搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于化学物质释放的电离层闪烁抑制方法研究

赵海生 许正文 徐朝辉 薛昆 郑延帅 谢守志 冯杰 吴健

引用本文:
Citation:

基于化学物质释放的电离层闪烁抑制方法研究

赵海生, 许正文, 徐朝辉, 薛昆, 郑延帅, 谢守志, 冯杰, 吴健

Ionospheric scintillation suppression based on chemical release

Zhao Hai-Sheng, Xu Zheng-Wen, Xu Zhao-Hui, Xue Kun, Zheng Yan-Shuai, Xie Shou-Zhi, Feng Jie, Wu Jian
PDF
HTML
导出引用
  • 中低纬地区经常发生的电离层闪烁, 严重影响卫星链路的无线电信号传播过程, 导致卫星通信导航信号质量下降, 甚至中断. 在电离层闪烁发生前的酝酿生成期, 通过向电离层闪烁“种子因素”的等离子体泡内释放电子密度增强类化学物质, 填充等离子体泡, 改变等离子体环境特性, 调控电离层动力学过程, 能够降低电离层等离子体不稳定性增长率, 进而抑制闪烁的发生. 本文开展了基于化学物质释放的电离层闪烁抑制理论及方法研究, 根据化学物质释放对电离层等离子体环境的影响, 定量计算控制因素改变对不稳定性增长率的贡献, 建立了基于电子密度增强类化学物质释放的电离层闪烁抑制物理模型, 仿真了等离子体泡的填充过程及等离子体不稳定性增长率的演化过程. 仿真结果表明该方法具有较好的闪烁抑制效果, 为我国中低纬地区卫星信号电离层闪烁抑制研究奠定了理论基础.
    There occur frequently the ionospheric scintillation events at low and middle latitudes, which seriously affect the radio transmission process of satellite link, resulting in the decline of satellite communication and navigation signal quality and even interrupt. During the gestation period before the ionospheric scintillation, the growth rate of plasma instability can be reduced and thus suppress the scintillation events by releasing the electron density-enhancing chemicals in the ionosphere plasma bubble, filling with plasma bubble, changing the plasma environmental characteristics, and regulating the ionospheric dynamics process. The theory and method of suppressing the ionospheric scintillation based on chemical release are tnvestigated. According to the change of the plasma environment caused by the chemical release, and the quantitatively calculating of the contribution of control factors to the growth rate of instability, an ionospheric scintillation suppression model is built, which is based on chemical release into ionosphere. The process of plasma bubble filling out is simulated and the results of the simulation show that the plasma cloud is completely filled with plasma bubbles after 1200 seconds, which reduces the plasma density gradient and suppresses the growth of plasma instability. The growth of plasma instability decreases from 0.2 before releasing to about 0.0004 after releasing, and no new instability is excited within 20 minutes after the plasma bubble has been filled up. Guangdong, South China Sea and other regions in China are at the peak of equatorial anomalies, and the occurrence rate and severity of scintillation are more significant than those in the equatorial and Polar Regions, thus these regions become the regions where there occur most frequently the scintillation and the most serious influence globally. The research work of this paper will lay a solid theoretical foundation for the technology of suppressing the satellite signal ionospheric scintillation in middle and low latitude area of China.
      通信作者: 赵海生, zhaohaisheng213@163.com
    • 基金项目: 国家自然科学基金(批准号: 61871352, 11672068, 61601419)资助的课题.
      Corresponding author: Zhao Hai-Sheng, zhaohaisheng213@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61871352, 11672068, 61601419).
    [1]

    Kelley M C 2009 The Earth’s Ionosphere: Plasma Physics & Electrodynamics 2nd Ed (Burlington: Academic Press) pp96–112

    [2]

    Kuo S P, Cheo B R, Lee M C 1983 J. Geophys. Res. 88 417Google Scholar

    [3]

    Baker D N 2000 IEEE Trans. Plasma Sci. 28 2007Google Scholar

    [4]

    Frederickson A R, Dennison J R 2003 IEEE Trans. Nucl. Sci. 50 2284Google Scholar

    [5]

    Gubby R, Evans J 2002 Atmos. Terr. Phys. 64 1723Google Scholar

    [6]

    Yokoyama T, Shinagawa H, Jin H 2014 J. Geophys. Res.: Space Phys. 119 474

    [7]

    Yokoyama T, Jin H, Shinagawa H 2015 J. Geophys. Res. Space Phys. 120Google Scholar

    [8]

    Klobuchar J A, Abdu M A 1989 J. Geophys. Res.: Space Phys. 94 2721Google Scholar

    [9]

    Dwight P S, Manfred A B, Hake R D 1981 Planet. Space Sci. 29 1267

    [10]

    Sharpee B D, Slanger T G 2006 J. Phys. Chem. 110 6707Google Scholar

    [11]

    Reasoner D L 1992 J. Spacecraft Rockets 29 580Google Scholar

    [12]

    Caton R G, Pedersen T R, Groves K M, et al. 2017 Radio Sci. 52 539Google Scholar

    [13]

    Rettere J, Groves K M, Pedersen T R, Caton R G 2017 Radio Sci. 52 604Google Scholar

    [14]

    Bernhardt P A, Siefring C L, Briczinski S J, Viggiano A, Caton R G, Pedersen T R, Holmes J M, Ard S, Shuman N, Groves K M 2017 Radio Sci. 52 559Google Scholar

    [15]

    Holmes J M, Dressler R A, Pedersen T R, Caton R G, Miller D 2017 Radio Sci. 52 521Google Scholar

    [16]

    Pedersen T R, Caton R G, Miller D, Holmes J M, Groves K M, Sutton E 2017 Radio Sci. 52 578Google Scholar

    [17]

    Joshi D, Groves K M, McNeil W, et al. 2017 Radio Sci. 52 710Google Scholar

    [18]

    黄文耿, 古士芬 2005 空间科学学报 25 254Google Scholar

    Huang W G, Gu S F 2005 J. Space Sci. 25 254Google Scholar

    [19]

    黄文耿, 古士芬 2005 空间科学学报 28 81Google Scholar

    Huang W G, Gu S F 2005 J. Space Sci. 28 81Google Scholar

    [20]

    胡耀垓, 张援农, 赵正予 2010 59 8293Google Scholar

    Hu Y G, Zhang Y N, Zhao Z Y 2010 Acta Phys. Sin. 59 8293Google Scholar

    [21]

    Hu Y G, Zhao Z Y, Zhang Y N 2011 J. Geophys. Res. 116 A07307

    [22]

    胡耀垓, 赵正予, 项薇 2010 60 099402

    Hu Y G, Zhao Z Y, Xiang W 2010 Acta Phys. Sin. 60 099402

    [23]

    胡耀垓, 张援农, 赵正予 2012 61 089401Google Scholar

    Hu Y G, Zhang Y N, Zhao Z Y 2012 Acta Phys. Sin. 61 089401Google Scholar

    [24]

    汪四成, 方涵先, 杨升高, 等 2012 地球物理学进展 27 2464Google Scholar

    Wang S C, Fang H X, Yang S G, et al. 2012 Prog. Geophys. 27 2464Google Scholar

    [25]

    汪四成, 方涵先 2013 地球 56 2906Google Scholar

    Wang S C, Fang H X 2013 J. Geophy. 56 2906Google Scholar

    [26]

    汪四成, 方涵先, 杨升高, 等 2012 大气科学学报 36 499

    Wang S C, Fang H X, Yang S G, et al. 2012 J. Atmos. Sci. 36 499

    [27]

    Zhao H S, Feng J, Xu Z W, Wu J, Wu Z S, Xu B, Xue K, Hu Y L 2016 J. Geophys. Res.: Space Phys. 121Google Scholar

    [28]

    Xu Z W, Zhao H S, Wu J, Feng J, Xu B, Zhang Y B, Xue K, Ma Z Z 2017 Adv. Space Res. 59 1810Google Scholar

    [29]

    赵海生, 许正文, 吴振森, 等 2016 65 209401Google Scholar

    Zhao H S, Xu Z W, Wu Z S, et al. 2016 Acta Phys. Sin. 65 209401Google Scholar

    [30]

    赵海生, 许正文, 吴振森, 等 2018 67 019401Google Scholar

    Zhao H S, Xu Z H, Xu Z W, Wu Z S, et al. 2018 Acta Phys. Sin. 67 019401Google Scholar

    [31]

    Liu Y, Cao J, Xu L, et al. 2014 Geophys. Res. Lett. 45 1413

    [32]

    Liu Y, Cao J, Xu L, et al. 2014 J. Geophys. Res.: Space Phys. 119 4134Google Scholar

    [33]

    罗伟华, 徐继生, 徐良 2009 地球 52 849Google Scholar

    Luo W H, Xu J S, Xu L 2009 J. Geophy. Res. 52 849Google Scholar

    [34]

    Gao J, Guo L, Xu Z, et al. 2018 Adv. Space Res. 61 2234Google Scholar

  • 图 1  电离层闪烁对卫星导航和通信的影响示意图

    Fig. 1.  The schematic diagram of the influence of ionospheric scintillation on satellite navigation and communication

    图 2  (a) MOSC-2试验期间夜晚电离层电子密度分布图; (b) 试验后第二天夜晚电子密度分布图

    Fig. 2.  (a) Electron density distribution at night during the experiment; (b) electron density distribution at next night of the experiment

    图 3  电离层闪烁抑制仿真模型设计流程图

    Fig. 3.  The design flow chart of ionospheric scintillation suppression simulation model.

    图 4  在250 km高度释放5.6 kg Sm蒸气, 电子密度随时间的演化

    Fig. 4.  Electron density evolution after releasing 5.6 kg Sm at 250 km altitude.

    图 5  在250 km高度释放5.6 kg Sm蒸气的电离层闪烁抑制效果

    Fig. 5.  The scintillation suppression effect of releasing 5.6 kg Sm at 250 km altitude

    图 6  在250 km高度释放5.6 kg Sm蒸气, 不稳定性增长率随时间的变化

    Fig. 6.  The evolution of instability growth rate after releasing 5.6 kg Sm at 250 km altitude.

    表 1  仿真参数

    Table 1.  Parameters for the simulation.

    参数取值
    时间2016年9月25日24:00 LT
    地点三沙 (16.5 °N, 112.2 °E)
    高度250 km
    释放量5.6 kg
    背景电离层IRI2012
    大气密度及中性气体温度ATMOSNRLMSISE-00
    化学反应系数2.0 × 10–11 cm3/s[27]
    下载: 导出CSV
    Baidu
  • [1]

    Kelley M C 2009 The Earth’s Ionosphere: Plasma Physics & Electrodynamics 2nd Ed (Burlington: Academic Press) pp96–112

    [2]

    Kuo S P, Cheo B R, Lee M C 1983 J. Geophys. Res. 88 417Google Scholar

    [3]

    Baker D N 2000 IEEE Trans. Plasma Sci. 28 2007Google Scholar

    [4]

    Frederickson A R, Dennison J R 2003 IEEE Trans. Nucl. Sci. 50 2284Google Scholar

    [5]

    Gubby R, Evans J 2002 Atmos. Terr. Phys. 64 1723Google Scholar

    [6]

    Yokoyama T, Shinagawa H, Jin H 2014 J. Geophys. Res.: Space Phys. 119 474

    [7]

    Yokoyama T, Jin H, Shinagawa H 2015 J. Geophys. Res. Space Phys. 120Google Scholar

    [8]

    Klobuchar J A, Abdu M A 1989 J. Geophys. Res.: Space Phys. 94 2721Google Scholar

    [9]

    Dwight P S, Manfred A B, Hake R D 1981 Planet. Space Sci. 29 1267

    [10]

    Sharpee B D, Slanger T G 2006 J. Phys. Chem. 110 6707Google Scholar

    [11]

    Reasoner D L 1992 J. Spacecraft Rockets 29 580Google Scholar

    [12]

    Caton R G, Pedersen T R, Groves K M, et al. 2017 Radio Sci. 52 539Google Scholar

    [13]

    Rettere J, Groves K M, Pedersen T R, Caton R G 2017 Radio Sci. 52 604Google Scholar

    [14]

    Bernhardt P A, Siefring C L, Briczinski S J, Viggiano A, Caton R G, Pedersen T R, Holmes J M, Ard S, Shuman N, Groves K M 2017 Radio Sci. 52 559Google Scholar

    [15]

    Holmes J M, Dressler R A, Pedersen T R, Caton R G, Miller D 2017 Radio Sci. 52 521Google Scholar

    [16]

    Pedersen T R, Caton R G, Miller D, Holmes J M, Groves K M, Sutton E 2017 Radio Sci. 52 578Google Scholar

    [17]

    Joshi D, Groves K M, McNeil W, et al. 2017 Radio Sci. 52 710Google Scholar

    [18]

    黄文耿, 古士芬 2005 空间科学学报 25 254Google Scholar

    Huang W G, Gu S F 2005 J. Space Sci. 25 254Google Scholar

    [19]

    黄文耿, 古士芬 2005 空间科学学报 28 81Google Scholar

    Huang W G, Gu S F 2005 J. Space Sci. 28 81Google Scholar

    [20]

    胡耀垓, 张援农, 赵正予 2010 59 8293Google Scholar

    Hu Y G, Zhang Y N, Zhao Z Y 2010 Acta Phys. Sin. 59 8293Google Scholar

    [21]

    Hu Y G, Zhao Z Y, Zhang Y N 2011 J. Geophys. Res. 116 A07307

    [22]

    胡耀垓, 赵正予, 项薇 2010 60 099402

    Hu Y G, Zhao Z Y, Xiang W 2010 Acta Phys. Sin. 60 099402

    [23]

    胡耀垓, 张援农, 赵正予 2012 61 089401Google Scholar

    Hu Y G, Zhang Y N, Zhao Z Y 2012 Acta Phys. Sin. 61 089401Google Scholar

    [24]

    汪四成, 方涵先, 杨升高, 等 2012 地球物理学进展 27 2464Google Scholar

    Wang S C, Fang H X, Yang S G, et al. 2012 Prog. Geophys. 27 2464Google Scholar

    [25]

    汪四成, 方涵先 2013 地球 56 2906Google Scholar

    Wang S C, Fang H X 2013 J. Geophy. 56 2906Google Scholar

    [26]

    汪四成, 方涵先, 杨升高, 等 2012 大气科学学报 36 499

    Wang S C, Fang H X, Yang S G, et al. 2012 J. Atmos. Sci. 36 499

    [27]

    Zhao H S, Feng J, Xu Z W, Wu J, Wu Z S, Xu B, Xue K, Hu Y L 2016 J. Geophys. Res.: Space Phys. 121Google Scholar

    [28]

    Xu Z W, Zhao H S, Wu J, Feng J, Xu B, Zhang Y B, Xue K, Ma Z Z 2017 Adv. Space Res. 59 1810Google Scholar

    [29]

    赵海生, 许正文, 吴振森, 等 2016 65 209401Google Scholar

    Zhao H S, Xu Z W, Wu Z S, et al. 2016 Acta Phys. Sin. 65 209401Google Scholar

    [30]

    赵海生, 许正文, 吴振森, 等 2018 67 019401Google Scholar

    Zhao H S, Xu Z H, Xu Z W, Wu Z S, et al. 2018 Acta Phys. Sin. 67 019401Google Scholar

    [31]

    Liu Y, Cao J, Xu L, et al. 2014 Geophys. Res. Lett. 45 1413

    [32]

    Liu Y, Cao J, Xu L, et al. 2014 J. Geophys. Res.: Space Phys. 119 4134Google Scholar

    [33]

    罗伟华, 徐继生, 徐良 2009 地球 52 849Google Scholar

    Luo W H, Xu J S, Xu L 2009 J. Geophy. Res. 52 849Google Scholar

    [34]

    Gao J, Guo L, Xu Z, et al. 2018 Adv. Space Res. 61 2234Google Scholar

  • [1] 朱肖丽, 胡耀垓, 赵正予, 张援农. 钡和铯释放的电离层扰动效应对比.  , 2020, 69(2): 029401. doi: 10.7498/aps.69.20191266
    [2] 赵海生, 徐朝辉, 高敬帆, 许正文, 吴健, 冯杰, 徐彬, 薛昆, 李辉, 马征征. 电离层中性气体释放的早期试验效应研究.  , 2018, 67(1): 019401. doi: 10.7498/aps.67.20171620
    [3] 杨巨涛, 李清亮, 王建国, 郝书吉, 潘威炎. 双频双波束加热电离层激发甚低频/极低频辐射理论分析.  , 2017, 66(1): 019401. doi: 10.7498/aps.66.019401
    [4] 刘超, 关燚炳, 张爱兵, 郑香脂, 孙越强. 电磁监测试验卫星朗缪尔探针电离层探测技术.  , 2016, 65(18): 189401. doi: 10.7498/aps.65.189401
    [5] 赵海生, 许正文, 吴振森, 冯杰, 吴健, 徐彬, 徐彤, 胡艳莉. 电离层中释放六氟化硫效应的三维精细模拟研究.  , 2016, 65(20): 209401. doi: 10.7498/aps.65.209401
    [6] 吴静, 周志为, 闫旭. 电力线谐波辐射在分层各向异性电离层中的传播特点.  , 2015, 64(19): 194101. doi: 10.7498/aps.64.194101
    [7] 王早, 张国峰, 李斌, 陈瑞云, 秦成兵, 肖连团, 贾锁堂. 利用N型半导体纳米材料抑制单量子点的荧光闪烁特性.  , 2015, 64(24): 247803. doi: 10.7498/aps.64.247803
    [8] 郝书吉, 李清亮, 杨巨涛, 吴振森. 电离层调制加热产生极低频/甚低频波定向辐射的理论分析.  , 2013, 62(22): 229402. doi: 10.7498/aps.62.229402
    [9] 胡耀垓, 赵正予, 张援农. 不同释放高度的化学物质的电离层扰动特性.  , 2013, 62(20): 209401. doi: 10.7498/aps.62.209401
    [10] 盛峥. 电离层电子总含量不同时间尺度的预报模型研究.  , 2012, 61(21): 219401. doi: 10.7498/aps.61.219401
    [11] 汪枫, 赵正予, 常珊珊, 倪彬彬, 顾旭东. 低纬电离层人工调制所激发的ELF波射线追踪.  , 2012, 61(19): 199401. doi: 10.7498/aps.61.199401
    [12] 胡耀垓, 赵正予, 张援农. 电离层钡云释放早期动力学行为的数值模拟.  , 2012, 61(8): 089401. doi: 10.7498/aps.61.089401
    [13] 洪振杰, 刘荣建, 郭鹏, 董乃铭. 非球对称电离层掩星数据反演.  , 2011, 60(12): 129401. doi: 10.7498/aps.60.129401
    [14] 胡耀垓, 赵正予, 项薇, 张援农. 人工电离层洞形态调制及其对短波传播的影响.  , 2011, 60(9): 099402. doi: 10.7498/aps.60.099402
    [15] 徐贤胜, 洪振杰, 郭鹏, 刘荣建. COSMIC掩星电离层资料反演以及结果验证.  , 2010, 59(3): 2163-2168. doi: 10.7498/aps.59.2163
    [16] 胡耀垓, 赵正予, 张援农. 几种典型化学物质的电离层释放效应研究.  , 2010, 59(11): 8293-8303. doi: 10.7498/aps.59.8293
    [17] 石润, 赵正予. 磁倾角对电离层Alfven谐振器影响的初步研究.  , 2009, 58(7): 5111-5117. doi: 10.7498/aps.58.5111
    [18] 黄朝松, 李钧, M .C. KELLEY. 大气重力波产生中纬电离层不均匀体的理论.  , 1994, 43(9): 1476-1485. doi: 10.7498/aps.43.1476
    [19] 潘威炎. 关于地球曲率对低频电波电离层反射系数计算的影响.  , 1981, 30(5): 661-670. doi: 10.7498/aps.30.661
    [20] 陈茂康, 张煦. 研究中国天空电离层之初草报告.  , 1935, 1(3): 92-100. doi: 10.7498/aps.1.92
计量
  • 文章访问数:  8792
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-27
  • 修回日期:  2019-03-02
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回
Baidu
map