搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于片层光照明的新型单分子横向磁镊

马建兵 翟永亮 农大官 李菁华 付航 张兴华 李明 陆颖 徐春华

引用本文:
Citation:

基于片层光照明的新型单分子横向磁镊

马建兵, 翟永亮, 农大官, 李菁华, 付航, 张兴华, 李明, 陆颖, 徐春华

Single molecule transverse magnetic tweezers based on light sheet illumination

Ma Jian-Bing, Zhai Yong-Liang, Nong Da-Guan, Li Jing-Hua, Fu Hang, Zhang Xing-Hua, Li Ming, Lu Ying, Xu Chun-Hua
PDF
导出引用
  • 磁镊是一种高精度的单分子技术,它用磁场对连有生物大分子的超顺磁球产生磁力,通过追踪磁球的位置来测量生物大分子的长度信息.磁镊包括横向磁镊和纵向磁镊.纵向磁镊空间精度高,但昂贵;横向磁镊简单便宜,但由于受其成像原理的限制,一般情况下只能连接较长的DNA等生物大分子,且其空间精度较差,进而限制了其应用范围.为了解决这个问题,本文改进了横向磁镊,用片层光照明的方法使光线主要被磁球散射,从而能够直接观察到吸附在样品槽侧壁上的磁球,这使得测量短连接的底物成为可能.对于实际应用的检测,首先测试了包含270 bp发卡结构的0.5 μm双链DNA,用其中发卡结构的“折叠-去折叠”跳变过程证明了改进后的横向磁镊的确可以追踪短DNA等生物大分子.然后,进一步用16 μm的λ-DNA检验了实验系统.最后,将新型横向磁镊与普通横向磁镊及纵向磁镊在小力和大力条件下拉伸不同长度DNA的噪声进行了比较,发现改进后的横向磁镊在空间精度上明显优于普通横向磁镊,与纵向磁镊相比也无明显差异.以上结果证明了改进后的横向磁镊的精度优势,并扩展了横向磁镊的应用范围.
    Magnetic tweezers are a high precision single-molecule manipulation instrument. A gradient magnetic field is used to generate a force on the order of pN, acting on biomolecule-tethered superparamagnetic beads and to manipulate them. By tracking the bead with an inverted microscope, an imaging system and an image process software, one can obtain the extension length information of the biomolecules, thus can study the mechanism and dynamics of the molecules at a single molecule level. Magnetic tweezers include transverse magnetic tweezers (TMT) which are cheap and simple, and longitudinal magnetic tweezers (LMT) which are expensive and complicated. As the traditional TMT can only track the long biomolecule-tethered beads and their spatial resolution is poorer than that of the LMT according to the error theory of magnetic tweezers and the experimental results, the TMT is not so widely used. To solve this problem, we utilize a light sheet to illuminate the beads only in TMT, and then observe the bead sticking on the lateral surface. The tracking error on the extension axis is 4 nm, which is very small. Then we track and obtain the “folding-unfolding” state transition trace of a hairpin DNA. The hairpin DNA is inserted into a 0.5 μm dsDNA. This experiment proves its ability to study short DNA, RNA or protein. Instead of the fully folded and unfolded state, we observe a semi-stable state at the 1/3 length of the hairpin. The semi-stable state is precisely at the place of the CG rich area of the hairpin, so the CG rich area should be the reason for the semi-stable state. Then we use the 16 μm λ -DNA to further test the novel TMT system. Having obtained the stretching curve of the dsDNA, we fit the length-force data with the worm-like-chain model. The fitted persistence length of the dsDNA is (47±2) nm, which is consistent with the result in the literature. Finally, we compare the noise of traditional TMT, novel TMT and LMT with that of short and long dsDNA at weak and strong force, and we find that at weak force, the novel TMT distinctly enhances the resolution to the LMT level; while at strong force, the resolution of the novel TMT is about half that of the LMT. The results above prove that (1) the short DNA, RNA or protein can be studied by the novel TMT, which extends the application scope of the instrument; (2) the resolution of TMT is enhanced distinctly under weak and strong force, making the novel TMT competent of more experiments.
      通信作者: 徐春华, xch@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11574381,11574382)资助的课题.
      Corresponding author: Xu Chun-Hua, xch@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574381, 11574382).
    [1]

    Ha T, Enderle T, Ogletree D F, Chemla D S, Selvin P R, Weiss S 1996 Proc. Natl. Acad. Sci. USA 93 6264

    [2]

    Neuman K C, Nagy A 2008 Nat. Methods 5 491

    [3]

    Wang S, Zheng H Z, Zhao Z Y, Lu Y, Xu C H 2013 Acta Phys. Sin. 62 168703 (in Chinese) [王爽, 郑海子, 赵振业, 陆越, 徐春华 2013 62 168703]

    [4]

    Qian H, Chen H, Yan J 2016 Acta Phys. Sin. 65 188706 (in Chinese) [钱辉, 陈虎, 严洁 2016 65 188706]

    [5]

    Madariaga-Marcos J, Hormeno S, Pastrana C L, Fisher G L M, Dillingham M S, Moreno-Herrero F 2018 Nanoscale 10 4579

    [6]

    Cheng W, Arunajadai S G, Moffitt J R, Tinoco I J, Bustamante C 2011 Science 333 1746

    [7]

    Comstock M J, Whitley K D, Jia H, Sokoloski J, Lohman T M, Ha T, Chemla Y R 2015 Science 348 352

    [8]

    Arslan S, Khafizov R, Thomas C D, Chemla Y R, Ha T 2015 Science 348 344

    [9]

    Neupane K, Foster D A N, Dee D R, Yu H, Wang F, Woodside M T 2016 Science 352 239

    [10]

    Righini M, Lee A, Canari-Chumpitaz C, Lionberger T, Gabizon R, Coello Y Tinoco I, Bustamante C 2018 Proc. Natl. Acad. Sci. USA 115 1286

    [11]

    Sun B, Johnson D S, Patel G, Smith B Y, Pandey M, Patel S S, Wang M D 2011 Nature 478 132

    [12]

    Yuan G, Le S, Yao M, Qian H, Zhou X, Yan J, Chen H 2017 Angew. Chem. Int. Edit. 56 5490

    [13]

    Zhang X, Chen H, Fu H, Doyle P S, Yan J 2012 Proc. Natl. Acad. Sci. USA 109 8103

    [14]

    Zhang X H, Chen H, Le S M, Rouzina I, Doyle P S, Yan J 2013 Proc. Natl. Acad. Sci. USA 110 3865

    [15]

    Sun B, Wei K J, Zhang B, Zhang X H, Dou S X, Li M, Xi X G 2008 EMBO J. 27 3279

    [16]

    Li W, Chen P, Yu J, Dong L, Liang D, Feng J, Yan J, Wang P Y, Li Q, Zhang Z, Li M, Li G 2016 Mol. Cell 64 120

    [17]

    Lee C Y, Lou J Z, Wen K K, McKane M, Eskin S G, Ono S, Chien S, Rubenstein P A, Zhu C, McIntire L V 2013 Proc. Natl. Acad. Sci. USA 110 5022

    [18]

    Lin W X, Ma J B, Nong D G, Xu C H, Zhang B, Li J H, Jia Q, Dou S X, Ye F F, Xi X G, Lu Y, Li M 2017 Phys. Rev. Lett. 119 138102

    [19]

    Blosser T R, Yang J G, Stone M D, Narlikar G J, Zhuang X 2009 Nature 462 1022

    [20]

    Yasuda R, Noji H, Kinosita K, Yoshida M 1998 Cell 93 1117

    [21]

    Qi Z, Redding S, Lee J Y, Gibb B, Kwon Y, Niu H, Gaines W A, Sung P, Greene E C 2015 Cell 160 856

    [22]

    Sun Y, Sato O, Ruhnow F, Arsenault M E, Ikebe M, Goldman Y E 2010 Nat. Struct. Mol. Biol. 17 485

    [23]

    Lu H P, Xun L, Xie X S 1998 Science 282 1877

    [24]

    Danilowicz C, Coljee V W, Bouzigues C, Lubensky D K, Nelson D R, Prentiss M 2003 Proc. Natl. Acad. Sci. USA 100 1694

    [25]

    Smith S B, Finzi L, Bustamante C 1992 Science 258 1122

    [26]

    Smith S B, Cui Y, Bustamante C 1996 Science 271 795

    [27]

    Marko J F, Siggia E D 1995 Macromolecules 28 8759

    [28]

    Wang X L, Zhang X H, Wei K J, Sun B, Li M 2008 Acta Phys. Sin. 57 3905 (in Chinese) [王晓玲, 张兴华, 魏孔吉, 孙博, 李明 2008 57 3905]

    [29]

    Sarkar R, Rybenkov V V 2016 Front. Phys. 4 48

    [30]

    Li J H, Lin W X, Zhang B, Nong D G, Ju H P, Ma J B, Xu C H, Ye F F, Xi X G, Li M, Lu Y, Dou S X 2016 Nucleic Acids Res. 44 4330

    [31]

    Kim K, Saleh O A 2009 Nucleic Acids Res. 37 e136

    [32]

    Bosco A, Camunas-Soler J, Ritort F 2014 Nucleic Acids Res. 42 2064

    [33]

    Strick T R, Allemand J F, Bensimon D, Bensimon A, Croquette V 1996 Science 271 1835

    [34]

    Abels J A, Moreno-Herrero F, van der Heijden T, Veenhuizen P T M, Bruinink M M, Dekker C, Dekker N H 2005 Biophys. J. 88 2737

  • [1]

    Ha T, Enderle T, Ogletree D F, Chemla D S, Selvin P R, Weiss S 1996 Proc. Natl. Acad. Sci. USA 93 6264

    [2]

    Neuman K C, Nagy A 2008 Nat. Methods 5 491

    [3]

    Wang S, Zheng H Z, Zhao Z Y, Lu Y, Xu C H 2013 Acta Phys. Sin. 62 168703 (in Chinese) [王爽, 郑海子, 赵振业, 陆越, 徐春华 2013 62 168703]

    [4]

    Qian H, Chen H, Yan J 2016 Acta Phys. Sin. 65 188706 (in Chinese) [钱辉, 陈虎, 严洁 2016 65 188706]

    [5]

    Madariaga-Marcos J, Hormeno S, Pastrana C L, Fisher G L M, Dillingham M S, Moreno-Herrero F 2018 Nanoscale 10 4579

    [6]

    Cheng W, Arunajadai S G, Moffitt J R, Tinoco I J, Bustamante C 2011 Science 333 1746

    [7]

    Comstock M J, Whitley K D, Jia H, Sokoloski J, Lohman T M, Ha T, Chemla Y R 2015 Science 348 352

    [8]

    Arslan S, Khafizov R, Thomas C D, Chemla Y R, Ha T 2015 Science 348 344

    [9]

    Neupane K, Foster D A N, Dee D R, Yu H, Wang F, Woodside M T 2016 Science 352 239

    [10]

    Righini M, Lee A, Canari-Chumpitaz C, Lionberger T, Gabizon R, Coello Y Tinoco I, Bustamante C 2018 Proc. Natl. Acad. Sci. USA 115 1286

    [11]

    Sun B, Johnson D S, Patel G, Smith B Y, Pandey M, Patel S S, Wang M D 2011 Nature 478 132

    [12]

    Yuan G, Le S, Yao M, Qian H, Zhou X, Yan J, Chen H 2017 Angew. Chem. Int. Edit. 56 5490

    [13]

    Zhang X, Chen H, Fu H, Doyle P S, Yan J 2012 Proc. Natl. Acad. Sci. USA 109 8103

    [14]

    Zhang X H, Chen H, Le S M, Rouzina I, Doyle P S, Yan J 2013 Proc. Natl. Acad. Sci. USA 110 3865

    [15]

    Sun B, Wei K J, Zhang B, Zhang X H, Dou S X, Li M, Xi X G 2008 EMBO J. 27 3279

    [16]

    Li W, Chen P, Yu J, Dong L, Liang D, Feng J, Yan J, Wang P Y, Li Q, Zhang Z, Li M, Li G 2016 Mol. Cell 64 120

    [17]

    Lee C Y, Lou J Z, Wen K K, McKane M, Eskin S G, Ono S, Chien S, Rubenstein P A, Zhu C, McIntire L V 2013 Proc. Natl. Acad. Sci. USA 110 5022

    [18]

    Lin W X, Ma J B, Nong D G, Xu C H, Zhang B, Li J H, Jia Q, Dou S X, Ye F F, Xi X G, Lu Y, Li M 2017 Phys. Rev. Lett. 119 138102

    [19]

    Blosser T R, Yang J G, Stone M D, Narlikar G J, Zhuang X 2009 Nature 462 1022

    [20]

    Yasuda R, Noji H, Kinosita K, Yoshida M 1998 Cell 93 1117

    [21]

    Qi Z, Redding S, Lee J Y, Gibb B, Kwon Y, Niu H, Gaines W A, Sung P, Greene E C 2015 Cell 160 856

    [22]

    Sun Y, Sato O, Ruhnow F, Arsenault M E, Ikebe M, Goldman Y E 2010 Nat. Struct. Mol. Biol. 17 485

    [23]

    Lu H P, Xun L, Xie X S 1998 Science 282 1877

    [24]

    Danilowicz C, Coljee V W, Bouzigues C, Lubensky D K, Nelson D R, Prentiss M 2003 Proc. Natl. Acad. Sci. USA 100 1694

    [25]

    Smith S B, Finzi L, Bustamante C 1992 Science 258 1122

    [26]

    Smith S B, Cui Y, Bustamante C 1996 Science 271 795

    [27]

    Marko J F, Siggia E D 1995 Macromolecules 28 8759

    [28]

    Wang X L, Zhang X H, Wei K J, Sun B, Li M 2008 Acta Phys. Sin. 57 3905 (in Chinese) [王晓玲, 张兴华, 魏孔吉, 孙博, 李明 2008 57 3905]

    [29]

    Sarkar R, Rybenkov V V 2016 Front. Phys. 4 48

    [30]

    Li J H, Lin W X, Zhang B, Nong D G, Ju H P, Ma J B, Xu C H, Ye F F, Xi X G, Li M, Lu Y, Dou S X 2016 Nucleic Acids Res. 44 4330

    [31]

    Kim K, Saleh O A 2009 Nucleic Acids Res. 37 e136

    [32]

    Bosco A, Camunas-Soler J, Ritort F 2014 Nucleic Acids Res. 42 2064

    [33]

    Strick T R, Allemand J F, Bensimon D, Bensimon A, Croquette V 1996 Science 271 1835

    [34]

    Abels J A, Moreno-Herrero F, van der Heijden T, Veenhuizen P T M, Bruinink M M, Dekker C, Dekker N H 2005 Biophys. J. 88 2737

  • [1] 张志鹏, 刘帅, 张玉琼, 熊影, 韩伟静, 陈同生, 王爽. 单分子磁镊旋转操控和基因转录调控动力学.  , 2023, 72(21): 218701. doi: 10.7498/aps.72.20231089
    [2] 张宇航, 薛振勇, 孙皓, 张珠伟, 陈虎. 酰基辅酶A结合蛋白去折叠动力学的单分子磁镊研究.  , 2023, 72(15): 158702. doi: 10.7498/aps.72.20230533
    [3] 高兆琳, 刘瑞桦, 温凯, 马英, 李建郎, 郜鹏. 结构光照明相位/荧光双模式显微技术.  , 2022, 71(24): 244203. doi: 10.7498/aps.71.20221518
    [4] 胡金虎, 林丹樱, 张炜, 张晨爽, 屈军乐, 于斌. 结合虚拟单像素成像解卷积的双边照明光片荧光显微技术.  , 2022, 71(2): 028701. doi: 10.7498/aps.71.20211358
    [5] 姚杰, 赵爱迪. 表面单分子量子态的探测和调控研究进展.  , 2022, 71(6): 060701. doi: 10.7498/aps.71.20212324
    [6] 肖晓, 杜舒曼, 赵富, 王晶, 刘军, 李儒新. 基于赝热光照明的单发光学散斑成像.  , 2019, 68(3): 034201. doi: 10.7498/aps.68.20181723
    [7] 吴瑞祥, 张国峰, 乔志星, 陈瑞云. 外电场操控单分子的偶极取向极化特性研究.  , 2019, 68(12): 128201. doi: 10.7498/aps.68.20190361
    [8] 李四维, 吴晶晶, 张赛文, 李恒, 陈丹妮, 于斌, 屈军乐. 用于大景深单分子定位显微的多功能全息相位片的设计及数值模拟.  , 2018, 67(17): 174202. doi: 10.7498/aps.67.20180569
    [9] 赵天宇, 周兴, 但旦, 千佳, 汪召军, 雷铭, 姚保利. 结构光照明显微中的偏振控制.  , 2017, 66(14): 148704. doi: 10.7498/aps.66.148704
    [10] 赵振业, 徐春华, 李菁华, 黄星榞, 马建兵, 陆颖. 用全内反射瞬逝场照明磁镊研究Bloom解旋G-四联体.  , 2017, 66(18): 188701. doi: 10.7498/aps.66.188701
    [11] 李斌, 张国峰, 景明勇, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂. 利用单分子光学探针测量幂律分布的聚合物动力学.  , 2016, 65(21): 218201. doi: 10.7498/aps.65.218201
    [12] 李竟成, 赵爱迪, 王兵. Au(111)表面吸附单个八乙基钴卟啉分子的电子态和输运性质调控.  , 2015, 64(7): 076803. doi: 10.7498/aps.64.076803
    [13] 赵应春, 张秀英, 袁操今, 聂守平, 朱竹青, 王林, 李杨, 贡丽萍, 冯少彤. 基于涡旋光照明的暗场数字全息显微方法研究.  , 2014, 63(22): 224202. doi: 10.7498/aps.63.224202
    [14] 王爽, 郑海子, 赵振业, 陆越, 徐春华. 全内反射瞬逝场照明高精度磁镊及其在DNA解旋酶研究中的应用.  , 2013, 62(16): 168703. doi: 10.7498/aps.62.168703
    [15] 张兴华, 肖彬, 侯锡苗, 徐春华, 王鹏业, 李明. 用单分子磁镊研究顺铂导致的DNA凝聚.  , 2009, 58(6): 4301-4306. doi: 10.7498/aps.58.4301
    [16] 郑雨军, 张兆玉, 张西忠. 单分子体系动力学的高阶累积量相似性.  , 2009, 58(12): 8194-8198. doi: 10.7498/aps.58.8194
    [17] 张国峰, 程峰钰, 贾锁堂, 孙建虎, 肖连团, 张芳. 室温单分子偶极取向与量子化再取向动力学实验研究.  , 2009, 58(4): 2364-2368. doi: 10.7498/aps.58.2364
    [18] 王晓玲, 张兴华, 魏孔吉, 孙 博, 李 明. 一种改进型单分子操纵装置及其应用.  , 2008, 57(6): 3905-3911. doi: 10.7498/aps.57.3905
    [19] 彭双艳, 黄 涛, 王晓波, 邵军虎, 肖连团, 贾锁堂. 基于光子统计测量的单分子判别.  , 2005, 54(11): 5116-5120. doi: 10.7498/aps.54.5116
    [20] 秦伟平, 秦冠仕, 张继森, 吴长锋, 王继伟, 杜国同. 单分子-光子制冷泵的热力学行为.  , 2001, 50(8): 1467-1474. doi: 10.7498/aps.50.1467
计量
  • 文章访问数:  7175
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-14
  • 修回日期:  2018-04-08
  • 刊出日期:  2019-07-20

/

返回文章
返回
Baidu
map