搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

部分状粒子处理方法及其对云微物理参数测量的影响

黄敏松 雷恒池

引用本文:
Citation:

部分状粒子处理方法及其对云微物理参数测量的影响

黄敏松, 雷恒池

Processing method for the partial particles and its influence on the cloud microphysical parameters measured by the airborne cloud and precipitation image probe

Huang Min-Song, Lei Heng-Chi
PDF
导出引用
  • 作为云微物理过程测量的重要利器,机载云降水粒子成像仪在云降水物理与人工影响天气研究中具有重要的作用.从采样结果来看,机载云降水粒子成像仪所测粒子图像中含有大量的粒子图像仅是粒子的一部分而已,即部分状粒子.因其数量较多,对该类粒子所选处理方法不同,会引起测量结果的很大差异.本文介绍并分析了现有部分状粒子处理方法的优劣,通过对部分状粒子的再定义与粒子形状分类,提出了一个融合粒子形状识别技术、“粒径重构”和“中心在内”方法的新的部分状粒子处理方法;利用实测数据,对所提方法与现有方法进行了云微物理参量处理结果的对比,发现本文所提方法与“粒径重构”方法处理结果比较一致,能较好地克服“整体在内”与“中心在内”两种方法存在的缺陷;同时,在针柱状粒子占比较多情形下,本文所提方法要比“粒径重构”方法处理后的结果相对合理.因此本文所提方法对仪器所测粒子数据处理具有更好的适应性.
    As an important instrument for the cloud microphysics measurement, the airborne cloud and precipitation imaging probe plays a significant role in studying the cloud and precipitation physics and artificial weather modification. The particle image data recorded by the probe can be used to process, calculate and produce the cloud microphysical parameters, such as the cloud particle size spectra, cloud particle number concentration, cloud water content, etc. However, there are lots of partial particle images in the sampled data. This is due to the limited sample volume of the probe, the volume that contains only a part of the particles and is imaged by the probe. The number of partial particles in each sample is so large that the technique used to process these particles can have a great influence on the calculation of cloud microphysical parameters. However, there has been no perfect solution for dealing with these partial particles so far.
    The three existing processing methods-“All In” method, “Center In” method, and “Diameter Reconstruction” method for the partial particles, are introduced and analysed in this study. After analyzing the advantages and disadvantages of these existing methods, a new definition and a particle shape classification for the partial particle are given, which can discriminate the circularly symmetric particles and the non-circularly symmetric particles from the partials. Then a new partial particle processing method is introduced, which combines the partial particle shape recognition technique and the traditional techniques-“Center In” method and “Diameter Reconstruction” method. The circularly symmetric partial particles are processed with the “Diameter Reconstruction method” and the non-circularly symmetric partial particles are processed with the “Center In” method.
    Utilizing the historical airplane observation data from Shanxi Taiyuan, the new method presented in this study and the three traditional methods are used to calculate the cloud particle size spectra, cloud particle number concentration, and the ice water content by using the same data. The calculated results are analyzed and compared. It is found that in most cases the results from the new method are more consistent with those from the “Diameter Reconstruction” technique and can overcome the disadvantages of the existing methods, especially when the cloud has more column-shaped and needle-shaped particles, the result from the new method is more reasonable. Considering the fact that the column shape is one of the main shapes in the cloud, it is strongly recommended to use the new technique in this paper to process the data from the probes.
    [1]

    Ramanathan V, Cess R D, Harrison E F, Minnis P, Barkstrom B R, Ahmad E, Hartmann D L 1989 Science 243 57

    [2]

    Zhang D, Liu C M, Liu X M 2012 Water Int. 37 598

    [3]

    Voyant C, Muselli M, Paoli C, Nivet M L 2012 Energy 39 341

    [4]

    Knollenberg R G 1970 J. Appl. Meteor. 9 86

    [5]

    Grosvenor D P, Choularton T W, Lachlan-Cope T, Gallagher M W, Crosier J, Bower K N, Ladkin R S, Dorsey J R 2012 Atmos. Chem. Phys. 12 11275

    [6]

    Zhao Z, Lei H 2014 Adv. Atmos. Sci. 31 604

    [7]

    Min Q, Joseph E, Lin Y, Min L, Yin B, Daum P H, Kleinman L I, Wang J, Lee Y N 2012 Atmos. Chem. Phys. 12 11261

    [8]

    Heymsfield A J, Parrish J L 1978 J. Appl. Meteor. 17 1566

    [9]

    Holroyd E W 1987 J. Atmos. Oceanic Technol. 4 498

    [10]

    Korolev A, Sussman B 2000 J. Atmos. Oceanic Technol. 17 1048

    [11]

    Brown P R A, Francis P N 1995 J. Atmos. Oceanic Technol. 12 410

    [12]

    Bailey M P, Hallett J 2009 J. Atmos. Sci. 66 2888

    [13]

    Korolev A, Isaac G A, Hallett J 2000 Quart. J. Roy. Meteor. Soc. 126 2873

    [14]

    Crosier J, Bower K N, Choularton T W, Westbrook C D, Connolly P J, Cui Z Q, Crawford I P, Capes G L, Coe H, Dorsey J R, Williams P I, Illingworth A J, Gallagher M W, Blyth A M 2011 Atmos. Chem. Phys. 11 257

  • [1]

    Ramanathan V, Cess R D, Harrison E F, Minnis P, Barkstrom B R, Ahmad E, Hartmann D L 1989 Science 243 57

    [2]

    Zhang D, Liu C M, Liu X M 2012 Water Int. 37 598

    [3]

    Voyant C, Muselli M, Paoli C, Nivet M L 2012 Energy 39 341

    [4]

    Knollenberg R G 1970 J. Appl. Meteor. 9 86

    [5]

    Grosvenor D P, Choularton T W, Lachlan-Cope T, Gallagher M W, Crosier J, Bower K N, Ladkin R S, Dorsey J R 2012 Atmos. Chem. Phys. 12 11275

    [6]

    Zhao Z, Lei H 2014 Adv. Atmos. Sci. 31 604

    [7]

    Min Q, Joseph E, Lin Y, Min L, Yin B, Daum P H, Kleinman L I, Wang J, Lee Y N 2012 Atmos. Chem. Phys. 12 11261

    [8]

    Heymsfield A J, Parrish J L 1978 J. Appl. Meteor. 17 1566

    [9]

    Holroyd E W 1987 J. Atmos. Oceanic Technol. 4 498

    [10]

    Korolev A, Sussman B 2000 J. Atmos. Oceanic Technol. 17 1048

    [11]

    Brown P R A, Francis P N 1995 J. Atmos. Oceanic Technol. 12 410

    [12]

    Bailey M P, Hallett J 2009 J. Atmos. Sci. 66 2888

    [13]

    Korolev A, Isaac G A, Hallett J 2000 Quart. J. Roy. Meteor. Soc. 126 2873

    [14]

    Crosier J, Bower K N, Choularton T W, Westbrook C D, Connolly P J, Cui Z Q, Crawford I P, Capes G L, Coe H, Dorsey J R, Williams P I, Illingworth A J, Gallagher M W, Blyth A M 2011 Atmos. Chem. Phys. 11 257

  • [1] 颜筱宇, 何小斐, 于利明, 刘亮, 陈伟, 石中兵, 卢杰, 魏会领, 韩纪锋, 张轶泼, 钟武律, 许敏. HL-2A装置上成像型中性粒子分析器的物理设计和初步实验结果.  , 2023, 72(21): 215212. doi: 10.7498/aps.72.20230768
    [2] 李凡, 张先梅, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳. 液体薄层中环链状空化泡云结构稳定性分析.  , 2022, 71(8): 084303. doi: 10.7498/aps.71.20212257
    [3] 彭国良, 张俊杰. 基于流体-磁流体-粒子混合方法的高空核爆炸碎片云模拟.  , 2021, 70(18): 180703. doi: 10.7498/aps.70.20210347
    [4] 高攀, 王骏, 赵成成, 唐家斌, 刘晶晶, 闫庆, 华灯鑫. 基于数字全息干涉术的云微物理参数同步测量方法.  , 2021, 70(9): 099201. doi: 10.7498/aps.70.20201779
    [5] 张维, 韩正甫. 一个基于三粒子部分纠缠态的量子广播多重盲签名协议.  , 2019, 68(7): 070301. doi: 10.7498/aps.68.20182044
    [6] 新波, 张小宁, 李韵, 崔万照, 张洪太, 李永东, 王洪广, 翟永贵, 刘纯亮. 多载波微放电阈值的粒子模拟及分析.  , 2017, 66(15): 157901. doi: 10.7498/aps.66.157901
    [7] 崔曼, 薛惠锋, 陈福振, 卜凡彪. 道路交通的流体物理模型与粒子仿真方法.  , 2017, 66(22): 224501. doi: 10.7498/aps.66.224501
    [8] 付成花. 微纳粒子光学散射分析.  , 2017, 66(9): 097301. doi: 10.7498/aps.66.097301
    [9] 赵星, 梅博, 毕津顺, 郑中山, 高林春, 曾传滨, 罗家俊, 于芳, 韩郑生. 0.18 m部分耗尽绝缘体上硅互补金属氧化物半导体电路单粒子瞬态特性研究.  , 2015, 64(13): 136102. doi: 10.7498/aps.64.136102
    [10] 丰志兴, 宁成, 薛创, 李百文. 基于等离子体粒子模拟的喷气Z箍缩过程物理研究.  , 2014, 63(18): 185203. doi: 10.7498/aps.63.185203
    [11] 刘西川, 高太长, 刘磊, 翟东力. 基于粒子成像测速技术的降雪微物理特性研究.  , 2014, 63(19): 199201. doi: 10.7498/aps.63.199201
    [12] 刘西川, 高太长, 刘磊, 翟东力. 基于粒子成像测速技术的雨滴微物理特性研究.  , 2014, 63(2): 029203. doi: 10.7498/aps.63.029203
    [13] 韩丁, 严卫, 蔡丹, 杨汉乐. 基于最优估计理论、联合星载主被动传感器资料的液态云微物理特性反演研究.  , 2013, 62(14): 149201. doi: 10.7498/aps.62.149201
    [14] 龙智勇, 石汉青, 黄思训. 利用卫星云图反演云导风的新思路.  , 2011, 60(5): 059202. doi: 10.7498/aps.60.059202
    [15] 刘永安, 鄢秋荣, 盛立志, 赵菲菲, 胡慧君, 赵宝升. 电荷云尺寸对紫外光子计数成像探测器性能的影响.  , 2011, 60(4): 048501. doi: 10.7498/aps.60.048501
    [16] 任玉坤, 敖宏瑞, 顾建忠, 姜洪源, Antonio Ramos. 面向微系统的介电泳力微纳粒子操控研究.  , 2009, 58(11): 7869-7877. doi: 10.7498/aps.58.7869
    [17] 陈立冰, 谭鹏, 董少光, 路洪. 利用二粒子部分纠缠态实现开靶目标的非局域量子可控非(CNOT)门的受控操作.  , 2009, 58(10): 6772-6778. doi: 10.7498/aps.58.6772
    [18] 王殿海, 景 超, 姚荣涵. 居民出行分布中的电子云现象.  , 2007, 56(7): 3642-3648. doi: 10.7498/aps.56.3642
    [19] 郭海明, 刘虹雯, 王业亮, 谢惠民, 戴福隆, 高鸿钧. 扫描探针显微学中的云纹方法.  , 2003, 52(10): 2514-2519. doi: 10.7498/aps.52.2514
    [20] 黄晓庄, 钟溟, 钟国荣, 金有铠. 重粒子谱仪磁场电流稳定装置.  , 1962, 18(10): 540-544. doi: 10.7498/aps.18.540
计量
  • 文章访问数:  5346
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-24
  • 修回日期:  2018-09-26
  • 刊出日期:  2019-12-20

/

返回文章
返回
Baidu
map