搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管与氮化硼纳米管内铝纳米线的形成及其复合结构抗压特性的模拟研究

袁剑辉 雷钦文 刘其城

引用本文:
Citation:

碳纳米管与氮化硼纳米管内铝纳米线的形成及其复合结构抗压特性的模拟研究

袁剑辉, 雷钦文, 刘其城

Simulation research on formation and compressive properties of aluminum nanowires inside carbon nanotubes and boron-nitride nanotubes

Yuan Jian-Hui, Lei Qin-Wen, Liu Qi-Cheng
PDF
HTML
导出引用
  • 采用分子动力学方法分别对管内充以铝原子碳纳米管(CNT)与氮化硼纳米管(BNNT)进行了结构性能研究. 优化结果显示: (5, 5) CNT和BNNT内均能形成一束一维铝纳米线(AlNW); (10, 10)管内形成的是多束AlNW, 其中(10, 10) CNT内形成的是11束高度轴对称一维AlNW, 而(10, 10) BNNT内形成的是5束螺旋结构形状的AlNW. 进一步分析表明: CNT内的AlNW具有比BNNT内的AlNW较大的原子分布线密度, 但大管径(10, 10)型BNNT内的螺旋状AlNW可以具有比相同管径CNT内纳米线更高的结晶性. 通过对其轴向压缩模拟及其能量分析, 可以发现AlNW@CNT复合结构的屈曲应变明显大于AlNW@BNNT, 且同类型复合结构, 屈曲应变随管径增大而减小, 故较小管径的AlNW@CNT具有更强轴向抗压能力. 能量分析结果表明van der Waals能是维系复合纳米管结构稳定, 增大抗压能力的主要原因.
    To know the basic configuration and application characteristics of aluminum (Al) nanostructure, the structure performances of carbon nanotube (CNT) and boron-nitride NT (BNNT) filled with Al atoms are studied through molecular dynamics. Optimization results show that the Al atoms in the tube are arranged neatly into various shapes of nanowires. A bunch of one-dimensional (1D) Al nanowires (AlNWs) is formed in (5, 5) CNT and BNNT, and large beams of AlNWs are formed in (10, 10) NT, including 11 beams of 1D AlNWs with highly axial symmetry in (10, 10) CNT and 5 beams of spiral AlNWs in BNNT (10, 10). Further data analysis for radical distribution function (RDF) shows that AlNWs inside CNT have larger atomic distribution density, but those inside BNNT with larger diameter have better crystallinity than those with similar size inside the CNT. These results can provide a method of designing the nanowires with different structures and shapes in different micro-nano devices (such as nanospring, nanosolenoid, and others). Comparison of the axial compression behaviors of the composite NTs and their energy analysis reveal that the critical buckling strain of AlNW@CNT is significantly larger than that of AlNW@BNNT. For the same type of compound structure, the buckling strain decreases with NT diameter increasing. Therefore, smaller AlNW@CNT has stronger axial compressive resistance. The main reasons are as follows: 1) The AlNW in carbon NTs has a relatively large Al atomic distribution in the axial direction, which is conducive to the formation of σ bond to increase structural stability and mechanical performance. It also plays a decisive role in enhancing compressive performance. 2) The AlNW in the large-diameter boron nitride NTs is helical in shape, and more Al atoms are distributed in the direction of the cross section, thereby relatively reducing the number of axial pressure-bearing atoms. In addition, for the same type of nanotube, a tube with a small diameter results in closer hexagons to the tube wall and larger interaction. These conditions are more conducive to resisting the transverse subsidence under axial pressure. The energy analysis results indicate that the van der Waals force is one of the main causes for NT composite stability and increasing compressive strength. These results can provide a reference for selecting different Al nanowire-reinforced composite structures under different application conditions, such as high temperature, high pressure, oxidation resistance, and others.
      通信作者: 袁剑辉, wdxyjh@163.com ; 刘其城, 743542590@qq.com
    • 基金项目: 国家自然科学基金(批准号: 61771076, 21276028, 21506259)资助的课题.
      Corresponding author: Yuan Jian-Hui, wdxyjh@163.com ; Liu Qi-Cheng, 743542590@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61771076, 21276028, 21506259).
    [1]

    Zhang J M, Wang S F, Xu K W, Ji V 2010 J. Nanosci. Nanotechnol. 10 840Google Scholar

    [2]

    Arcidiacono S, Walther J H, Poulikakos D, Passerone D, Koumoutsakos P 2005 Phys. Rev. Lett. 94 105502Google Scholar

    [3]

    Hudziak S, Darfeuille A, Zhang R, Peijs T, Mountjoy G, Bertoni G, Baxendale M 2010 Nanotechnology 21 125505Google Scholar

    [4]

    Zhao D L, Zhang J M, Li X, Shen Z M 2010 J. Alloys Compd. 505 712Google Scholar

    [5]

    Xiao J, Ryu S Y, Huang Y, Hwang K C, Paik U, Rogers J A 2010 Nanotechnology 21 085708Google Scholar

    [6]

    Wang L, Zhang H W, Zhang Z Q, Zheng Y G, Wang J B 2007 Appl. Phys. Lett. 91 051122Google Scholar

    [7]

    Soldano G, Mariscal M M 2009 Nanotechnology 20 165705Google Scholar

    [8]

    Guo S H, Zhu B E, Ou X D, Pan Z Y, Wang Y X 2010 Carbon 48 4129Google Scholar

    [9]

    Zhang X Q, Li H, Liew K M 2007 J. Appl. Phys. 102 073709Google Scholar

    [10]

    Nishio K, Ozaki T, Morishita T, Mikami M 2008 Phys. Rev. B 77 201401Google Scholar

    [11]

    Lü Z Y, Hu Q K, Xu Z X, Wang J J, Chen Z H, Wang Y, Chen M, Zhou K, Zhou Y, Han S T 2019 Adv. Electron. Mater. 5 1800793Google Scholar

    [12]

    Cui Z, Han Y W, Huang Q J, Dong J Y, Zhu Y 2018 Nanoscale 10 6806Google Scholar

    [13]

    王文慧, 张孬 2018 67 247302Google Scholar

    Wang W H, Zhang N 2018 Acta Phys. Sin. 67 247302Google Scholar

    [14]

    Chen R, Hochbaum A I, Murphy P, Moore J, Yang P D, Majumdar A 2008 Phys. Rev. Lett. 101 105501Google Scholar

    [15]

    Wu Z G, Neaton J B, Grossman J C 2008 Phys. Rev. Lett. 100 246804Google Scholar

    [16]

    Blasé X, Fernandez-Serra M V 2008 Phys. Rev. Lett. 100 046802Google Scholar

    [17]

    Durgun E, Cakir D, Akman N, Ciraci S 2007 Phys. Rev. Lett. 99 256806Google Scholar

    [18]

    Leu P W, Svizhenko A, Cho K 2008 Phys. Rev. B 77 235305Google Scholar

    [19]

    Sorokin P B, Avramov P V, Kvashnin A G, Kvashnin D G, Ovchinnikov S G, Fedorov A S 2008 Phys. Rev. B 77 235417Google Scholar

    [20]

    鹿业波, 顾金梅, 刘楚辉, 彭文利 2016 半导体光电 37 370

    Lu Y B, Gu J M, Liu C H, Peng W L 2016 Semicond. Optoelectron. 37 370

    [21]

    Hu L, Wu H, Cui Y 2011 MRS Bull. 36 760Google Scholar

    [22]

    Cho Y J, Park I J, Lee H J, Kim J G 2015 J. Power Sources 277 370Google Scholar

    [23]

    Lin M C, Gong M, Lu B, Wu Y, Wang D Y, Guan M, Angell M, Chen C, Yang J, Hwang B J, Dai H 2015 Nature 520 324Google Scholar

    [24]

    Li S, Niu J, Zhao Y C, So K P, Wang C, Wang C A, Li J 2015 Nat. Commun. 6 7872Google Scholar

    [25]

    Ju S, Li J, Liu J, Chen P C, Ha Y G, Ishikawa F, Chang H, Zhou C, Facchetti A, Janes D B, Marks T J 2008 Nano Lett. 8 997Google Scholar

    [26]

    Fu K K, Wang Z, Dai J, Carter M, Hu L 2016 Chem. Mater. 28 3527Google Scholar

    [27]

    Shaijumon M M, Perre E, Daffos B, Taberna P L, Tarascon J M, Simon P 2010 Adv. Mater. 22 4978Google Scholar

    [28]

    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012 Nat. Phys. 8 887Google Scholar

    [29]

    Li L, Xu X, Chew H, Huang X, Dou X, Pan S, Li G, Zhang L 2008 J. Phys. Chem. C 112 5328Google Scholar

    [30]

    Lu Y, Tohmyoh H, Saka M 2012 Thin Solid Films 520 3448Google Scholar

    [31]

    Sun Y X, Tohmoh H, Saka M 2009 J. Nanosci. Nanotechnol. 9 1972Google Scholar

    [32]

    Wang H, Li B 2018 J. Electrochem. Soc. 165 D641Google Scholar

    [33]

    Chen Y, Wang Y, Zhu S, Chen C, Danner V A, Li Y, Dai J, Li H, Fu K K, Li T, Liu Y, Hu L 2019 ACS Appl. Mater. Interfaces 11 6009Google Scholar

    [34]

    Azuma K, Sakajiri K, Okabe T, Matsumoto H, Kang S, Watanabe J, Tokita M 2017 Jpn. J. Appl. Phys. 56 095002Google Scholar

    [35]

    Chen Y, Zou J, Campbell S J, Le Caer G 2004 Appl. Phys. Lett. 84 2430Google Scholar

    [36]

    Yuan J H, Liew K M 2009 Carbon 47 713Google Scholar

    [37]

    Yuan J H, Liew K M 2009 Carbon 47 1526Google Scholar

    [38]

    Jing L, Tay R Y, Li H L, Tsang S H, Huang J F, Tan D L, Zhang B W, Teo E H T, Tok A I Y 2016 Nanoscale 8 11114Google Scholar

    [39]

    Xu F F, Bando Y, Golberg D, Hasegawa M, Mitome M 2004 Acta Mater. 52 601Google Scholar

    [40]

    Golberg D, Bando Y, Mitome M, Fushimi K, Tang C C 2004 Acta Mater. 52 3295Google Scholar

    [41]

    Ashrafi B, Jakubinek M B, Martinez-Rubi Y, Rahmat M, Djokic D, Laqua K, Park D, Kim K S, Simard B, Yousefpour A 2017 Acta Astronaut. 141 57Google Scholar

    [42]

    Xu X J G, Gilburd L, Bando Y, Golberg D, Walker G C 2016 J. Phys. Chem. C 120 1945Google Scholar

    [43]

    Tokoro H, Fujii S, Oku T 2005 Solid State Commun. 133 681Google Scholar

    [44]

    Yuan J H, Liew K M 2010 J. Comput. Theor. Nanosci. 7 1878Google Scholar

    [45]

    Kumar S, Srivastava V C, Mandal G K, Pattanayek S K, Sahoo K L 2017 J. Phys. Chem. C 121 20468Google Scholar

    [46]

    袁剑辉, 黄维辉, 史向华, 杨昌虎 2013 稀有金属材料与工程 42 297Google Scholar

    Yuan J H, Huang W H, Shi X H, Yang C H 2013 Rare Metal. Mat. Eng. 42 297Google Scholar

    [47]

    袁剑辉, 黄维辉, 史向华, 张振华 2012 无机化学学报 28 125

    Yuan J H, Huang W H, Shi X H, Zhang Z H 2012 Chin. J. Inorg. Chem. 28 125

    [48]

    Yuan J H, Liew K M 2011 J. Phys. Chem. C 115 431Google Scholar

    [49]

    Yuan J H, Liew K M 2011 Nanotechnology 22 085701Google Scholar

    [50]

    Yuan J H, Liew K M 2011 Carbon 49 677Google Scholar

    [51]

    Yuan J H, Zhang L W, Liew K M 2017 Computat. Mater. Sci. 133 130Google Scholar

    [52]

    Yuan J H, Zhang L W, Liew K M 2016 Current Nanosci. 12 636Google Scholar

    [53]

    Yuan J H, Zhang L W, Liew K M 2015 RSC Adv. 5 74399Google Scholar

    [54]

    Yuan J H, Liew K M 2014 Phys. Chem. Chem. Phys. 16 88Google Scholar

    [55]

    Rappe A K, Casewit C J, Colwell K S, Goddard W A, Skiff W M 1992 J. Am. Chem. Soc. 114 10024Google Scholar

    [56]

    Rappe A K, Colwell K S, Casewit C 1993 J. Inorg. Chem. 32 3438Google Scholar

    [57]

    Srivastava D, Menon M, Cho K 1999 J. Phys. Rev. Lett. 83 2973Google Scholar

    [58]

    Casewit C, J, Colwell K S, Rappe A K 1992 J. Am. Chem. Soc. 114 10046Google Scholar

  • 图 1  铝原子在CNT (n, n)和BNNT (n, n)纳米管内微结构演变模型 (a) CNT (5, 5)和CNT (10, 10); (b) BNNT (5, 5)和BNNT (10, 10)

    Fig. 1.  Models of the microstructure evolution of the aluminum atoms filled in CNT (n, n) and BNNT (n, n) nanotubes: (a) CNT (5, 5) and CNT (10, 10); (b) BNNT (5, 5) and BNNT (10, 10).

    图 2  优化后的AlNW@CNT和AlNW@BNNT复合结构 (a) AlNW@CNT (5, 5); (b) AlNW@BNNT (5, 5); (c) AlNW@CNT (10, 10); (d) AlNW@BNNT (10, 10)

    Fig. 2.  Structure of the optimized AlNW@CNT and AlNW@BNNT: (a) AlNW@CNT (5, 5); (b) AlNW@BNNT (5, 5); (c) AlNW@CNT (10, 10); (d) AlNW@BNNT (10, 10).

    图 3  在CNT (n, n)与BNNT (n, n)中AlNW的RDF (a) n = 5; (b) n = 10

    Fig. 3.  RDF of AlNW in CNT (n, n) and BNNT (n, n): (a) n = 5; (b) n = 10.

    图 4  屈曲前后的(a) AlNW@CNT (5, 5)与(b) AlNW@ BNNT (5, 5)结构

    Fig. 4.  (a) AlNW@CNT (5, 5) and (b) AlNW@BNNT (5, 5) nanotubes before and after buckling

    图 5  屈曲前后的(a) AlNW@CNT (10, 10)与(b) AlNW@ BNNT (10, 10)结构

    Fig. 5.  (a) AlNW@CNT (10, 10) and (b) AlNW@BNNT (10, 10) nanotubes before and after buckling.

    图 6   (a) AlNW@CNT (10, 10)与 (b) AlNW@BNNT (10, 10)的能量与压缩应变ε的关系

    Fig. 6.  Energy of a (a) AlNW@CNT (10, 10) and (b) AlNW@BNNT (10, 10) as a function of the compression strain.

    Baidu
  • [1]

    Zhang J M, Wang S F, Xu K W, Ji V 2010 J. Nanosci. Nanotechnol. 10 840Google Scholar

    [2]

    Arcidiacono S, Walther J H, Poulikakos D, Passerone D, Koumoutsakos P 2005 Phys. Rev. Lett. 94 105502Google Scholar

    [3]

    Hudziak S, Darfeuille A, Zhang R, Peijs T, Mountjoy G, Bertoni G, Baxendale M 2010 Nanotechnology 21 125505Google Scholar

    [4]

    Zhao D L, Zhang J M, Li X, Shen Z M 2010 J. Alloys Compd. 505 712Google Scholar

    [5]

    Xiao J, Ryu S Y, Huang Y, Hwang K C, Paik U, Rogers J A 2010 Nanotechnology 21 085708Google Scholar

    [6]

    Wang L, Zhang H W, Zhang Z Q, Zheng Y G, Wang J B 2007 Appl. Phys. Lett. 91 051122Google Scholar

    [7]

    Soldano G, Mariscal M M 2009 Nanotechnology 20 165705Google Scholar

    [8]

    Guo S H, Zhu B E, Ou X D, Pan Z Y, Wang Y X 2010 Carbon 48 4129Google Scholar

    [9]

    Zhang X Q, Li H, Liew K M 2007 J. Appl. Phys. 102 073709Google Scholar

    [10]

    Nishio K, Ozaki T, Morishita T, Mikami M 2008 Phys. Rev. B 77 201401Google Scholar

    [11]

    Lü Z Y, Hu Q K, Xu Z X, Wang J J, Chen Z H, Wang Y, Chen M, Zhou K, Zhou Y, Han S T 2019 Adv. Electron. Mater. 5 1800793Google Scholar

    [12]

    Cui Z, Han Y W, Huang Q J, Dong J Y, Zhu Y 2018 Nanoscale 10 6806Google Scholar

    [13]

    王文慧, 张孬 2018 67 247302Google Scholar

    Wang W H, Zhang N 2018 Acta Phys. Sin. 67 247302Google Scholar

    [14]

    Chen R, Hochbaum A I, Murphy P, Moore J, Yang P D, Majumdar A 2008 Phys. Rev. Lett. 101 105501Google Scholar

    [15]

    Wu Z G, Neaton J B, Grossman J C 2008 Phys. Rev. Lett. 100 246804Google Scholar

    [16]

    Blasé X, Fernandez-Serra M V 2008 Phys. Rev. Lett. 100 046802Google Scholar

    [17]

    Durgun E, Cakir D, Akman N, Ciraci S 2007 Phys. Rev. Lett. 99 256806Google Scholar

    [18]

    Leu P W, Svizhenko A, Cho K 2008 Phys. Rev. B 77 235305Google Scholar

    [19]

    Sorokin P B, Avramov P V, Kvashnin A G, Kvashnin D G, Ovchinnikov S G, Fedorov A S 2008 Phys. Rev. B 77 235417Google Scholar

    [20]

    鹿业波, 顾金梅, 刘楚辉, 彭文利 2016 半导体光电 37 370

    Lu Y B, Gu J M, Liu C H, Peng W L 2016 Semicond. Optoelectron. 37 370

    [21]

    Hu L, Wu H, Cui Y 2011 MRS Bull. 36 760Google Scholar

    [22]

    Cho Y J, Park I J, Lee H J, Kim J G 2015 J. Power Sources 277 370Google Scholar

    [23]

    Lin M C, Gong M, Lu B, Wu Y, Wang D Y, Guan M, Angell M, Chen C, Yang J, Hwang B J, Dai H 2015 Nature 520 324Google Scholar

    [24]

    Li S, Niu J, Zhao Y C, So K P, Wang C, Wang C A, Li J 2015 Nat. Commun. 6 7872Google Scholar

    [25]

    Ju S, Li J, Liu J, Chen P C, Ha Y G, Ishikawa F, Chang H, Zhou C, Facchetti A, Janes D B, Marks T J 2008 Nano Lett. 8 997Google Scholar

    [26]

    Fu K K, Wang Z, Dai J, Carter M, Hu L 2016 Chem. Mater. 28 3527Google Scholar

    [27]

    Shaijumon M M, Perre E, Daffos B, Taberna P L, Tarascon J M, Simon P 2010 Adv. Mater. 22 4978Google Scholar

    [28]

    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012 Nat. Phys. 8 887Google Scholar

    [29]

    Li L, Xu X, Chew H, Huang X, Dou X, Pan S, Li G, Zhang L 2008 J. Phys. Chem. C 112 5328Google Scholar

    [30]

    Lu Y, Tohmyoh H, Saka M 2012 Thin Solid Films 520 3448Google Scholar

    [31]

    Sun Y X, Tohmoh H, Saka M 2009 J. Nanosci. Nanotechnol. 9 1972Google Scholar

    [32]

    Wang H, Li B 2018 J. Electrochem. Soc. 165 D641Google Scholar

    [33]

    Chen Y, Wang Y, Zhu S, Chen C, Danner V A, Li Y, Dai J, Li H, Fu K K, Li T, Liu Y, Hu L 2019 ACS Appl. Mater. Interfaces 11 6009Google Scholar

    [34]

    Azuma K, Sakajiri K, Okabe T, Matsumoto H, Kang S, Watanabe J, Tokita M 2017 Jpn. J. Appl. Phys. 56 095002Google Scholar

    [35]

    Chen Y, Zou J, Campbell S J, Le Caer G 2004 Appl. Phys. Lett. 84 2430Google Scholar

    [36]

    Yuan J H, Liew K M 2009 Carbon 47 713Google Scholar

    [37]

    Yuan J H, Liew K M 2009 Carbon 47 1526Google Scholar

    [38]

    Jing L, Tay R Y, Li H L, Tsang S H, Huang J F, Tan D L, Zhang B W, Teo E H T, Tok A I Y 2016 Nanoscale 8 11114Google Scholar

    [39]

    Xu F F, Bando Y, Golberg D, Hasegawa M, Mitome M 2004 Acta Mater. 52 601Google Scholar

    [40]

    Golberg D, Bando Y, Mitome M, Fushimi K, Tang C C 2004 Acta Mater. 52 3295Google Scholar

    [41]

    Ashrafi B, Jakubinek M B, Martinez-Rubi Y, Rahmat M, Djokic D, Laqua K, Park D, Kim K S, Simard B, Yousefpour A 2017 Acta Astronaut. 141 57Google Scholar

    [42]

    Xu X J G, Gilburd L, Bando Y, Golberg D, Walker G C 2016 J. Phys. Chem. C 120 1945Google Scholar

    [43]

    Tokoro H, Fujii S, Oku T 2005 Solid State Commun. 133 681Google Scholar

    [44]

    Yuan J H, Liew K M 2010 J. Comput. Theor. Nanosci. 7 1878Google Scholar

    [45]

    Kumar S, Srivastava V C, Mandal G K, Pattanayek S K, Sahoo K L 2017 J. Phys. Chem. C 121 20468Google Scholar

    [46]

    袁剑辉, 黄维辉, 史向华, 杨昌虎 2013 稀有金属材料与工程 42 297Google Scholar

    Yuan J H, Huang W H, Shi X H, Yang C H 2013 Rare Metal. Mat. Eng. 42 297Google Scholar

    [47]

    袁剑辉, 黄维辉, 史向华, 张振华 2012 无机化学学报 28 125

    Yuan J H, Huang W H, Shi X H, Zhang Z H 2012 Chin. J. Inorg. Chem. 28 125

    [48]

    Yuan J H, Liew K M 2011 J. Phys. Chem. C 115 431Google Scholar

    [49]

    Yuan J H, Liew K M 2011 Nanotechnology 22 085701Google Scholar

    [50]

    Yuan J H, Liew K M 2011 Carbon 49 677Google Scholar

    [51]

    Yuan J H, Zhang L W, Liew K M 2017 Computat. Mater. Sci. 133 130Google Scholar

    [52]

    Yuan J H, Zhang L W, Liew K M 2016 Current Nanosci. 12 636Google Scholar

    [53]

    Yuan J H, Zhang L W, Liew K M 2015 RSC Adv. 5 74399Google Scholar

    [54]

    Yuan J H, Liew K M 2014 Phys. Chem. Chem. Phys. 16 88Google Scholar

    [55]

    Rappe A K, Casewit C J, Colwell K S, Goddard W A, Skiff W M 1992 J. Am. Chem. Soc. 114 10024Google Scholar

    [56]

    Rappe A K, Colwell K S, Casewit C 1993 J. Inorg. Chem. 32 3438Google Scholar

    [57]

    Srivastava D, Menon M, Cho K 1999 J. Phys. Rev. Lett. 83 2973Google Scholar

    [58]

    Casewit C, J, Colwell K S, Rappe A K 1992 J. Am. Chem. Soc. 114 10046Google Scholar

  • [1] 杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁. 多壁碳纳米管与金属表面间接触行为的分子动力学模拟.  , 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [2] 陈玉江, 江五贵, 林演文, 郑盼. 一种新型的三壁碳纳米管螺旋振荡器:分子动力学模拟.  , 2020, 69(22): 228801. doi: 10.7498/aps.69.20200821
    [3] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟.  , 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [4] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟.  , 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [5] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究.  , 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [6] 兰生, 李焜, 高新昀. 基于分子动力学的石墨炔纳米带空位缺陷的导热特性.  , 2017, 66(13): 136801. doi: 10.7498/aps.66.136801
    [7] 林长鹏, 刘新健, 饶中浩. 铝纳米颗粒的热物性及相变行为的分子动力学模拟.  , 2015, 64(8): 083601. doi: 10.7498/aps.64.083601
    [8] 韩典荣, 王璐, 罗成林, 朱兴凤, 戴亚飞. (n, n)-(2n, 0)碳纳米管异质结的扭转力学特性.  , 2015, 64(10): 106102. doi: 10.7498/aps.64.106102
    [9] 袁林, 敬鹏, 刘艳华, 徐振海, 单德彬, 郭斌. 多晶银纳米线拉伸变形的分子动力学模拟研究.  , 2014, 63(1): 016201. doi: 10.7498/aps.63.016201
    [10] 杨成兵, 解辉, 刘朝. 锂离子进入碳纳米管端口速度的分子动力学模拟.  , 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [11] 马彬, 饶秋华, 贺跃辉, 王世良. 单晶钨纳米线拉伸变形机理的分子动力学研究.  , 2013, 62(17): 176103. doi: 10.7498/aps.62.176103
    [12] 张忠强, 丁建宁, 刘珍, Y. Xue, 程广贵, 凌智勇. 碳纳米管-聚乙烯复合材料界面力学特性分析.  , 2012, 61(12): 126202. doi: 10.7498/aps.61.126202
    [13] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究.  , 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [14] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究.  , 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [15] 王伟, 张凯旺, 孟利军, 李中秋, 左学云, 钟建新. 多壁碳纳米管外壁高温蒸发的分子动力学模拟.  , 2010, 59(4): 2672-2678. doi: 10.7498/aps.59.2672
    [16] 田惠忱, 刘丽, 文玉华. 立方铂纳米粒子的形状变化与熔化特性的分子动力学研究.  , 2009, 58(6): 4080-4084. doi: 10.7498/aps.58.4080
    [17] 王 磊, 张忠强, 张洪武. 双壁碳纳米管电浸润现象的分子动力学模拟.  , 2008, 57(11): 7069-7077. doi: 10.7498/aps.57.7069
    [18] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟.  , 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [19] 保文星, 朱长纯. 碳纳米管热传导的分子动力学模拟研究.  , 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟.  , 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  8284
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-24
  • 修回日期:  2019-06-17
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-20

/

返回文章
返回
Baidu
map