-
构建了基于损耗非对称非线性光学环镜的8字腔掺铒光纤锁模激光器, 并讨论了腔内滤波带宽对腔内脉冲演化和激光器输出特性的影响. 在非线性光学环镜中引入双向输出耦合器, 耦合器和传输光纤位置的不对称产生非互易性, 实现锁模运转. 利用自制的可调谐滤波器实验研究了滤波带宽对激光器的影响. 当滤波带宽为2.1 nm时, 腔内脉冲的演化过程受滤波和孤子效应的共同作用, 激光器顺时针和逆时针输出脉冲半高全宽分别为583.7 fs和2.94 ps. 随着滤波带宽增大, 滤波的作用逐渐减弱, 激光器两路输出脉冲参数逐渐接近, 并接近傅里叶变换极限脉冲. 当滤波带宽较大时, 腔内脉冲的演化过程受增益谱和孤子效应的共同作用, 激光器顺时针和逆时针输出脉冲均为变换极限脉冲, 半高全宽约为440 fs. 通过调节滤波器中心波长实现了对激光器输出脉冲光谱的连续调谐, 调节范围大于30 nm.Over the last decades, passive mode-locked fiber laser has received considerable attention because of ultrashort pulse, compactness, and low cost. As a saturable absorber, nonlinear optical loop mirror (NOLM) has shown the advantages of high damage threshold, possibility of all-PM fiber implementation, short response time and therefore potentially low intrinsic noise. Spectral filtering plays an important role in NOLM mode locked fiber laser, but the influence of filtering parameters on mode locking operation is rarely reported. In this paper, the influence of filtering bandwidth on mode locking operation and on output pulse characteristics are experimentally investigated. A 2 × 2 optical coupler with a splitting ratio of 10 : 90 is introduced at one end of fiber loop to form a loss-imbalanced NOLM, and extracts 90% of intracavity pulse energy as outputs. With this architecture, an all polarization-maintaining figure-8 Er-doped fiber ultrafast laser is achieved. A home-made bandwidth and wavelength tunable bandpass filter is utilized in the cavity, and the filtering bandwidth is defined by 10 dB bandwidth. The clockwise and counter-clockwise mode locked output power are 8.4 mW and 8.6 mW, respectively, with a repetition rate of 2.734 MHz. With a spectral bandwidth of 2.1 nm, the intracavity pulse is shaped by spectral filtering and soliton effect. The 3 dB bandwidth of the clockwise and counter-clockwise mode locked output pulse are 10.1 nm and 1.8 nm, and the values of corresponding full width at half maximum (FWHM) of the direct outputs are 583.7 fs and 2.94 ps, respectively. As the filtering bandwidth increases, the role of filter in spectral shaping weakens, and the parameters of two output pulses become close. When spectral bandwidth is larger than 7.3 nm, the intracavity pulse is shaped by gain spectrum and soliton effect. Both of the clockwise and counter-clockwise output pulses become the transform-limited pulses with almost the same FWHMs of 440 fs. Besides, the wavelength of the figure-8 fiber laser can be adjusted in a range larger than 30 nm by modulating the wavelength of the filter. The tunable mode-locked fiber laser has great potential applications in various application fields.
-
Keywords:
- figure-eight mode locked laser /
- loss-imbalance /
- nonlinear optical loop mirror /
- spectral filtering
[1] 石俊凯, 纪荣祎, 黎尧, 刘娅, 周维虎 2017 66 134203Google Scholar
Shi J K, Ji R Y, Li Y, Liu Y, Zhou W H 2017 Acta Phys. Sin. 66 134203Google Scholar
[2] Zhu Z W, Liu Y, Zhang W C, Luo D P, Wang C, Zhou L, Deng Z J, Li W X 2018 IEEE Photo. Tech. Lett. 30 1139Google Scholar
[3] 王莎莎, 潘玉寨, 高仁喜, 祝秀芬, 苏晓慧, 曲士良 2013 62 024209Google Scholar
Wang S S, Pan Y Z, Gao R X, Zhu X F, Su X H, Qu S L 2013 Acta Phys. Sin. 62 024209Google Scholar
[4] Khegai A, Melkumov M, Firstov S, Riumkin K, Gladush Y, Alyshev S, Lobanov A, Khopin V, Afanasiev F, Nasibulin A, Dianov E 2018 Opt. Express 26 23911Google Scholar
[5] Zhu G W, Zhu X S, Wang F Q, Xu S, Li Y, Guo X L, Balakrishnan K, Norwood R A, Peyghambarian N 2016 IEEE Photo. Tech. Lett. 28 7Google Scholar
[6] Boguslawski J, Sotor J, Sobon G, Kozinski R, Librant K, Aksienionek M, Lipinska L, Abramski K M 2015 Photon. Res. 3 119Google Scholar
[7] Li J, Zhao Y F, Chen Q Y, Niu K D, Sun R Y, Zhang H N 2017 IEEE Photon. J. 9 1506707Google Scholar
[8] Wang J T, Jiang Z K, Chen H, Li J R, Yin J D, Wang J Z, He T C, Yan P G, Ruan S C 2018 Photon. Res. 6 535Google Scholar
[9] 张大鹏, 胡明列, 谢辰, 柴路, 王清月 2011 61 044206Google Scholar
Zhang D P, Hu M L, Xie C, Chai L, Wang Q Y 2011 Acta Phys. Sin. 61 044206Google Scholar
[10] 刘欢, 巩马理, 曹士英, 林百科, 方占军 2015 64 114210Google Scholar
Liu H, Gong M L, Cao S Y, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 114210Google Scholar
[11] Liu Z W, Ziegler Z M, Wright L G, Wise F W 2017 Optica 4 649Google Scholar
[12] Sidorenko P, Fu W, Wright L G, Olivier M, Wise F W 2018 Opt. Lett. 43 2672Google Scholar
[13] Doran N J, Wood D 1988 Opt. Lett. 13 56Google Scholar
[14] Zhao L M, Bartnik A C, Tai Q Q, Wise F W 2013 Opt. Lett. 38 1942Google Scholar
[15] Szczepanek J, Kardas T M, Michalska M, Radzewicz C, Stepanenko Y 2015 Opt. Lett. 40 3500Google Scholar
[16] Fermann M E, Haberl F, Hofer M, Hochreiter H 1990 Opt. Lett. 15 752Google Scholar
[17] Krzempek K, Sotor J, Abramski K 2016 Opt. Lett. 41 4995Google Scholar
[18] Yu Y, Teng H, Wang H B, Wang L N, Zhu J F, Fang S B, Chang G Q, Wang J L, Wei Z Y 2018 Opt. Express 26 10428Google Scholar
[19] Seong N H, Kim D Y 2002 IEEE Photo. Tech. Lett. 14 459Google Scholar
[20] Hao Q, Chen F H, Yang K W, Zhu X Y, Zhang Q S, Zeng H P 2016 IEEE Photo. Tech. Lett. 28 87Google Scholar
[21] Shi J K, Li Y, Gao S Y, Pan Y L, Wang G M, Ji R Y, Zhou W H 2018 Chin. Opt. Lett. 16 121404Google Scholar
[22] Jiang T X, Cui Y F, Lu P, Li C, Wang A M, Zhang Z G 2016 IEEE Photo. Tech. Lett. 28 1786Google Scholar
[23] Hänsel W, Hoogland H, Giunta M, Schmid S, Steinmetz T, Doubek R, Mayer P, Dobner S, Cleff C, Fischer M, Holzwarth R 2017 Appl. Phys. B 123 40Google Scholar
[24] Liu W, Shi H S, Cui J H, Xie C, Song Y J, Wang C Y, Hu M L 2018 Opt. Lett. 43 2848Google Scholar
[25] Dianov E M, Karasik A Y, Mamyshev P V, Prokhorov A M, Serkin V N, Stelmakh M F, Fomichev A A 1985 JETP Lett. 41 294
-
图 1 实验装置图(LD, 激光二极管; WDM, 波分复用器; EDF, 掺铒光纤; OC, 光学耦合器; OI, 光学隔离器; TBPF, 可调谐带通滤波器; PF, 被动光纤; OPCW/OPCCW, 顺时针/逆时针输出输出)
Fig. 1. Experimental setup. LD, laser diode; WDM, wavelength division multiplexer; EDF, Er-doped fiber; OC, optical coupler; OI, optical isolator; TBPF, tunable bandpass filter; PF, passive fiber; OPCW/OPCCW, clockwise/counter-clockwise output.
图 2 滤波性能测试结果 (a)自发辐射光谱; (b)滤波带宽设定为1.4 nm条件下输出可调谐滤波光谱; (c)滤波中心波长设定为1556 nm条件下输出带宽调谐滤波光谱; (d)带宽调谐滤波光谱3 dB带宽和10 dB带宽的对比
Fig. 2. Test results of the spectral filtering performance: (a) Spontaneous emission spectrum; (b) the central wavelength tunable spectra with fixed bandwidth of 1.4 nm; (c) bandwidth tunable spectra with fixed central wavelength of 1556 nm; (d) comparison of 3 dB bandwidth and 10 dB bandwidth of bandwidth tunable spectra.
图 3 激光器顺时针和逆时针输出特性 (a)线性坐标和对数坐标(插图)下的光谱; (b)自相关曲线; (c)脉冲序列; (d)一次谐波射频谱和0—50 MHz范围的射频谱(插图)
Fig. 3. Laser CW and CCW output characteristics: (a) Spectra on linear scale and log scale (inset); (b) autocorrelation traces; (c) pulse train; (d) radio frequency spectra around repetition rate and in wider range (inset).
图 4 滤波带宽对激光器输出的(a)脉宽、谱宽和(b)时间带宽积的影响; 不同滤波带宽条件下(c) CW和(d) CCW输出的光谱与自相关曲线(插图)
Fig. 4. Impact of filtering bandwidth on (a) pulse durations, spectral bandwidths and (b) time-bandwidth products; spectra and autocorrelation traces (inset) of (c) CW and (d) CCW output pulses with different filtering bandwidth.
-
[1] 石俊凯, 纪荣祎, 黎尧, 刘娅, 周维虎 2017 66 134203Google Scholar
Shi J K, Ji R Y, Li Y, Liu Y, Zhou W H 2017 Acta Phys. Sin. 66 134203Google Scholar
[2] Zhu Z W, Liu Y, Zhang W C, Luo D P, Wang C, Zhou L, Deng Z J, Li W X 2018 IEEE Photo. Tech. Lett. 30 1139Google Scholar
[3] 王莎莎, 潘玉寨, 高仁喜, 祝秀芬, 苏晓慧, 曲士良 2013 62 024209Google Scholar
Wang S S, Pan Y Z, Gao R X, Zhu X F, Su X H, Qu S L 2013 Acta Phys. Sin. 62 024209Google Scholar
[4] Khegai A, Melkumov M, Firstov S, Riumkin K, Gladush Y, Alyshev S, Lobanov A, Khopin V, Afanasiev F, Nasibulin A, Dianov E 2018 Opt. Express 26 23911Google Scholar
[5] Zhu G W, Zhu X S, Wang F Q, Xu S, Li Y, Guo X L, Balakrishnan K, Norwood R A, Peyghambarian N 2016 IEEE Photo. Tech. Lett. 28 7Google Scholar
[6] Boguslawski J, Sotor J, Sobon G, Kozinski R, Librant K, Aksienionek M, Lipinska L, Abramski K M 2015 Photon. Res. 3 119Google Scholar
[7] Li J, Zhao Y F, Chen Q Y, Niu K D, Sun R Y, Zhang H N 2017 IEEE Photon. J. 9 1506707Google Scholar
[8] Wang J T, Jiang Z K, Chen H, Li J R, Yin J D, Wang J Z, He T C, Yan P G, Ruan S C 2018 Photon. Res. 6 535Google Scholar
[9] 张大鹏, 胡明列, 谢辰, 柴路, 王清月 2011 61 044206Google Scholar
Zhang D P, Hu M L, Xie C, Chai L, Wang Q Y 2011 Acta Phys. Sin. 61 044206Google Scholar
[10] 刘欢, 巩马理, 曹士英, 林百科, 方占军 2015 64 114210Google Scholar
Liu H, Gong M L, Cao S Y, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 114210Google Scholar
[11] Liu Z W, Ziegler Z M, Wright L G, Wise F W 2017 Optica 4 649Google Scholar
[12] Sidorenko P, Fu W, Wright L G, Olivier M, Wise F W 2018 Opt. Lett. 43 2672Google Scholar
[13] Doran N J, Wood D 1988 Opt. Lett. 13 56Google Scholar
[14] Zhao L M, Bartnik A C, Tai Q Q, Wise F W 2013 Opt. Lett. 38 1942Google Scholar
[15] Szczepanek J, Kardas T M, Michalska M, Radzewicz C, Stepanenko Y 2015 Opt. Lett. 40 3500Google Scholar
[16] Fermann M E, Haberl F, Hofer M, Hochreiter H 1990 Opt. Lett. 15 752Google Scholar
[17] Krzempek K, Sotor J, Abramski K 2016 Opt. Lett. 41 4995Google Scholar
[18] Yu Y, Teng H, Wang H B, Wang L N, Zhu J F, Fang S B, Chang G Q, Wang J L, Wei Z Y 2018 Opt. Express 26 10428Google Scholar
[19] Seong N H, Kim D Y 2002 IEEE Photo. Tech. Lett. 14 459Google Scholar
[20] Hao Q, Chen F H, Yang K W, Zhu X Y, Zhang Q S, Zeng H P 2016 IEEE Photo. Tech. Lett. 28 87Google Scholar
[21] Shi J K, Li Y, Gao S Y, Pan Y L, Wang G M, Ji R Y, Zhou W H 2018 Chin. Opt. Lett. 16 121404Google Scholar
[22] Jiang T X, Cui Y F, Lu P, Li C, Wang A M, Zhang Z G 2016 IEEE Photo. Tech. Lett. 28 1786Google Scholar
[23] Hänsel W, Hoogland H, Giunta M, Schmid S, Steinmetz T, Doubek R, Mayer P, Dobner S, Cleff C, Fischer M, Holzwarth R 2017 Appl. Phys. B 123 40Google Scholar
[24] Liu W, Shi H S, Cui J H, Xie C, Song Y J, Wang C Y, Hu M L 2018 Opt. Lett. 43 2848Google Scholar
[25] Dianov E M, Karasik A Y, Mamyshev P V, Prokhorov A M, Serkin V N, Stelmakh M F, Fomichev A A 1985 JETP Lett. 41 294
计量
- 文章访问数: 8145
- PDF下载量: 123
- 被引次数: 0