-
通过化学氧化合成的方法将纳米In2O3复合到聚(3,4-乙烯二氧噻吩)(PEDOT)中得到In2O3/PEDOT复合材料.利用X射线衍射、红外光谱、电子显微镜及正电子湮没等方法对复合材料的微观结构进行了系统研究,同时对材料的热学和电学性能进行了表征.结果表明,当In2O3的含量在22 wt%以下时,In2O3能很好地分散到PEDOT基体中.热电性能测试则显示In2O3/PEDOT复合材料的导电率随In2O3含量增加明显增大.纯PEDOT的电导率仅为7.5 S/m,而含12.3 wt% In2O3的复合材料的电导率达到25.75 S/m.该复合材料相应的功率因子(68.8×10-4μW/m·K2)相对于纯的PEDOT(14.5×10-4μW/m·K2)提高了近4倍.另外,复合材料的热导率相对于纯PEDOT也有所降低.最终复合材料的热电优值由0.015×10-4提高到了0.073×10-4.结果表明,In2O3/PEDOT复合材料的热电性能相对于纯PEDOT的热电性能得到了比较明显的提高.
-
关键词:
- 热电材料 /
- 氧化铟 /
- 聚(3,4-乙烯二氧噻吩) /
- 正电子湮没
Poly(3, 4-ethylenedioxythiophene) (PEDOT) has applications in many areas due to its exciting electrical performance and high stability. Since it has very low thermal conductivity, it is also a good organic thermoelectric material. However, the ZT value of pure PEDOT is rather low, because the electrical properties such as conductivity are still not satisfactory. It is found that the thermoelectric performance can be enhanced by adding inorganic thermoelectric materials into PEDOT to form composites. In this paper, we synthesize a composite of In2O3/PEDOT by chemical oxidation. Microstructure of the composite is studied by X-ray diffraction, infrared spectroscopy, transmission electron microscope, and positron annihilation spectroscopy. The XRD measurements show that the pure PEDOT sample is amorphous, and the crystallinity in composite sample is contributed by In2O3. Besides, the diffraction peaks become sharper with increasing the In2O3 content. Transmission electron microscope measurements confirm that the PEDOT sample is amorphous and the shapes of In2O3 particles are regular. The surfaces of the In2O3 particles are wholly coated with thin layers of PEDOT, and when the In2O3 content is higher than 22 wt%, the In2O3 particles cannot be uniformly dispersed in pure PEDOT layers. The positron annihilation measurements reveal the interface structure in the In2O3/PEDOT composite, which can capture positron and cause the lifetime of positron to increase. The relative quantity of interface increases with In2O3 content increasing. However, when the In2O3 content is more than 22 wt%, the interface structure is destroyed. All the measurements show that when the In2O3 content is lower than 22 wt%, the In2O3 nanoparticles are well dispersed in PEDOT. The electrical conductivity of In2O3/PEDOT composite increases with In2O3 content increasing. At room temperature, the electrical conductivity of PEDOT is 7.5 S/m, while in the In2O3/PEDOT sample with 12.3 wt% In2O3, a maximum electrical conductivity of 25.75 S/m is obtained. When the In2O3 content increases from 0 to 22 wt%, the power factor of the composite increases rapidly from 14.5×10-4 to 68.8×10-4 μW/m·K2. On the contrary, the thermal conductivity shows decrease compared with the thermal conductivity of pure PEDOT. The ZT value of the composite increases from 0.015×10-4 to 0.073×10-4. Our results indicate that the thermoelectric properties of In2O3/PEDOT composite can be effectively improved compared with those of the pure PEDOT-
Keywords:
- thermoelectric materials /
- indium (III) oxide /
- poly (3,4-ethylenedioxythiophene) /
- positron a annihilation
[1] Bakker F L, Slachter A, Adam J P, van Wees B J 2010 Phys. Rev. Lett. 105 136601
[2] McGrail B T, Sehirlioglu A, Pentzer E 2015 Angewandte Chemie International Edition 54 1710
[3] Venkatasubramanian R 2000 Phys. Rev. B 61 3091
[4] Bux S K, Blair R G, Gogna P K, Lee H, Chen G, Dresselhaus M S, Kaner R B, Fleurial J P 2009 Adv. Funct. Mater. 19 2445
[5] Du Y, Shen S Z, Cai K, Casey P S 2012 Prog. Polymer Sci. 37 820
[6] Wang J, Cai K F, Shen S 2015 Organic Electron. 17 151
[7] Culebras M, García Barberá A, Serrano Claumarchirant J F, Gómez C M, Cantarero A 2017 Synthetic Metals 225 103
[8] Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T 2003 Int. Mater. Rev. 48 45
[9] Tritt T M, Boettner H, Chen L 2008 MRS Bull. 33 366
[10] Wang J, Cai K F, Yin J L, Shen S 2017 Synthetic Metals 224 27
[11] Li Y Y, Du Y, Dou Y C, Cai K F, Xu J Y 2017 Synthetic Metals 226 119
[12] Sun Y M, Sheng P, Di C A, Jiao F, Xu W, Qiu D, Zhu D B 2012 Adv. Mater. 24 932
[13] Kim G H, Shao L, Zhang K, Pipe K P 2013 Nature Mater. 12 719
[14] Shakouri A 2011 Ann. Rev. Mater. Res. 41 399
[15] Leonov V, Vullers R J M 2009 J. Electr. Mater. 38 1491
[16] Frankenfield D, Roth-Yousey L, Compher C 2005 J. Am. Dietet. Associat. 105 775
[17] Moriarty G P 2013 Ph. D. Dissertation (Texas:A&M University)
[18] Jonasa F, Morrison T 1997 Synthetic Metals 85 1397
[19] Kemp N T, Kaiser A B, Liu C J, Chapman B, Mercier O, Carr A M, Trodahl H J, Buckley R G, Partridge A C, Lee J Y, Kim C Y, Bartl A, Dunsch L, Smith W T, Shapiro J S 1999 J. Polymer Sci. Part B:Polymer Phys. 37 953
[20] Yao Q, Chen L D, Zhang W Q, Liufu S C, Chen X H 2010 ACS Nano 4 2445
[21] Sun J, Yeh M L, Jung B J, Zhang B, Feser J, Majumdar A, Katz H E 2010 Macromolecules 43 2897
[22] Lu B Y, Liu C C, Lu S, Xu J K, Jiang F X, Li Y Z, Zhang Z 2010 Chin. Phys. Lett. 27 057201
[23] Lévesque I, Bertrand P O, Blouin N, Leclerc M, Zecchin S, Zotti G, Ratcliffe C I, Klug D D, Gao X, Gao F M, Tse J S 2007 Chem. Mater. 19 2128
[24] Nardes A M, Kemerink M, de Kok M M, Vinken E, Maturova K, Janssen R A J 2008 Organic Electron. 9 727
[25] Elschner A, Kirchmeyer S, Lövenich W, Merker U, Reuter K 2011 PEDOT:Principles and Applications of an Intrinsically Conductive Polymer (Vol. 10) (Boca Raton, London, New York:CRC Press, Taylor & Francis Group)
[26] Tantavichet N, Pritzker M D, Burns C M 2001 J. Appl. Electrochem. 31 281
[27] Kim T, Kim J, Kim Y, Lee T, Kim W, Suh K S 2009 Current Appl. Phys. 9 120
[28] Heywang G, Jonas F 1992 Adv. Mater. 4 116
[29] Ludwig K A, Uram J D, Yang J, Martin D C, Kipke D R 2006 J. Neural Engineer. 3 59
[30] Fabretto M V, Evans D R, Mueller M, Zuber K, Hojati-Talemi P, Short R D, Wallace G G, Murphy P J 2012 Chem. Mater. 24 3998
[31] Selvaganesh S V, Mathiyarasu J, Phani K L N, Yegnaraman V 2007 Nanoscale Res. Lett. 2 546
[32] Shin H J, Jeon S S, Im S S 2011 Synthetic Metals 161 1284
[33] Xiao Y M, Lin J Y, Tai S Y, Chou S W, Yue G, Wu J H 2012 J. Mater. Chem. 22 19919
[34] Harish S, Mathiyarasu J, Phani K L N, Yegnaraman V 2008 Catal. Lett. 128 197
[35] Brandt W, Paulin R 1968 Phys. Rev. Lett. 21 193
[36] Li C Y, Zhao B, Zhou B, Qi N, Chen Z Q, Zhou W 2017 Phys. Chem. Chem. Phys. 19 7659
[37] Sharma S K, Prakash J, Sudarshan K, Maheshwari P, Sathiyamoorthy D, Pujari P K 2012 Phys. Chem. Chem. Phys. 14 10972
[38] Krause-Rehberg R, Leipner H S 1999 Positron Annihilation in Semiconductors:Defect Studies (Vol. 127) (Berlin:Springer Science & Business Media)
[39] Shek C H, Lai J K L, Lin G M 1999 J. Phys. Chem. Solids 60 189
-
[1] Bakker F L, Slachter A, Adam J P, van Wees B J 2010 Phys. Rev. Lett. 105 136601
[2] McGrail B T, Sehirlioglu A, Pentzer E 2015 Angewandte Chemie International Edition 54 1710
[3] Venkatasubramanian R 2000 Phys. Rev. B 61 3091
[4] Bux S K, Blair R G, Gogna P K, Lee H, Chen G, Dresselhaus M S, Kaner R B, Fleurial J P 2009 Adv. Funct. Mater. 19 2445
[5] Du Y, Shen S Z, Cai K, Casey P S 2012 Prog. Polymer Sci. 37 820
[6] Wang J, Cai K F, Shen S 2015 Organic Electron. 17 151
[7] Culebras M, García Barberá A, Serrano Claumarchirant J F, Gómez C M, Cantarero A 2017 Synthetic Metals 225 103
[8] Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T 2003 Int. Mater. Rev. 48 45
[9] Tritt T M, Boettner H, Chen L 2008 MRS Bull. 33 366
[10] Wang J, Cai K F, Yin J L, Shen S 2017 Synthetic Metals 224 27
[11] Li Y Y, Du Y, Dou Y C, Cai K F, Xu J Y 2017 Synthetic Metals 226 119
[12] Sun Y M, Sheng P, Di C A, Jiao F, Xu W, Qiu D, Zhu D B 2012 Adv. Mater. 24 932
[13] Kim G H, Shao L, Zhang K, Pipe K P 2013 Nature Mater. 12 719
[14] Shakouri A 2011 Ann. Rev. Mater. Res. 41 399
[15] Leonov V, Vullers R J M 2009 J. Electr. Mater. 38 1491
[16] Frankenfield D, Roth-Yousey L, Compher C 2005 J. Am. Dietet. Associat. 105 775
[17] Moriarty G P 2013 Ph. D. Dissertation (Texas:A&M University)
[18] Jonasa F, Morrison T 1997 Synthetic Metals 85 1397
[19] Kemp N T, Kaiser A B, Liu C J, Chapman B, Mercier O, Carr A M, Trodahl H J, Buckley R G, Partridge A C, Lee J Y, Kim C Y, Bartl A, Dunsch L, Smith W T, Shapiro J S 1999 J. Polymer Sci. Part B:Polymer Phys. 37 953
[20] Yao Q, Chen L D, Zhang W Q, Liufu S C, Chen X H 2010 ACS Nano 4 2445
[21] Sun J, Yeh M L, Jung B J, Zhang B, Feser J, Majumdar A, Katz H E 2010 Macromolecules 43 2897
[22] Lu B Y, Liu C C, Lu S, Xu J K, Jiang F X, Li Y Z, Zhang Z 2010 Chin. Phys. Lett. 27 057201
[23] Lévesque I, Bertrand P O, Blouin N, Leclerc M, Zecchin S, Zotti G, Ratcliffe C I, Klug D D, Gao X, Gao F M, Tse J S 2007 Chem. Mater. 19 2128
[24] Nardes A M, Kemerink M, de Kok M M, Vinken E, Maturova K, Janssen R A J 2008 Organic Electron. 9 727
[25] Elschner A, Kirchmeyer S, Lövenich W, Merker U, Reuter K 2011 PEDOT:Principles and Applications of an Intrinsically Conductive Polymer (Vol. 10) (Boca Raton, London, New York:CRC Press, Taylor & Francis Group)
[26] Tantavichet N, Pritzker M D, Burns C M 2001 J. Appl. Electrochem. 31 281
[27] Kim T, Kim J, Kim Y, Lee T, Kim W, Suh K S 2009 Current Appl. Phys. 9 120
[28] Heywang G, Jonas F 1992 Adv. Mater. 4 116
[29] Ludwig K A, Uram J D, Yang J, Martin D C, Kipke D R 2006 J. Neural Engineer. 3 59
[30] Fabretto M V, Evans D R, Mueller M, Zuber K, Hojati-Talemi P, Short R D, Wallace G G, Murphy P J 2012 Chem. Mater. 24 3998
[31] Selvaganesh S V, Mathiyarasu J, Phani K L N, Yegnaraman V 2007 Nanoscale Res. Lett. 2 546
[32] Shin H J, Jeon S S, Im S S 2011 Synthetic Metals 161 1284
[33] Xiao Y M, Lin J Y, Tai S Y, Chou S W, Yue G, Wu J H 2012 J. Mater. Chem. 22 19919
[34] Harish S, Mathiyarasu J, Phani K L N, Yegnaraman V 2008 Catal. Lett. 128 197
[35] Brandt W, Paulin R 1968 Phys. Rev. Lett. 21 193
[36] Li C Y, Zhao B, Zhou B, Qi N, Chen Z Q, Zhou W 2017 Phys. Chem. Chem. Phys. 19 7659
[37] Sharma S K, Prakash J, Sudarshan K, Maheshwari P, Sathiyamoorthy D, Pujari P K 2012 Phys. Chem. Chem. Phys. 14 10972
[38] Krause-Rehberg R, Leipner H S 1999 Positron Annihilation in Semiconductors:Defect Studies (Vol. 127) (Berlin:Springer Science & Business Media)
[39] Shek C H, Lai J K L, Lin G M 1999 J. Phys. Chem. Solids 60 189
计量
- 文章访问数: 6940
- PDF下载量: 93
- 被引次数: 0