/aps.59.1643
    [10] 邹 秀, 刘惠平, 谷秀娥. 磁化等离子体的鞘层结构.  , 2008, 57(8): 5111-5116. doi: 10.7498/aps.57.5111
    [11] 安治永, 李应红, 吴 云, 苏长兵, 宋慧敏. 对称等离子体激励器系统电场仿真研究.  , 2007, 56(8): 4778-4784. doi: 10.7498/aps.56.4778
    [12] 张 民, 吴振森. 脉冲波在空间等离子体介质中传播的矩分析及其应用.  , 2007, 56(10): 5937-5944. doi: 10.7498/aps.56.5937
    [13] 田杨萌, 王彩霞, 姜 明, 程新路, 杨向东. 惰性物质等离子体物态方程研究.  , 2007, 56(10): 5698-5703. doi: 10.7498/aps.56.5698
    [14] 王 彬, 谢文楷. 等离子体加载耦合腔慢波结构色散分析.  , 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [15] 张秋菊, 武慧春, 王兴海, 盛政明, 张 杰. 超短激光脉冲在等离子体中的分裂以及类孤子结构的形成.  , 2007, 56(12): 7106-7113. doi: 10.7498/aps.56.7106
    [16] 谢鸿全, 刘濮鲲. 磁化等离子体填充螺旋线的色散方程.  , 2006, 55(5): 2397-2402. doi: 10.7498/aps.55.2397
    [17] 张 丽, 李向东, 蒋新革. 等离子体效应对类氦氖Kα线系电偶极辐射的影响.  , 2006, 55(9): 4501-4505. doi: 10.7498/aps.55.4501
    [18] 黄勤超, 罗家融, 王华忠, 李 翀. EAST装置等离子体放电位形快速识别研究.  , 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [19] 刘少斌, 朱传喜, 袁乃昌. 等离子体光子晶体的FDTD分析.  , 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
    [20] 邹 秀, 刘金远, 王正汹, 宫 野, 刘 悦, 王晓钢. 磁场中等离子体鞘层的结构.  , 2004, 53(10): 3409-3412. doi: 10.7498/aps.53.3409
计量
  • 文章访问数:  6520
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-12
  • 修回日期:  2019-06-03
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回
Baidu
map