搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子辐照和氧化对IG-110核级石墨中的点缺陷的影响

李明阳 张雷敏 吕沙沙 李正操

引用本文:
Citation:

离子辐照和氧化对IG-110核级石墨中的点缺陷的影响

李明阳, 张雷敏, 吕沙沙, 李正操

Effects of ion irradiation and oxidation on point defects in IG-110 nuclear grade graphite

Li Ming-Yang, Zhang Lei-Min, Lv Shasha, Li Zheng-Cao
PDF
HTML
导出引用
  • 核级石墨是球床模块式高温气冷堆(HTR-PM)中的一种关键材料, 在堆内用作燃料元件基体材料、结构材料和中子反射层材料. 研究核级石墨辐照和氧化行为下的缺陷演化对反应堆安全具有重要意义. 本文对IG-110石墨样品进行了一系列包含不同顺序和不同条件的离子辐照和氧化的实验, 分为仅辐照、仅氧化、辐照后氧化、氧化后辐照, 通过观察其结构、形貌、石墨化程度和点缺陷的演化, 研究离子辐照和氧化对IG-110核级石墨中点缺陷的影响. 拉曼光谱表明, 随辐照剂量的增大, 拉曼峰强比ID/IG先增大后减小, 说明离子辐照使石墨中产生了点缺陷, 且点缺陷在辐照剂量增大时进一步发生演化; 氧化后石墨化程度增大, 说明高温下的退火效应使点缺陷发生复合, 因此氧化之后点缺陷数量减少. 氧化后辐照样品的点缺陷含量低于仅辐照样品, 辐照后氧化样品的点缺陷含量高于仅氧化样品. 正电子湮灭多普勒展宽揭示了离子辐照后石墨中仅有点缺陷, 而氧化使点缺陷部分回复. 离子辐照和氧化对石墨中点缺陷的演化产生相反的影响, 即离子辐照使平均S参数增大, 平均W参数减小, 而氧化使平均S参数减小, 平均W参数增大. 对于辐照后氧化的样品, 850 ℃高温的退火效应不足以使点缺陷完全回复.
    Nuclear grade graphite is a kind of key material in the high temperature gas-cooled reactor pebble-bed module (HTR-PM), where nuclear grade graphite acts as the fuel element matrix material, structural material and neutron reflector. In the reactor, the service environment of nuclear grade graphite suffers high temperature and strong neutron radiation. Both neutron radiation and the oxidation by the oxidizing impurities in HTGR coolant can cause the structure to damage and the properties to deteriorate. Therefore, it is of great significance to study the evolution of defects in nuclear grade graphite for improving the reactor safety. The effects of ion irradiation and oxidation on the point defects in IG-110 graphite are studied in this work. The 190 keV He+ implantation treatments at room temperature with fluences of 1 × 1015, 5 × 1015, 1 × 1016 and 1 × 1017 cm–2 are performed to induce 0.029, 0.14, 0.29 and 2.9 displacements per atom respectively. Oxidation treatments are performed at 850 ℃ for 10, 15, 20 and 25 min. Different sequences of He+ ion irradiation and oxidation are performed, which include irradiation only (Irr.), oxidation only (Ox.), irradiation followed by oxidation (Irr.-Ox.), and oxidation followed by irradiation (Ox.-Irr.). Raman spectrum shows that with the increase of ion irradiation dose, the intensity ratio of D peak to G peak (ID/IG) first increases and then decreases, implying that the point defects in graphite are induced by ion irradiation and the point defects evolve as dose increases; the degree of graphitization increases after oxidation, implying that the point defects are recovered by the annealing effect at high temperature, and the point defects decrease after oxidation. This makes Ox.-Irr. samples have a lower point defect content than Irr. samples, and leads Irr.-Ox. samples to possess a higher point defect content than Ox. samples. The positron annihilation Doppler broadening tests reveal that there are only point defects after ion irradiation and oxidation have partially recovered point defects. The ion irradiation and oxidation have opposite effects on the evolution of point defect in graphite. The ion irradiation increases the average S-parameter and reduces the average W-parameter, while oxidation reduces the average S-parameter and increases the average W-parameter. The annealing effect at 850 ℃ cannot completely recover the point defects in Irr.-Ox. samples.
      通信作者: 吕沙沙, lvss@bnu.edu.cn ; 李正操, zcli@tsinghua.edu.cn
    • 基金项目: 国家科技重大专项(批准号: ZX069)资助的课题.
      Corresponding author: Lv Shasha, lvss@bnu.edu.cn ; Li Zheng-Cao, zcli@tsinghua.edu.cn
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. ZX069).
    [1]

    Kelly B T 1982 Carbon 20 3Google Scholar

    [2]

    Zhou Z, Bouwman W G, Schut H, Pappas C 2014 Carbon 69 17Google Scholar

    [3]

    Marsden B J, Jones A N, Hall G, Treifi M, Mummery P 2016 Structural Materials for Generation IV Nuclear Reactors (1st Ed.) (Cambridge: Woodhead Publishing) pp495−532

    [4]

    Heijna M C R, de Groot S D, Vreeling J A 2017 J. Nucl. Mater. 492 148Google Scholar

    [5]

    Haag G 2005 Properties of ATR-2E Graphite and Property Changes due to Fast Neutron Irradiation (Forschungszentrum Jülich GmbH: Juel-4183) pp49−90

    [6]

    Zhai P F, Liu J, Zeng J, Yao H J, Duan J L, Hou M D, Sun Y M, Ewing R C 2014 Chin. Phys. B 23 126105Google Scholar

    [7]

    Zeng J, Liu J, Zhang S X, Zhai P F, Yao H J, Duan J L, Guo H, Hou M D, Sun Y M 2015 Chin. Phys. B 24 086103

    [8]

    付晓刚, 李正操, 张政军 2010 原子能科学技术 44 686

    Fu X G, Li Z C, Zhang Z J 2010 Atom. Energ. Sci. Tech. 44 686

    [9]

    Burchell T D, Pappano P J, Strizak J P 2011 Carbon 49 3Google Scholar

    [10]

    Kelly B, Marsden B, Hall K, Martin D, Harper A, Blanchard A 2000 Irradiation Damage in Graphite due to Fast Neutrons in Fission and Fusion Systems (IAEA-Tecdoc-1154) pp45−114

    [11]

    Tang Z, Hasegawa M, Shimamura T, Nagai T, Chiba T, Kawazoe Y 1999 Phys. Rev. Lett. 82 2532Google Scholar

    [12]

    王鹏, 于溯源 2013 核动力工程 2013 46Google Scholar

    Wang P, Yu S Y 2013 Nucl. Power Eng. 2013 46Google Scholar

    [13]

    Chi S, Kim G 2008 J. Nucl. Mater. 381 9Google Scholar

    [14]

    Yan R, Dong Y, Zhou Y, Sun X M, Li Z C 2017 J. Nucl. Sci. Technol. 54 1168Google Scholar

    [15]

    魏明辉, 孙喜明 2013 原子能科学技术 47 1620Google Scholar

    Wei M H, Sun X M 2013 Atom. Energ. Sci. Technol. 47 1620Google Scholar

    [16]

    Lee J J, Ghosh T K, Loyalka S K 2013 J. Nucl. Mater. 438 77Google Scholar

    [17]

    王鹏, 于溯源 2012 原子能科学技术 46 84

    Wang P, Yu S Y 2012 Atom. Energ. Sci. Technol. 46 84

    [18]

    郑艳华, 石磊 2010 原子能科学技术 44 253

    Zheng Y H, Shi L 2010 Atom. Energ. Sci. Technol. 44 253

    [19]

    徐伟, 郑艳华, 石磊 2017 原子能科学技术 51 694Google Scholar

    Xu W, Zheng Y H, Shi L 2017 Atom. Energ. Sci. Technol. 51 694Google Scholar

    [20]

    Richards M B, Gillespie A G, Hanson D L 1993 In-pile Corrosion of Grade H-451 Graphite by Steam in Modern Developments in Energy, Combustion and Spectroscopy (1st Ed.) (Oxford: Pergamon Press) pp87−94

    [21]

    Liu J, Dong L, Wang C, Liang T X, Lai W S 2015 Nucl. Instrum. Meth. B 352 160Google Scholar

    [22]

    Vavilin A I, Chernikov 1992 Atom. Energ. 73 618Google Scholar

    [23]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Meth. B 268 1818Google Scholar

    [24]

    王鹏 2013 博士学位论文 (北京: 清华大学) 第30−34页

    Wang P 2013 Ph. D. Dissertation (Beijing: Tsinghua University) pp30−34 (in Chinese)

    [25]

    Reich S, Thomsen C 2004 Phil. Trans. R. Soc. Lond. A 362 2271Google Scholar

    [26]

    Childres I, Jauregui L, Park W, Cao H, Chen Y P 2013 Raman Spectroscopy of Graphene and Related Materials in New Developments in Photon and Materials Research (1st Ed.) (New York: Nova Science Publishers) pp1−20

    [27]

    Hu Z, Li Z C, Zhou Z, Shi C Q, Schut H, Pappas K 2014 J. Phys. Conf. Ser. 505 012014Google Scholar

    [28]

    Shi C Q, Schut H, Li Z C 2016 J. Phys. Conf. Ser. 674 012019Google Scholar

    [29]

    MacKenzie I K, Eady J A, Gingerich R R 1970 Phys. Lett. A 33 279

    [30]

    Schut H 1990 Ph. D. Dissertation (Delft: Delft University of Technology) pp67−102

    [31]

    Lucchese M M, Stavale F, Martins Ferreira E H, Vilani C, Moutinho M V O, Capaz R B, Achete C A, Jorio A 2010 Carbon 48 1592Google Scholar

    [32]

    徐世江, 康飞宇 2010 核工程中的炭和石墨材料 (北京: 清华大学出版社) (第1版) 第140−143页

    Xu S J, Kang F Y 2010 Carbon and Graphite Materials in Nuclear Engineering (1st Ed.) pp140−143 (in Chinese)

    [33]

    Latham C D, Heggie M I, Alatalo M, Oberg S, Briddon P R 2013 J. Phys. Conden. Matter 25 135403Google Scholar

  • 图 1  SRIM软件模拟不同注量的190 keV He+辐照后IG-110核级石墨中缺陷数量的深度分布

    Fig. 1.  SRIM simulation of the depth profiling of defects in IG-110 nuclear grade graphite after different fluences of 190 keV He+ irradiation.

    图 2  样品的XRD图谱 (a)仅辐照的样品; (b)仅氧化的样品

    Fig. 2.  XRD patterns of the samples: (a) Irr. samples; (b) Ox. samples

    图 3  样品的尺寸和形貌 (a)未处理样品尺寸; (b)未处理样品的SEM形貌; 氧化(c) 10, (d) 15, (e) 20, (f) 25 min的样品的SEM形貌

    Fig. 3.  Size and morphology of the samples: (a) Size of untreated sample; SEM morphology of (b) untreated sample; SEM morphology and of Ox. samples that were oxidized for (c) 10, (d) 15, (e) 20, (f) 25 min.

    图 5  ID/IG的变化 (a)仅辐照的样品、辐照后氧化的样品和氧化后辐照的样品; (b)仅氧化的样品的ID/IG

    Fig. 5.  Evolution of ID/IG ratios of the samples: (a) Irr., Irr.-Ox., Ox.-Irr. samples; (b) Ox. samples.

    图 4  样品的拉曼光谱 (a)仅辐照的样品; (b)仅氧化的样品

    Fig. 4.  Raman spectra of the samples: (a) Irr. samples; (b) Ox. samples.

    图 6  样品中不同深度的S参数和平均S参数随辐照剂量和氧化时间的变化  (a), (c)仅辐照的样品; (b), (d)仅氧化的样品

    Fig. 6.  Profiles of S-parameter and trends of the evolution of S-parameter: (a), (c) Irr. samples; (b), (d) Ox. samples.

    图 7  在250—1250 nm的深度范围内平均S参数和平均W参数之间的关系

    Fig. 7.  Relationship of the average S- and W-parameter in 250−1250 nm of all samples.

    Baidu
  • [1]

    Kelly B T 1982 Carbon 20 3Google Scholar

    [2]

    Zhou Z, Bouwman W G, Schut H, Pappas C 2014 Carbon 69 17Google Scholar

    [3]

    Marsden B J, Jones A N, Hall G, Treifi M, Mummery P 2016 Structural Materials for Generation IV Nuclear Reactors (1st Ed.) (Cambridge: Woodhead Publishing) pp495−532

    [4]

    Heijna M C R, de Groot S D, Vreeling J A 2017 J. Nucl. Mater. 492 148Google Scholar

    [5]

    Haag G 2005 Properties of ATR-2E Graphite and Property Changes due to Fast Neutron Irradiation (Forschungszentrum Jülich GmbH: Juel-4183) pp49−90

    [6]

    Zhai P F, Liu J, Zeng J, Yao H J, Duan J L, Hou M D, Sun Y M, Ewing R C 2014 Chin. Phys. B 23 126105Google Scholar

    [7]

    Zeng J, Liu J, Zhang S X, Zhai P F, Yao H J, Duan J L, Guo H, Hou M D, Sun Y M 2015 Chin. Phys. B 24 086103

    [8]

    付晓刚, 李正操, 张政军 2010 原子能科学技术 44 686

    Fu X G, Li Z C, Zhang Z J 2010 Atom. Energ. Sci. Tech. 44 686

    [9]

    Burchell T D, Pappano P J, Strizak J P 2011 Carbon 49 3Google Scholar

    [10]

    Kelly B, Marsden B, Hall K, Martin D, Harper A, Blanchard A 2000 Irradiation Damage in Graphite due to Fast Neutrons in Fission and Fusion Systems (IAEA-Tecdoc-1154) pp45−114

    [11]

    Tang Z, Hasegawa M, Shimamura T, Nagai T, Chiba T, Kawazoe Y 1999 Phys. Rev. Lett. 82 2532Google Scholar

    [12]

    王鹏, 于溯源 2013 核动力工程 2013 46Google Scholar

    Wang P, Yu S Y 2013 Nucl. Power Eng. 2013 46Google Scholar

    [13]

    Chi S, Kim G 2008 J. Nucl. Mater. 381 9Google Scholar

    [14]

    Yan R, Dong Y, Zhou Y, Sun X M, Li Z C 2017 J. Nucl. Sci. Technol. 54 1168Google Scholar

    [15]

    魏明辉, 孙喜明 2013 原子能科学技术 47 1620Google Scholar

    Wei M H, Sun X M 2013 Atom. Energ. Sci. Technol. 47 1620Google Scholar

    [16]

    Lee J J, Ghosh T K, Loyalka S K 2013 J. Nucl. Mater. 438 77Google Scholar

    [17]

    王鹏, 于溯源 2012 原子能科学技术 46 84

    Wang P, Yu S Y 2012 Atom. Energ. Sci. Technol. 46 84

    [18]

    郑艳华, 石磊 2010 原子能科学技术 44 253

    Zheng Y H, Shi L 2010 Atom. Energ. Sci. Technol. 44 253

    [19]

    徐伟, 郑艳华, 石磊 2017 原子能科学技术 51 694Google Scholar

    Xu W, Zheng Y H, Shi L 2017 Atom. Energ. Sci. Technol. 51 694Google Scholar

    [20]

    Richards M B, Gillespie A G, Hanson D L 1993 In-pile Corrosion of Grade H-451 Graphite by Steam in Modern Developments in Energy, Combustion and Spectroscopy (1st Ed.) (Oxford: Pergamon Press) pp87−94

    [21]

    Liu J, Dong L, Wang C, Liang T X, Lai W S 2015 Nucl. Instrum. Meth. B 352 160Google Scholar

    [22]

    Vavilin A I, Chernikov 1992 Atom. Energ. 73 618Google Scholar

    [23]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Meth. B 268 1818Google Scholar

    [24]

    王鹏 2013 博士学位论文 (北京: 清华大学) 第30−34页

    Wang P 2013 Ph. D. Dissertation (Beijing: Tsinghua University) pp30−34 (in Chinese)

    [25]

    Reich S, Thomsen C 2004 Phil. Trans. R. Soc. Lond. A 362 2271Google Scholar

    [26]

    Childres I, Jauregui L, Park W, Cao H, Chen Y P 2013 Raman Spectroscopy of Graphene and Related Materials in New Developments in Photon and Materials Research (1st Ed.) (New York: Nova Science Publishers) pp1−20

    [27]

    Hu Z, Li Z C, Zhou Z, Shi C Q, Schut H, Pappas K 2014 J. Phys. Conf. Ser. 505 012014Google Scholar

    [28]

    Shi C Q, Schut H, Li Z C 2016 J. Phys. Conf. Ser. 674 012019Google Scholar

    [29]

    MacKenzie I K, Eady J A, Gingerich R R 1970 Phys. Lett. A 33 279

    [30]

    Schut H 1990 Ph. D. Dissertation (Delft: Delft University of Technology) pp67−102

    [31]

    Lucchese M M, Stavale F, Martins Ferreira E H, Vilani C, Moutinho M V O, Capaz R B, Achete C A, Jorio A 2010 Carbon 48 1592Google Scholar

    [32]

    徐世江, 康飞宇 2010 核工程中的炭和石墨材料 (北京: 清华大学出版社) (第1版) 第140−143页

    Xu S J, Kang F Y 2010 Carbon and Graphite Materials in Nuclear Engineering (1st Ed.) pp140−143 (in Chinese)

    [33]

    Latham C D, Heggie M I, Alatalo M, Oberg S, Briddon P R 2013 J. Phys. Conden. Matter 25 135403Google Scholar

  • [1] 闫丽彬, 白雨蓉, 李培, 柳文波, 何欢, 贺朝会, 赵小红. InP中点缺陷迁移机制的第一性原理计算.  , 2024, 73(18): 183101. doi: 10.7498/aps.73.20240754
    [2] 但敏, 陈伦江, 贺岩斌, 吕兴旺, 万俊豪, 张虹, 张珂嘉, 杨莹, 金凡亚. H+离子辐照Y0.5Gd0.5Ba2Cu3O7-δ超导层中的缺陷演化.  , 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221612
    [3] 但敏, 陈伦江, 贺岩斌, 吕兴旺, 万俊豪, 张虹, 张珂嘉, 杨莹, 金凡亚. H+离子辐照Y0.5Gd0.5Ba2Cu3O7–δ超导层中的缺陷演化.  , 2022, 71(23): 237401. doi: 10.7498/aps.71.20221612
    [4] 陈隆, 陈成克, 李晓, 胡晓君. 氧化对单颗粒层纳米金刚石薄膜硅空位发光和微结构的影响.  , 2019, 68(16): 168101. doi: 10.7498/aps.68.20190422
    [5] 李酽, 张琳彬, 李娇, 连晓雪, 朱俊武. 电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析.  , 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
    [6] 刘思冕, 韩卫忠. 金属材料界面与辐照缺陷的交互作用机理.  , 2019, 68(13): 137901. doi: 10.7498/aps.68.20190128
    [7] 谢修华, 李炳辉, 张振中, 刘雷, 刘可为, 单崇新, 申德振. 点缺陷调控: 宽禁带II族氧化物半导体的机遇与挑战.  , 2019, 68(16): 167802. doi: 10.7498/aps.68.20191043
    [8] 杨蒙生, 易泰民, 郑凤成, 唐永建, 张林, 杜凯, 李宁, 赵利平, 柯博, 邢丕峰. 沉积态铀薄膜表面氧化的X射线光电子能谱.  , 2018, 67(2): 027301. doi: 10.7498/aps.67.20172055
    [9] 卞西磊, 王刚. 非晶合金的离子辐照效应.  , 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [10] 高云亮, 朱芫江, 李进平. Al辐照损伤初期的第一性原理研究.  , 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [11] 张越, 赵剑, 董鹏, 田达晰, 梁兴勃, 马向阳, 杨德仁. 掺杂剂对重掺n型直拉硅片的氧化诱生层错生长的影响.  , 2015, 64(9): 096105. doi: 10.7498/aps.64.096105
    [12] 李晓娜, 郑月红, 李震, 王苗, 张坤, 董闯. 基于团簇模型设计的Cu-Cu12-[Mx/(12+x)Ni12/(12+x)]5 (M=Si, Cr, Cr+Fe) 合金抗高温氧化研究.  , 2014, 63(2): 028102. doi: 10.7498/aps.63.028102
    [13] 吉川, 徐进. 点缺陷对硼掺杂直拉硅单晶p/p+ 外延片中铜沉淀的影响.  , 2012, 61(23): 236102. doi: 10.7498/aps.61.236102
    [14] 曹永军, 谭伟, 刘燕. 二维磁振子晶体中点缺陷模的耦合性质研究.  , 2012, 61(11): 117501. doi: 10.7498/aps.61.117501
    [15] 魏琦, 程营, 刘晓峻. 点缺陷阵列对声子晶体波导定向辐射性能的影响.  , 2011, 60(12): 124301. doi: 10.7498/aps.60.124301
    [16] 胡美娇, 李成, 徐剑芳, 赖虹凯, 陈松岩. 循环氧化/退火制备GeOI薄膜材料及其性质研究.  , 2011, 60(7): 078102. doi: 10.7498/aps.60.078102
    [17] 敖冰云, 汪小琳, 陈丕恒, 史鹏, 胡望宇, 杨剑瑜. 嵌入原子法计算金属钚中点缺陷的能量.  , 2010, 59(7): 4818-4825. doi: 10.7498/aps.59.4818
    [18] 宜晨虹, 慕青松, 苗天德. 带有点缺陷的二维颗粒系统离散元模拟.  , 2008, 57(6): 3636-3640. doi: 10.7498/aps.57.3636
    [19] 马新国, 江建军, 梁 培. 锐钛矿型TiO2(101)面本征点缺陷的理论研究.  , 2008, 57(5): 3120-3125. doi: 10.7498/aps.57.3120
    [20] 谢自力, 张 荣, 修向前, 刘 斌, 朱顺明, 赵 红, 濮 林, 韩 平, 江若琏, 施 毅, 郑有炓. InN薄膜的氧化特性研究.  , 2007, 56(2): 1032-1035. doi: 10.7498/aps.56.1032
计量
  • 文章访问数:  8609
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-15
  • 修回日期:  2019-04-12
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-20

/

返回文章
返回
Baidu
map