-
在电离层释放电子吸附类中性气体能够引起电离层电子密度耗空,在释放之后快速形成电离层洞;同时,由于释放气体的快速膨胀,挤压背景等离子体,在电离层洞的外边缘产生壳状电子密度增强结构,电离层洞和电子密度增强结构同时存在是释放早期试验效应的显著特征.本文研究了电离层中性气体释放的早期试验效应,建立了释放早期电子密度的时空演化物理模型,仿真了释放早期电子密度的时空演化过程,同时采用射线追踪方法研究了释放后10 s和120 s不同频率信号在扰动区的传播效应,并反演得到了电离层垂直探测电离图,反演结果与一次火箭喷焰的实际观测结果吻合较好,初步验证了本模型的正确性.The artificial release of electron adsorbing material can cause electron density to be depleted in the ionosphere, forming the ionospheric holes rapidly. At the same time, the shell structure of the electron density enhancement around the hole is produced, owing to the extrusion of background plasma caused by rapid expansion of the release. The coexistence of ionospheric hole and enhancement structure is the significant characteristics of the early time effects. In this paper, the early time effects of neutral chemicals released into ionosphere are studied, and a physical model of spatiotemporal evolution about early time electron density is set up. At t=1 s, the maximum electron density in the enhanced region is 2.46106 cm-3, approximately 2.8 times as great as background electron density, then the electron density at the boundary gradually decreases. At t=30 s, the maximum electron density is 1.58106 cm-3, which is about 1.7 times the background electron density. At t=120 s the maximum electron density in the enhanced region is 1.12106 cm-3, which is 1.2 times the background electron density. Within 120 s after release, the size of the ionospheric cavity increases gradually; at t=5 s the distribution range of the released chemical material is of a sphere of about 10 km in diameter; at t=120 s the distribution diameter of the released chemical material is more than 70 km, and at the same time, the depletion depth of the ionospheric hole decreases slowly. At t=1 s, the depletion depth of the ionospheric hole is about 100%, and at t=120 s the depletion depth of the ionospheric cavity decreases to 95%. The effects of different-frequency radio waves propagating through ionospheric disturbance at t=10 s and t=120 s are simulated by the ray tracing. At t=10 s, the effect of electron density enhancement is remarkable, and the thickness of the enhancement is about 10 km, and the electronic density enhancement area can reflect the radio wave signal at a frequency as high as 14 MHz. At t=120 s, the phenomenon of electron density enhancement becomes weak, the thickness of the enhanced area continues to increase, and the radio wave signal that the electronic density enhancement area could reflect decreases to 11 MHz. The radio waves at a frequency range between 9 MHz and 12 MHz each have a complex diffraction, focusing and dispersing effect in the disturbed area. Furthermore, according to the working principle of ionospheric vertical measurement instrument and ray tracing theory, the vertical ionization detection figures are obtained through inversion. The results are consistent with previous experimental results of rocket exhaust, which testifies the correctness of proposed model.
-
Keywords:
- ionosphere /
- chemical release /
- sulfur hexafluoride /
- early time effects
[1] Booker H G 1961 J. Geophys. Res. 66 1073
[2] Mendillo M, Hawkins G S, Klobuchar J A 1975 Science 187 343
[3] Mendillo M, Hawkins G S, Klobuchar J A 1975 J. Geophys. Res. 80 2217
[4] Zinn J, Sutherland C D, Stone S N, Duncan L M, Behnke R 1982 J. Atmos. Terr. Phys. 44 1143
[5] Mendillo M, Jeffrey M, Forbes J M 1978 J. Geophys. Res. 83 151
[6] Mendillo M, Forbes J M 1982 J. Geophys. Res. 87 8273
[7] Mendillo M, Smith S, Coster A, Erickson P, Baumgardner J, Martinis C 2008 SPACE WEATHER 6 S09001
[8] Anderson D N, Bernhardt P A 1978 J. Geophys. Res. 83 4777
[9] Paul A, Bernhardt P A 1979 J. Geophys. Res. 84 4341
[10] Paul A, Bernhardt P A 1979 J. Geophys. Res. 84 793
[11] Bernhardt P A 1982 J. Geophys. Res. 87 7539
[12] Bernhardt P A 1984 J. Geophys. Res. 89 3929
[13] Bernhardt P A, Weber E J, Moore J G, Baumgardner J, Mendillo M J 1986 Geophys. Res. Lett. 91 8937
[14] Zhao H S, Xu Z W, Wu Z S, Feng J, Wu J, Xu B, Xu T, Hu Y L 2016 Acta Phys. Sin. 65 209401(in Chinese) [赵海生, 许正文, 吴振森, 冯杰, 吴健, 徐彬, 徐彤, 胡艳莉 2016 65 209401]
[15] Hunton D E 1993 Geophys. Res. Lett. 20 563
[16] Koons H C, Rocdcr J L 1995 J. Geophys. Res. 100 5801
[17] SchunkR W, Szuszczewicz E P 1988 J. Geophys. Res. 93 12901
[18] Schunk R W, Szuszczewicz E P 1991 J. Geophys. Res. 96 1337
[19] Drake J F, Mulbrandon M, Huba J D 1988 Phys. Fluids 31 3412
[20] Zalesak S T, Drake J F, Huba J D 1988 Radio Sci. 23 591
[21] Zalesak S T, Drake J F, Huba J D 1990 Geophys. Res. Lett. 17 1597
[22] Ma T Z, Shunk R W 1991 J. Geophys. Res. 96 5793
[23] Ma T Z, Shunk R W 1993 J. Geophys. Res. 98 323
[24] Gatsonis N A, Hastings D E 1991 J. Geophys. Res. 96 7623
[25] Shuman N S, Hunton D E, Viggiano A A 2015 J. Chem. Rev. 115 4542
[26] Schunk R W, Szuszczewicz E P 1991 J. Geophys. Res. 96 1337
[27] Doles J H, Zabusky N J, Perkins F W 1976 J. Geophys. Res. 81 5987
[28] Zhao H S, Feng J, Xu Z W, Wu Z S 2016 J. Geophys. Res. 121 10508
[29] Zabushky N J, Doles J H, Perkins F W 1973 J. Geophys. Res. 78 711
[30] Lloyd K H, Haerendel G 1973 J. Geophys. Res. 78 7389
[31] Bernhardt P A 1984 J. Geophys. Res. 89 3929
[32] Bernhardt P A 1987 J. Geophys. Res. 92 4617
[33] Haselgrove J 1955 Proc. Phys. Soc. London 23 355
[34] John M Kelso 1968 Radio Sci. 3 1
[35] Zhang R F 1986 Proceedings of the International Symposium on Space Physics Beijing, China, November 10-14, 1986 pp5-100
-
[1] Booker H G 1961 J. Geophys. Res. 66 1073
[2] Mendillo M, Hawkins G S, Klobuchar J A 1975 Science 187 343
[3] Mendillo M, Hawkins G S, Klobuchar J A 1975 J. Geophys. Res. 80 2217
[4] Zinn J, Sutherland C D, Stone S N, Duncan L M, Behnke R 1982 J. Atmos. Terr. Phys. 44 1143
[5] Mendillo M, Jeffrey M, Forbes J M 1978 J. Geophys. Res. 83 151
[6] Mendillo M, Forbes J M 1982 J. Geophys. Res. 87 8273
[7] Mendillo M, Smith S, Coster A, Erickson P, Baumgardner J, Martinis C 2008 SPACE WEATHER 6 S09001
[8] Anderson D N, Bernhardt P A 1978 J. Geophys. Res. 83 4777
[9] Paul A, Bernhardt P A 1979 J. Geophys. Res. 84 4341
[10] Paul A, Bernhardt P A 1979 J. Geophys. Res. 84 793
[11] Bernhardt P A 1982 J. Geophys. Res. 87 7539
[12] Bernhardt P A 1984 J. Geophys. Res. 89 3929
[13] Bernhardt P A, Weber E J, Moore J G, Baumgardner J, Mendillo M J 1986 Geophys. Res. Lett. 91 8937
[14] Zhao H S, Xu Z W, Wu Z S, Feng J, Wu J, Xu B, Xu T, Hu Y L 2016 Acta Phys. Sin. 65 209401(in Chinese) [赵海生, 许正文, 吴振森, 冯杰, 吴健, 徐彬, 徐彤, 胡艳莉 2016 65 209401]
[15] Hunton D E 1993 Geophys. Res. Lett. 20 563
[16] Koons H C, Rocdcr J L 1995 J. Geophys. Res. 100 5801
[17] SchunkR W, Szuszczewicz E P 1988 J. Geophys. Res. 93 12901
[18] Schunk R W, Szuszczewicz E P 1991 J. Geophys. Res. 96 1337
[19] Drake J F, Mulbrandon M, Huba J D 1988 Phys. Fluids 31 3412
[20] Zalesak S T, Drake J F, Huba J D 1988 Radio Sci. 23 591
[21] Zalesak S T, Drake J F, Huba J D 1990 Geophys. Res. Lett. 17 1597
[22] Ma T Z, Shunk R W 1991 J. Geophys. Res. 96 5793
[23] Ma T Z, Shunk R W 1993 J. Geophys. Res. 98 323
[24] Gatsonis N A, Hastings D E 1991 J. Geophys. Res. 96 7623
[25] Shuman N S, Hunton D E, Viggiano A A 2015 J. Chem. Rev. 115 4542
[26] Schunk R W, Szuszczewicz E P 1991 J. Geophys. Res. 96 1337
[27] Doles J H, Zabusky N J, Perkins F W 1976 J. Geophys. Res. 81 5987
[28] Zhao H S, Feng J, Xu Z W, Wu Z S 2016 J. Geophys. Res. 121 10508
[29] Zabushky N J, Doles J H, Perkins F W 1973 J. Geophys. Res. 78 711
[30] Lloyd K H, Haerendel G 1973 J. Geophys. Res. 78 7389
[31] Bernhardt P A 1984 J. Geophys. Res. 89 3929
[32] Bernhardt P A 1987 J. Geophys. Res. 92 4617
[33] Haselgrove J 1955 Proc. Phys. Soc. London 23 355
[34] John M Kelso 1968 Radio Sci. 3 1
[35] Zhang R F 1986 Proceedings of the International Symposium on Space Physics Beijing, China, November 10-14, 1986 pp5-100
计量
- 文章访问数: 5589
- PDF下载量: 139
- 被引次数: 0