-
超宽光谱的飞秒脉冲测量一直是超快激光领域的重要研究方向之一. 常规的飞秒脉冲自相关方法是通过测量自相关倍频信号来获得, 而倍频信号具有波长选择性, 不同中心波长的飞秒脉冲测量需要更换不同的倍频晶体, 十分不方便. 因此, 提出了一种改进型的瞬态光栅频率分辨光学开关(TG-FROG)方法用于测量飞秒脉冲. 该方法结合四波混频和频率分辨光学开关方法, 其基本过程是将待测脉冲分为三束, 其中两束脉冲经过精密的延时控制并聚焦在光学介质上达到时空重合, 利用三阶非线性效应产生稳定的瞬态光栅作为开关光; 另一束脉冲作为探测光与产生的瞬态光栅进行相互作用产生一个信号光, 使用光谱仪对该信号光的光谱与延迟时间进行测量, 并通过反演迭代算法处理而获取待测飞秒脉冲的光谱与电场信息. 该方法只需要待测光的功率密度达到三阶非线性效应就可以实现测量, 因此可以应用于任意中心波长的飞秒脉冲测量. 利用该方法对中心波长分别为800 nm, 400 nm的飞秒脉冲, 以及超连续亚10 fs的周期量级超宽光谱飞秒脉冲进行了测量, 并与常规的干涉自相关仪器测量结果进行了比较, 所得测量结果基本一致. 实验结果表明, 建立的基于TG-FROG方法对不同中心波长, 不同脉冲宽度的飞秒脉冲测量是十分有效的.Femtosecond pulse measurement of ultrafast spectrum is one of the important research directions in the ultrafast laser field. The conventional femtosecond pulse autocorrelation method is implemented by measuring the autocorrelated frequency-doubling signal, and the frequency-doubling signal has wavelength selectivity, so the femtosecond pulse measurement for the case of different central wavelengths needs to replace different frequency-doubling crystals, which is very inconvenient. This paper reports a kind of modified transient grating frequency resolution optical gating for measuring the femtosecond pulses. The method combines frequency-resolved optical gating (FROG) method with four-wave mixing. Its basic process is to divide the pulse to be measured into three beams. Two of the pulses can reach spatiotemporal coincidence on optical medium through precise delay control and focus. The other pulse interacts with the transient grating, and serves as the detection light to produce signal light. The spectrum and delay time of the signal light are measured by a spectrometer, and the spectrum and electric field information of the femtosecond pulse to be measured are obtained through the inversion iterative algorithm. Because this method only needs the power density of the measured light to reach the third-order nonlinear effect, it can be applied to the femtosecond pulse measurement of any central wavelength. We use this method to measure the femtosecond pulses with the central wavelengths of 800 nm and 400 nm respectively, and the ultra-wide spectrum femtosecond pulses with the period magnitude of sub-10 fs, and compare the measurement results with the results obtained with the conventional interferometric autocorrelation instrument. They are basically consistent. The experimental results show that our frequency-resolved optical switching method based on transient grating is very effective for measuring the femtosecond pulses with different central wavelengths and pulse widths.
[1] Fork R L, Greene B I, Shank C V 1981 Appl. Phys. Lett. 38 671Google Scholar
[2] Ell R, Angelow G, Seitz W, Lederer M J, Heinz H, Kopf D, Birge J R, Kärtner F X 2005 Opt. Express. 13 9292Google Scholar
[3] Nisoli M, De Silvestri S, Svelto O 1996 Appl. Phys. Lett. 68 2793Google Scholar
[4] Zhang W, Teng H, Yun C X, Zhong X, Hou X, Wei Z Y 2010 Chin. Phys. Lett. 27 054211Google Scholar
[5] He P, Liu Y Y, Zhao K, Teng H, He X K, Huang P, Huang H D, Zhong S Y, Jiang Y J, Fang S B, Hou X, Wei Z Y 2017 Opt. Lett. 42 474Google Scholar
[6] Wirth A, Hassan M T, Grguraš I, Gagnon J, Moule t A, Luu T T, Pabst S, Santra R, Alahmed Z A, Azzeer A M, Yakovlev V S, Pervak V, Krausz F, Goulielmakis E 2011 Science 334 195Google Scholar
[7] Hassan M Th, Wirth A, Grguraš I, Moulet A, Luu T T, Gagnon J, Pervak V, Goulielmakis E 2012 Rev. Sci. Instrum. 83 111301Google Scholar
[8] Dubietis A, Jonusauskas G, Piskarskas A 1992 Opt. Commun. 88 437Google Scholar
[9] Weber H P 1967 J. Appl. Phys. 38 2231Google Scholar
[10] Diels J C, Stryland E W V, Gold D 1978 Picosecond Phenomena (Berlin: Springer-Verlag) pp117−120
[11] Kane D J, Trebino R 1993 IEEE J. Quantum Elect. 29 571Google Scholar
[12] Delong K W, Trebino R 1994 J. Opt. Soc. Am. A 11 2429Google Scholar
[13] Trebino R, Kane D J 1993 J. Opt. Soc. Am. A 10 1101Google Scholar
[14] Kane D J, Trebino R 1993 Opt. Lett. 18 823Google Scholar
[15] Delong K W, Trebino R, Hunter J, White W E 1994 J. Opt. Soc. Am. B 11 2206Google Scholar
[16] Iaconis C, Walmsley I A 1999 IEEE J. Quantum Elect. 35 4
[17] Li M, Nibarger J P, Guo C L, Gibson G N 1999 Appl. Optics 38 5250Google Scholar
[18] Sweetser J N, Fittinghoff D N, Trebino R 1997 Opt. Lett. 22 519Google Scholar
[19] Zhang N H, Teng H, Huang H D, Tian W L, Zhu J F, Wu H P, Pan S L, Fang S B, Wei Z Y 2016 Chin. Phys. B 25 124204Google Scholar
[20] 黄沛, 方少波, 黄杭东, 赵昆, 滕浩, 侯洵, 魏志义 2018 67 214202Google Scholar
Huang P, Fang S B, Huang H D, Zhao K, Teng H, Hou X, Wei Z Y 2018 Acta Phys. Sin. 67 214202Google Scholar
[21] Eichler H J, Gunter P, Pohl D W 1985 Laser-Induced Dynamic Gratings (Berlin: Springer-Verlag) pp193—198
[22] Eckbreth A C 1978 Appl. Phys. Lett. 32 421Google Scholar
-
-
[1] Fork R L, Greene B I, Shank C V 1981 Appl. Phys. Lett. 38 671Google Scholar
[2] Ell R, Angelow G, Seitz W, Lederer M J, Heinz H, Kopf D, Birge J R, Kärtner F X 2005 Opt. Express. 13 9292Google Scholar
[3] Nisoli M, De Silvestri S, Svelto O 1996 Appl. Phys. Lett. 68 2793Google Scholar
[4] Zhang W, Teng H, Yun C X, Zhong X, Hou X, Wei Z Y 2010 Chin. Phys. Lett. 27 054211Google Scholar
[5] He P, Liu Y Y, Zhao K, Teng H, He X K, Huang P, Huang H D, Zhong S Y, Jiang Y J, Fang S B, Hou X, Wei Z Y 2017 Opt. Lett. 42 474Google Scholar
[6] Wirth A, Hassan M T, Grguraš I, Gagnon J, Moule t A, Luu T T, Pabst S, Santra R, Alahmed Z A, Azzeer A M, Yakovlev V S, Pervak V, Krausz F, Goulielmakis E 2011 Science 334 195Google Scholar
[7] Hassan M Th, Wirth A, Grguraš I, Moulet A, Luu T T, Gagnon J, Pervak V, Goulielmakis E 2012 Rev. Sci. Instrum. 83 111301Google Scholar
[8] Dubietis A, Jonusauskas G, Piskarskas A 1992 Opt. Commun. 88 437Google Scholar
[9] Weber H P 1967 J. Appl. Phys. 38 2231Google Scholar
[10] Diels J C, Stryland E W V, Gold D 1978 Picosecond Phenomena (Berlin: Springer-Verlag) pp117−120
[11] Kane D J, Trebino R 1993 IEEE J. Quantum Elect. 29 571Google Scholar
[12] Delong K W, Trebino R 1994 J. Opt. Soc. Am. A 11 2429Google Scholar
[13] Trebino R, Kane D J 1993 J. Opt. Soc. Am. A 10 1101Google Scholar
[14] Kane D J, Trebino R 1993 Opt. Lett. 18 823Google Scholar
[15] Delong K W, Trebino R, Hunter J, White W E 1994 J. Opt. Soc. Am. B 11 2206Google Scholar
[16] Iaconis C, Walmsley I A 1999 IEEE J. Quantum Elect. 35 4
[17] Li M, Nibarger J P, Guo C L, Gibson G N 1999 Appl. Optics 38 5250Google Scholar
[18] Sweetser J N, Fittinghoff D N, Trebino R 1997 Opt. Lett. 22 519Google Scholar
[19] Zhang N H, Teng H, Huang H D, Tian W L, Zhu J F, Wu H P, Pan S L, Fang S B, Wei Z Y 2016 Chin. Phys. B 25 124204Google Scholar
[20] 黄沛, 方少波, 黄杭东, 赵昆, 滕浩, 侯洵, 魏志义 2018 67 214202Google Scholar
Huang P, Fang S B, Huang H D, Zhao K, Teng H, Hou X, Wei Z Y 2018 Acta Phys. Sin. 67 214202Google Scholar
[21] Eichler H J, Gunter P, Pohl D W 1985 Laser-Induced Dynamic Gratings (Berlin: Springer-Verlag) pp193—198
[22] Eckbreth A C 1978 Appl. Phys. Lett. 32 421Google Scholar
计量
- 文章访问数: 10132
- PDF下载量: 200
- 被引次数: 0