搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

探测器对量子增强马赫-曾德尔干涉仪相位测量灵敏度的影响

李诗宇 田剑锋 杨晨 左冠华 张玉驰 张天才

引用本文:
Citation:

探测器对量子增强马赫-曾德尔干涉仪相位测量灵敏度的影响

李诗宇, 田剑锋, 杨晨, 左冠华, 张玉驰, 张天才

Effect of detection efficiency on phase sensitivity in quantum-enhanced Mach-Zehnder interferometer

Li Shi-Yu, Tian Jian-Feng, Yang Chen, Zuo Guan-Hua, Zhang Yu-Chi, Zhang Tian-Cai
PDF
导出引用
  • 研究了强度差测量方案下,探测器量子效率对光子数态、关联数态、压缩真空态三种量子光源注入的马赫-曾德尔干涉仪相位测量灵敏度的影响.获得了相位测量灵敏度与效率的定量关系,比较了探测效率对不同量子态注入的干涉仪相位灵敏度的影响.研究表明:光子数态注入时,相位测量灵敏度始终不能超越标准量子极限;关联数态注入时,无论多大的光子数,要获得相位测量的量子增强,探测效率不得小于75%;对于压缩真空态,只要有压缩存在就可以获得一定的相位测量的量子增强;关联数态、压缩真空态的注入,相位灵敏度皆随探测效率的增大而不同程度的提高,且压缩真空态比关联数态具有更好的量子增强效果.给出了在量子增强的精密测量实验中对探测效率的要求,并结合实际应用说明了探测效率的提高有助于提高干涉仪探测的灵敏度.
    Three kinds of quantum light sources:Fock state, correlated Fock-state and squeezed vacuum state, which serve as the injection end of Mach-Zehnder interferometer (MZI) are investigated. The effect of detection quantum efficiency on the sensitivity of phase measurement in MZI is analyzed by using the intensity difference detection scheme. By analyzing the MZI system, the quantitative relationship between the sensitivity of phase measurement and the detection efficiency is obtained. It is found that the phase sensitivity cannot go beyond the standard quantum limit in any case when the Fock state is injected into interferometer, that is, the Fock state does not realize quantum enhanced measurement (QEM). And the injection of correlated Fock-state or squeezed vacuum state of light can go beyond the standard quantum limit, but the conditions for realizing quantum enhancement are different, quantum enhancement can only be achieved when the detection efficiency is greater than 75% for correlated Fock-state, or the squeezed vacuum state of light is injected into interferometer. There is no limitation of the minimum detection efficiency for realizing quantum enhancement on squeezed vacuum state. In principle, quantum enhancement can be achieved as long as the squeezed vacuum state is injected. The influence of detection efficiency on the phase sensitivity is investigated when the correlated Fock-state and the squeezed vacuum state are injected into the MZI. It is found that the phase sensitivity or quantum enhancement becomes better as the quantum efficiency of the detection system turns higher. And it is the squeezed vacuum state injected into the interferometer that has better quantum enhancement effect than the correlated Fock-state. In this study, the requirements for the detection efficiency for realizing QEM in experiment are given, which is of great significance for studying the QEM, when taking the real experimental system into account. In addition, the conclusions obtained from the MZI model discussed can also be used to analyze the sensitivity of detecting the gravitational wave, it explains that the improvement of detector efficiency can indeed improve the sensitivity to gravitational wave detection, which will play an important role in exploring gravitational waves and understanding the time and space to reveal the mystery of the universe in the future.
    • 基金项目: 国家重点研发计划(批准号:2017YFA0304502)和国家自然科学基金(批准号:11634008,11674203,11574187,61227902)资助的课题.
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304502) and the National Natural Science Foundation of China (Grants Nos. 11634008, 11674203, 11574187, 61227902).
    [1]

    Caves C M 1981 Phys. Rev. D 23 1693

    [2]

    LIGO Scientific Collaboration and Virgo Collaboration 2016 Phys. Rev. Lett. 116 241103

    [3]

    Grangier P, Slusher R E, Yurke B, Laporta A 1987 Phys. Rev. Lett. 59 2153

    [4]

    Xiao M, Wu L A, Kimble H J 1987 Phys. Rev. Lett. 59 278

    [5]

    Holland M J, Burnett K 1993 Phys. Rev. Lett. 71 1355

    [6]

    Kim T, Shin J, Ha Y, Kim H, Park G, Noh T G, Hong C K 1998 Opt. Commun. 156 37

    [7]

    Campos R A, Gerry C C, Benmoussa A 2003 Phys. Rev. A 68 023810

    [8]

    Higgins B L, Berry D W, Bartlett S D, Wiseman H M, Pryde G J 2007 Nature 450 393

    [9]

    Anisimov P M, Raterman G M, Chiruvelli A, Plick W N, Huver S D, Lee H, Dowling J P 2010 Phys. Rev. Lett. 104 103602

    [10]

    Seshadreesan K P, Anisimov P M, Lee H, Dowling J P 2011 New J. Phys. 13 083026

    [11]

    Li W F, Du J J, Wen R J, Li G, Zhang T C 2014 J. Appl. Phys. 115 123106

    [12]

    Bollinger J J, Itano W M, Wineland D J, Heinzen D J 1996 Phys. Rev. A 54 R4649

    [13]

    Nagata T, Okamoto R, O'Brien J L, Sasaki K, Takeuchi S 2007 Science 316 726

    [14]

    Gerry C C, Mimih J 2010 Phys. Rev. A 82 013831

    [15]

    Joo J, Munro W J, Spiller T P 2011 Phys. Rev. Lett. 107 083601

    [16]

    Kim T, Ha Y, Shin J, Kim H, Park G, Kim K, Noh T G, Hong C K 1999 Phys. Rev. A 60 708

    [17]

    Gilbert G, Hamrick M, Weinstein Y S 2008 J. Opt. Soc. Am. B 25 1336

    [18]

    Genoni M G, Olivares S, Paris M G A 2011 Phys. Rev. Lett. 106 153603

    [19]

    Genoni M G, Olivares S, Brivio D, Cialdi S, Cipriani D, Santamato A, Vezzoli S, Paris M G A 2012 Phys. Rev. A 85 043817

    [20]

    Datta A, Zhang L J, Thomas-Peter N, Dorner U, Smith B J, Walmsley I A 2011 Phys. Rev. A 83 063836

    [21]

    Xie D, Peng J Y 2013 Sci. China: Phys. Mech. Astron. 56 593

    [22]

    Xin J, Wang H L, Jing J T 2016 Appl. Phys. Lett. 109 051107

    [23]

    Xie D, Chen H F 2017 J. Korean Phys. Soc. 70 1016

    [24]

    Ben-Aryeh Y 2012 J. Opt. Soc. Am. B 29 2754

    [25]

    Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033

    [26]

    Yurke B 1986 Phys. Rev. Lett. 56 1515

    [27]

    Yurke B 1985 Phys. Rev. A 32 311

    [28]

    Ou Z Y 1996 Phys. Rev. Lett. 77 2352

    [29]

    Demkowicz-Dobrzanski R, Banaszek K, Schnabel R 2013 Phys. Rev. A 88 041802

    [30]

    The LIGO Scientific Collaboration 2011 Nat. Phys. 7 962

    [31]

    Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472

  • [1]

    Caves C M 1981 Phys. Rev. D 23 1693

    [2]

    LIGO Scientific Collaboration and Virgo Collaboration 2016 Phys. Rev. Lett. 116 241103

    [3]

    Grangier P, Slusher R E, Yurke B, Laporta A 1987 Phys. Rev. Lett. 59 2153

    [4]

    Xiao M, Wu L A, Kimble H J 1987 Phys. Rev. Lett. 59 278

    [5]

    Holland M J, Burnett K 1993 Phys. Rev. Lett. 71 1355

    [6]

    Kim T, Shin J, Ha Y, Kim H, Park G, Noh T G, Hong C K 1998 Opt. Commun. 156 37

    [7]

    Campos R A, Gerry C C, Benmoussa A 2003 Phys. Rev. A 68 023810

    [8]

    Higgins B L, Berry D W, Bartlett S D, Wiseman H M, Pryde G J 2007 Nature 450 393

    [9]

    Anisimov P M, Raterman G M, Chiruvelli A, Plick W N, Huver S D, Lee H, Dowling J P 2010 Phys. Rev. Lett. 104 103602

    [10]

    Seshadreesan K P, Anisimov P M, Lee H, Dowling J P 2011 New J. Phys. 13 083026

    [11]

    Li W F, Du J J, Wen R J, Li G, Zhang T C 2014 J. Appl. Phys. 115 123106

    [12]

    Bollinger J J, Itano W M, Wineland D J, Heinzen D J 1996 Phys. Rev. A 54 R4649

    [13]

    Nagata T, Okamoto R, O'Brien J L, Sasaki K, Takeuchi S 2007 Science 316 726

    [14]

    Gerry C C, Mimih J 2010 Phys. Rev. A 82 013831

    [15]

    Joo J, Munro W J, Spiller T P 2011 Phys. Rev. Lett. 107 083601

    [16]

    Kim T, Ha Y, Shin J, Kim H, Park G, Kim K, Noh T G, Hong C K 1999 Phys. Rev. A 60 708

    [17]

    Gilbert G, Hamrick M, Weinstein Y S 2008 J. Opt. Soc. Am. B 25 1336

    [18]

    Genoni M G, Olivares S, Paris M G A 2011 Phys. Rev. Lett. 106 153603

    [19]

    Genoni M G, Olivares S, Brivio D, Cialdi S, Cipriani D, Santamato A, Vezzoli S, Paris M G A 2012 Phys. Rev. A 85 043817

    [20]

    Datta A, Zhang L J, Thomas-Peter N, Dorner U, Smith B J, Walmsley I A 2011 Phys. Rev. A 83 063836

    [21]

    Xie D, Peng J Y 2013 Sci. China: Phys. Mech. Astron. 56 593

    [22]

    Xin J, Wang H L, Jing J T 2016 Appl. Phys. Lett. 109 051107

    [23]

    Xie D, Chen H F 2017 J. Korean Phys. Soc. 70 1016

    [24]

    Ben-Aryeh Y 2012 J. Opt. Soc. Am. B 29 2754

    [25]

    Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033

    [26]

    Yurke B 1986 Phys. Rev. Lett. 56 1515

    [27]

    Yurke B 1985 Phys. Rev. A 32 311

    [28]

    Ou Z Y 1996 Phys. Rev. Lett. 77 2352

    [29]

    Demkowicz-Dobrzanski R, Banaszek K, Schnabel R 2013 Phys. Rev. A 88 041802

    [30]

    The LIGO Scientific Collaboration 2011 Nat. Phys. 7 962

    [31]

    Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472

  • [1] 韩小萱, 孙光祖, 郝丽萍, 白素英, 焦月春. 基于里德伯原子Stark效应射频电场测量灵敏度研究.  , 2024, 73(9): 093202. doi: 10.7498/aps.73.20240162
    [2] 丁永今, 曹士英, 林百科, 王强, 韩羿, 方占军. 基于电光晶体马赫-曾德干涉仪的载波包络偏移频率调节方法.  , 2022, 71(14): 144203. doi: 10.7498/aps.71.20220147
    [3] 王坤, 段高燕, 郎佩琳, 赵玉芳, 刘尖斌, 宋钢. 基于银纳米链的马赫-曾德干涉仪结构的生物传感器.  , 2022, 71(1): 017301. doi: 10.7498/aps.71.20211420
    [4] 王坤, 段高燕, 郎佩琳, 赵玉芳, 刘尖斌, 宋钢. 基于银纳米链的马赫-曾德干涉仪结构的生物传感器.  , 2021, (): . doi: 10.7498/aps.70.20211420
    [5] 张文英, 胡鹏, 肖游, 李浩, 尤立星. 高效、偏振不敏感超导纳米线单光子探测器.  , 2021, 70(18): 188501. doi: 10.7498/aps.70.20210486
    [6] 王帅, 眭永兴, 孟祥国. 光子增加双模压缩真空态在马赫-曾德尔干涉仪相位测量中的应用.  , 2020, 69(12): 124202. doi: 10.7498/aps.69.20200179
    [7] 李绍和, 李九生, 孙建忠. 太赫兹频率编码器.  , 2019, 68(10): 104203. doi: 10.7498/aps.68.20190032
    [8] 左小杰, 孙颍榕, 闫智辉, 贾晓军. 高灵敏度的量子迈克耳孙干涉仪.  , 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [9] 贾玥, 陈肖含, 张好, 张临杰, 肖连团, 贾锁堂. Rydberg原子的电磁诱导透明光谱的噪声转移特性.  , 2018, 67(21): 213201. doi: 10.7498/aps.67.20181168
    [10] 成健, 冯晋霞, 李渊骥, 张宽收. 基于量子增强型光纤马赫-曾德尔干涉仪的低频信号测量.  , 2018, 67(24): 244202. doi: 10.7498/aps.67.20181335
    [11] 闫子华, 孙恒信, 蔡春晓, 马龙, 刘奎, 郜江瑞. 基于低频压缩光的声频信号测量.  , 2017, 66(11): 114205. doi: 10.7498/aps.66.114205
    [12] 杨珅, 荣强周, 孙浩, 张菁, 梁磊, 徐琴芳, 詹苏昌, 杜彦英, 冯定一, 乔学光, 忽满利. 基于Michelson干涉仪的高灵敏度光纤高温探针传感器.  , 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [13] 逯丹凤, 祁志美. 高灵敏度集成光偏振干涉仪特性及生化传感应用研究.  , 2012, 61(11): 114212. doi: 10.7498/aps.61.114212
    [14] 靳爱军, 王泽锋, 侯静, 郭良, 姜宗福, 肖瑞. 复自相干度度量超连续谱相干性.  , 2012, 61(15): 154201. doi: 10.7498/aps.61.154201
    [15] 王昌辉, 赵国华, 常胜江. 基于光子晶体马赫-曾德尔干涉仪的太赫兹开关及强度调制器.  , 2012, 61(15): 157805. doi: 10.7498/aps.61.157805
    [16] 蔡元学, 掌蕴东, 党博石, 吴昊, 王金芳, 袁萍. 基于Ⅲ-Ⅴ与Ⅱ-Ⅵ族半导体材料色散特性的高灵敏度慢光干涉仪.  , 2011, 60(4): 040701. doi: 10.7498/aps.60.040701
    [17] 韩奎, 王子煜, 沈晓鹏, 吴琼华, 童星, 唐刚, 吴玉喜. 基于光子晶体自准直和带隙效应的马赫-曾德尔干涉仪设计.  , 2011, 60(4): 044212. doi: 10.7498/aps.60.044212
    [18] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析.  , 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [19] 汪大林, 孙军强, 王 健. 基于周期极化反转铌酸锂光波导高速非归零码到归零码的转换.  , 2008, 57(1): 252-259. doi: 10.7498/aps.57.252
    [20] 王 琛, 王 伟, 孙今人, 方智恒, 吴 江, 傅思祖, 马伟新, 顾 援, 王世绩, 张国平, 郑无敌, 张覃鑫, 彭惠民, 邵 平, 易 葵, 林尊琪, 王占山, 王洪昌, 周 斌, 陈玲燕. 利用x射线激光干涉诊断等离子体电子密度.  , 2005, 54(1): 202-205. doi: 10.7498/aps.54.202
计量
  • 文章访问数:  7716
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-19
  • 修回日期:  2018-10-08
  • 刊出日期:  2018-12-05

/

返回文章
返回
Baidu
map