-
频率分辨光学开关法是目前测量超短激光脉冲的主流方法之一. 本文比较了三大类二次谐波频率分辨光学开关系统的特点和适用范围, 提出将标准二次谐波频率分辨光学开关法改装成一种快速扫描频率分辨光学开关法(frequency-resolved optical gating, FROG)装置. 利用信号发生器输出的正弦信号同步地驱动音圈电机和扫描振镜, 其中音圈电机带动直角反射镜往复运动可实现快速的延时扫描, 与此同时扫描振镜快速转动进而按照延时顺序将自相关信号光谱反射至面阵相机感光面上的不同位置. 该正弦信号还用于触发面阵相机持续曝光, 即可拍摄到一幅完整的FROG迹线图, 曝光时间可小于1 s. 该方案在需要记录较大矩阵FROG迹线图的情形颇具优势, 例如可实现色散大的啁啾脉冲和结构复杂的超短脉冲的实时测量. 通过测量从自锁模钛宝石激光器输出的飞秒脉冲以及被200 mm厚的BK7玻璃块展宽后的啁啾脉冲的结构, 证实了该装置的实用性.Frequency-resolved optical gating (FROG) is now one of the main methods of characterizing the ultrashort laser pulses. There are mainly three SHG-FROG methods, i.e. the standard FROG, the single-shot FROG and GRENOUILLE, each of which has its own features and application areas. Although the standard SHG-FROG has balanced advantages in sensitivity, accuracy and applicability for various test pulses, its speed is much slower than the others’: it often takes a few seconds or even minutes to record the FROG trace, which is dependent on the size of FROG image. Nowadays continuous development of the technique of digital imaging brings to high resolution CCD/CMOS image cameras with tens of millions pixels and fast refreshing rate. Unfortunately the standard FROG cannot make use of these image cameras for the real-time measurement of ultrashort pulses. To solve this problem, in this paper a rapid-scanning FROG device based on the standard SHG-FROG is demonstrated, where sinusoidal waves from a signal generator synchronously drive a voice coil actuator and a galvo-scanner, so that the spectra of the autocorrelation at different delays are successively reflected onto an area camera. As long as the camera is triggered to shoot continuously, the entire FROG trace can be recorded quickly within 1 s. Furthermore, several guidelines for good performance with this device are provided, including the settings of the amplitude and frequency of the driving sinusoidal waves, the selections of the focuses of the collimating lens F1 and the focusing lens F2, and the method of delay calibration. This device is suitable for the real-time measurement of ultrashort pulses with large chirps or complex structures where large-size FROG images need to be captured. In order to show the capability of this device, femtosecond pulses delivered directly from a home-made Kerr-lens mode-locked Ti: sapphire laser as well as the chirp pulses dispersed by a 200 mm-thick BK7 slab are measured. Two scan ranges are selected in order to achieve enough effective data points in the FROG traces of these two test pulses. Using standard procedure of pulse retrieval of FROG, the two pulses are reconstructed with pulse widths 58 fs and 492 fs, respectively. From the retrieved spectral phases of these test pulses, the GDD value of the BK7 slab can be deduced to be 8740 fs2, which is in good agreement with the theoretical value of 8815 fs2. Thus the experimental results confirm the accuracy and applicability of this FROG device.
-
Keywords:
- frequency-resolved optical gating /
- ultrashort pulse /
- real time measurement /
- rapid-scanning
[1] 张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨 2018 67 197202Google Scholar
Zhang S N, Zhu W H, Li J G, Jin Z M, Dai Y, Zhang Z Z, Ma G H, Yao J Q 2018 Acta Phys. Sin. 67 197202Google Scholar
[2] 李铭, 王兆华, 滕浩, 贺新奎, 韩海年, 李德华, 魏志义, Szymon S 2018 中国科学: 物理学 力学 天文学 48 024201
Li M, Wang Z H, Teng H, He X K, Han H N, Li D H, Wei Z Y, Szymon S 2018 Sci. Sin.-Phys. Mech. Astron. 48 024201
[3] 彭博, 曲兴华, 张福民, 张天宇, 张铁犁, 刘晓旭, 谢阳 2018 67 210601Google Scholar
Peng B, Qu X H, Zhang F M, Zhang T Y, Zhang T L, Liu X X, Xie Y 2018 Acta Phys. Sin. 67 210601Google Scholar
[4] Zeweil A H 2000 J. Phys. Chem. A 104 5660Google Scholar
[5] Kane D J, Trebino R 1993 Opt. Lett. 18 823Google Scholar
[6] 黄沛, 方少波, 黄杭东, 赵昆, 滕浩, 侯洵, 魏志义 2018 67 214202Google Scholar
Huang P, Fang S B, Huang H D, Zhao K, Teng H, Hou X, Wei Z Y 2018 Acta Phys. Sin. 67 214202Google Scholar
[7] Stibenz G, Steinmeyer G 2005 Opt. Express 13 2617Google Scholar
[8] 王兆华, 魏志义, 滕浩, 王鹏, 张杰 2003 52 362Google Scholar
Wang Z H, Wei Z Y, Teng H, Wang P, Zhang J 2003 Acta Phys. Sin. 52 362Google Scholar
[9] Marceau C, Thomas S, Kassim Y, Gingras G, Witzel1 B 2015 Appl. Phys. B 119 339Google Scholar
[10] Hause A, Kraf S, Rohrmann P, Mitschke F 2015 J. Opt. Soc. Am. B 32 868Google Scholar
[11] 马晓璐, 李培丽, 郭海莉, 张一, 朱天阳, 曹凤娇 2014 63 240601Google Scholar
Ma X L, Li P L, Guo H L, Zhang Y, Zhu T Y, Cao F J 2014 Acta Phys. Sin. 63 240601Google Scholar
[12] Palaniyappan S, Shah R C, Johnson R, Shimada T, Gautier D C, Letzring S, Jung D, Hrlein R, Offermann D T, Fernndez J C, Hegelich B M 2010 Rev. Sci. Instrum. 81 10E103Google Scholar
[13] Palaniyappan S, Hegelich B M, Wu H C, Jung D, Gautier D C, Yin L, Albright B J, Johnson R P, Shimada T, Letzring S, Offermann D T, Ren J, Huang C K, Hörlein R, Dromey B, Fernandez J C, Shah R C 2012 Nat. Phys. 87 63
[14] O’Shea P, Kimmel M, Gu X, Trebino R 2001 Opt. Lett. 26 932Google Scholar
[15] Cohen J, Lee D, Chauhan V, Vaughan P, Trebino R 2010 Opt. Express 18 17484Google Scholar
[16] Yasa Z A, Amer N M 1981 Opt. Commum. 36 406Google Scholar
[17] Kalpaxis A, Doukas A G, Budansky Y, Rosen D L, Katz A, Alfano R R 1982 Rev. Sci. Instrum. 53 960Google Scholar
[18] Riffe D M, Sabbah A J 1998 Rev. Sci. Instrum. 69 3099Google Scholar
[19] 张伟力, 柴路, 戴建明, 陈野, 边自鹏, 郑学梅, 邢岐荣, 王清月 1997 中国激光 24 915Google Scholar
Zhang W L, Cai L, Dai J M, Chen Y, Bian Z P, Zheng X M, Xing Q R, Wang Q Y 1997 Chin. J. Laser 24 915Google Scholar
[20] Kane D J 2008 J. Opt. Soc. Am. B 25 A120Google Scholar
-
[1] 张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨 2018 67 197202Google Scholar
Zhang S N, Zhu W H, Li J G, Jin Z M, Dai Y, Zhang Z Z, Ma G H, Yao J Q 2018 Acta Phys. Sin. 67 197202Google Scholar
[2] 李铭, 王兆华, 滕浩, 贺新奎, 韩海年, 李德华, 魏志义, Szymon S 2018 中国科学: 物理学 力学 天文学 48 024201
Li M, Wang Z H, Teng H, He X K, Han H N, Li D H, Wei Z Y, Szymon S 2018 Sci. Sin.-Phys. Mech. Astron. 48 024201
[3] 彭博, 曲兴华, 张福民, 张天宇, 张铁犁, 刘晓旭, 谢阳 2018 67 210601Google Scholar
Peng B, Qu X H, Zhang F M, Zhang T Y, Zhang T L, Liu X X, Xie Y 2018 Acta Phys. Sin. 67 210601Google Scholar
[4] Zeweil A H 2000 J. Phys. Chem. A 104 5660Google Scholar
[5] Kane D J, Trebino R 1993 Opt. Lett. 18 823Google Scholar
[6] 黄沛, 方少波, 黄杭东, 赵昆, 滕浩, 侯洵, 魏志义 2018 67 214202Google Scholar
Huang P, Fang S B, Huang H D, Zhao K, Teng H, Hou X, Wei Z Y 2018 Acta Phys. Sin. 67 214202Google Scholar
[7] Stibenz G, Steinmeyer G 2005 Opt. Express 13 2617Google Scholar
[8] 王兆华, 魏志义, 滕浩, 王鹏, 张杰 2003 52 362Google Scholar
Wang Z H, Wei Z Y, Teng H, Wang P, Zhang J 2003 Acta Phys. Sin. 52 362Google Scholar
[9] Marceau C, Thomas S, Kassim Y, Gingras G, Witzel1 B 2015 Appl. Phys. B 119 339Google Scholar
[10] Hause A, Kraf S, Rohrmann P, Mitschke F 2015 J. Opt. Soc. Am. B 32 868Google Scholar
[11] 马晓璐, 李培丽, 郭海莉, 张一, 朱天阳, 曹凤娇 2014 63 240601Google Scholar
Ma X L, Li P L, Guo H L, Zhang Y, Zhu T Y, Cao F J 2014 Acta Phys. Sin. 63 240601Google Scholar
[12] Palaniyappan S, Shah R C, Johnson R, Shimada T, Gautier D C, Letzring S, Jung D, Hrlein R, Offermann D T, Fernndez J C, Hegelich B M 2010 Rev. Sci. Instrum. 81 10E103Google Scholar
[13] Palaniyappan S, Hegelich B M, Wu H C, Jung D, Gautier D C, Yin L, Albright B J, Johnson R P, Shimada T, Letzring S, Offermann D T, Ren J, Huang C K, Hörlein R, Dromey B, Fernandez J C, Shah R C 2012 Nat. Phys. 87 63
[14] O’Shea P, Kimmel M, Gu X, Trebino R 2001 Opt. Lett. 26 932Google Scholar
[15] Cohen J, Lee D, Chauhan V, Vaughan P, Trebino R 2010 Opt. Express 18 17484Google Scholar
[16] Yasa Z A, Amer N M 1981 Opt. Commum. 36 406Google Scholar
[17] Kalpaxis A, Doukas A G, Budansky Y, Rosen D L, Katz A, Alfano R R 1982 Rev. Sci. Instrum. 53 960Google Scholar
[18] Riffe D M, Sabbah A J 1998 Rev. Sci. Instrum. 69 3099Google Scholar
[19] 张伟力, 柴路, 戴建明, 陈野, 边自鹏, 郑学梅, 邢岐荣, 王清月 1997 中国激光 24 915Google Scholar
Zhang W L, Cai L, Dai J M, Chen Y, Bian Z P, Zheng X M, Xing Q R, Wang Q Y 1997 Chin. J. Laser 24 915Google Scholar
[20] Kane D J 2008 J. Opt. Soc. Am. B 25 A120Google Scholar
计量
- 文章访问数: 7706
- PDF下载量: 83
- 被引次数: 0