搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

使用不同工质的会切磁场等离子体推力器

刘辉 蒋文嘉 宁中喜 崔凯 曾明 曹希峰 于达仁

引用本文:
Citation:

使用不同工质的会切磁场等离子体推力器

刘辉, 蒋文嘉, 宁中喜, 崔凯, 曾明, 曹希峰, 于达仁

Cusped field thruster using different propellants

Liu Hui, Jiang Wen-Jia, Ning Zhong-Xi, Cui Kai, Zeng Ming, Cao Xi-Feng, Yu Da-Ren
PDF
导出引用
  • 会切磁场等离子体推力器是一种利用磁镜约束等离子体产生推力的新型推力器,具有寿命长、推力大范围连续可调等优点,在无拖曳控制领域具有较大的应用前景.分别采用Xe,Kr和Ar三种不同工质,开展了会切磁场等离子体推力器实验.首先,对所用的推力器进行了简要的原理和设计介绍;然后,对三种工质的点火电压分别进行了测试,发现Xe是最容易点火成功的,Kr和Ar点火难度较大.在阳极电流、推力、效率和比冲等性能方面,三种工质在同等条件下也存在明显的区别.分析发现,三者的工质利用率高低导致了性能上的差别,通过提升通流密度能够大幅提升Kr和Ar的工质利用率.在羽流结构方面,法拉第测量结果表明三者都存在明显的空心羽流,且离子电流密度峰值出现的角度随着原子量的减小而逐渐减小.
    Cusped field thruster is a new kind of thruster which confines plasma by magnetic mirror effect to produce thrust. It is characterized by long lifespan and adjustable thrust in a large range, which makes it have great potential applications in drag free satellites and commercial space satellites. It was put forward first by THALES Electron Devices in Germany and sponsored from European Space Agency. There are several institutions are engaged in the research of this thruster, including Massachusetts Institute of Technology, Stanford University and Technische Universiteit Delft. Now the test experiments on the cusped field thruster using Xe, Kr and Ar are being carried out in the laboratory of plasma propulsion of Harbin Institute of Technology to ascertain the ionization regulations of different propellants under the high voltage and strong magnetic field conditions. On this basis, it is significant to know the mechanism about how the performances change with propellant and provide the foundation for the cusped field thruster using different propellants. In this paper, the principle and design process of this thruster are presented. Then it can be found that the thruster can be ignited easily by using Xe compared with by using Kr and Ar under the same volume flux, which is caused by their differences in ionization energy and ionization section. Experiments show that the cusped field thruster can be ignited under 200 V while it cannot be ignited by using Kr and Ar even under 1000 V under the same volume flux. Then the performances of cusped field thruster using three propellants are tested. It can be found that there are obvious differences in anode current, thrust, efficiency and impulse using three propellants under the same conditions. The diagnosing of plume using Faraday probe shows that the propellant utilization causes the difference in performance which is related to ionization process. The experiments show that the utilization rate of Xe is over 90 percent, while the utilization rate of Kr is less than 60 percent and the utilization rate of Ar is less than 20 percent. The obvious difference in ionization voltage can reflect the difference in performance. The experimental results under the same flux show that the utilization rates of Kr and Ar can be improved by increasing flow density and reducing the collision free path between atoms. Experiments show that the peak utilization rate of Ar can be improved to 50 percent approximately. In the aspect of plume structure, the results of Faraday probe show that the hollow plume can be observed and the angle linked with peak ion current density decreases with atom mass decreasing.
      通信作者: 宁中喜, ningzx@hit.edu.cn
      Corresponding author: Ning Zhong-Xi, ningzx@hit.edu.cn
    [1]

    Kornfeld G, Koch N, Coustou G 2003 Proceedings of the 28th International Electric Propulsion Conference Toulouse, France, March, 2003 p212

    [2]

    Stefan W, Alexey L, Benjamin V R, Jens H, Angelo G, Ralf H, Peter H 2015 Presented at the 34rd International Electric Propulsion Conference Kobe-Hyogo, Japan, July, 2015 p345

    [3]

    Genovese A, Lazurenko A, Koch N, Weis S, Schirra M, Reijen, B V, Haderspeck J, Holtmann P 2011 Presented at the 32nd International Electric Propulsion Conference Wiesbaden, Germany, September, 2011 p141

    [4]

    Gildea S R, Matlock T S, Lozano P, Martinez-Sanchez M 2010 46th AIAA Joint Propulsion Conference and Exhibit Nashville, TN, July 25-28, 2010 p7014

    [5]

    Matlock T, Gildea S R, Hu F, Becker N, Lozano P, Martinez-Sanchez M 2010 46th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit Nashville, TN, July 25-28, 2010 p7104

    [6]

    MacDonald N A, Young C V, Cappelli M A, Hargus W A 2012 J. Appl. Phys. 111 68

    [7]

    Koch N, Harmann H P, Kornfeld G 2005 Presented at the 29th International Electric Propulsion Conference Princeton, New Jersey, USA, October, 2005 p297

    [8]

    McGeoch M W 301 380 B2 [2015-3-19]

    [9]

    Mcgeoch M W 2016 SPIE Adv. Lithography 9776 97760S

    [10]

    Tsai C C 1991 Nucl. Instrum. Methods Phys. Res. 56 1166

    [11]

    Anukaliani V, Selvarajan A 2001 Eur. Phys. J. Appl. Phys. 15 199

    [12]

    Gorbunov A V, Molodtsov N A, Moskalenko I V, Shcheglov D A 2010 Rev. Sci. Instrum. 81 10D712

    [13]

    Patel A D, Sharma M, Ramasubramanian N, Ganesh R, Chattopadhyay P K 2017 arXiv:171000182 [Physics-Plasma Physics]

    [14]

    Linnell J A 2007 Ph. D. Dissertation (Michigan: University of Michigan)

    [15]

    Karabadzhak G F, Chiu Y H, Dressler R A 2006 J. Appl. Phys. 99 1080

    [16]

    Bugrova A I, Lipatov A S, Morozov A I, Solomatina L V 2002 Plasma Phys. Rep. 28 1032

    [17]

    Wetzel R C, Baiocchi F A, Hayes T R, Freund R S 1987 Phys. Rev. A 35 559

    [18]

    Hu P, Liu H, GaoY Y, Yu D R 2016 Phys. Plasma 23 093307

    [19]

    Morozov A I, Savelyev V V 2000 Rev. Plasma Phys. 21 203

    [20]

    Liu H, Sun G S, Zhao Y J, Chen P B, Ma C Y, Wu H, Yu D R 2014 IEEE Trans. Plasma Sci. 43 127

  • [1]

    Kornfeld G, Koch N, Coustou G 2003 Proceedings of the 28th International Electric Propulsion Conference Toulouse, France, March, 2003 p212

    [2]

    Stefan W, Alexey L, Benjamin V R, Jens H, Angelo G, Ralf H, Peter H 2015 Presented at the 34rd International Electric Propulsion Conference Kobe-Hyogo, Japan, July, 2015 p345

    [3]

    Genovese A, Lazurenko A, Koch N, Weis S, Schirra M, Reijen, B V, Haderspeck J, Holtmann P 2011 Presented at the 32nd International Electric Propulsion Conference Wiesbaden, Germany, September, 2011 p141

    [4]

    Gildea S R, Matlock T S, Lozano P, Martinez-Sanchez M 2010 46th AIAA Joint Propulsion Conference and Exhibit Nashville, TN, July 25-28, 2010 p7014

    [5]

    Matlock T, Gildea S R, Hu F, Becker N, Lozano P, Martinez-Sanchez M 2010 46th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit Nashville, TN, July 25-28, 2010 p7104

    [6]

    MacDonald N A, Young C V, Cappelli M A, Hargus W A 2012 J. Appl. Phys. 111 68

    [7]

    Koch N, Harmann H P, Kornfeld G 2005 Presented at the 29th International Electric Propulsion Conference Princeton, New Jersey, USA, October, 2005 p297

    [8]

    McGeoch M W 301 380 B2 [2015-3-19]

    [9]

    Mcgeoch M W 2016 SPIE Adv. Lithography 9776 97760S

    [10]

    Tsai C C 1991 Nucl. Instrum. Methods Phys. Res. 56 1166

    [11]

    Anukaliani V, Selvarajan A 2001 Eur. Phys. J. Appl. Phys. 15 199

    [12]

    Gorbunov A V, Molodtsov N A, Moskalenko I V, Shcheglov D A 2010 Rev. Sci. Instrum. 81 10D712

    [13]

    Patel A D, Sharma M, Ramasubramanian N, Ganesh R, Chattopadhyay P K 2017 arXiv:171000182 [Physics-Plasma Physics]

    [14]

    Linnell J A 2007 Ph. D. Dissertation (Michigan: University of Michigan)

    [15]

    Karabadzhak G F, Chiu Y H, Dressler R A 2006 J. Appl. Phys. 99 1080

    [16]

    Bugrova A I, Lipatov A S, Morozov A I, Solomatina L V 2002 Plasma Phys. Rep. 28 1032

    [17]

    Wetzel R C, Baiocchi F A, Hayes T R, Freund R S 1987 Phys. Rev. A 35 559

    [18]

    Hu P, Liu H, GaoY Y, Yu D R 2016 Phys. Plasma 23 093307

    [19]

    Morozov A I, Savelyev V V 2000 Rev. Plasma Phys. 21 203

    [20]

    Liu H, Sun G S, Zhao Y J, Chen P B, Ma C Y, Wu H, Yu D R 2014 IEEE Trans. Plasma Sci. 43 127

  • [1] 杨楠楠, 王尚民, 张家良, 温小琼, 赵凯. 改进型机-电模型及脉冲等离子体推力器能量转化效率分析.  , 2024, 73(21): 215202. doi: 10.7498/aps.73.20241117
    [2] 谈人玮, 杨涓, 耿海, 吴先明, 牟浩. 氮气工质10厘米ECRIT中和器实验研究.  , 2023, 72(4): 045202. doi: 10.7498/aps.72.20221951
    [3] 李鑫, 曾明, 刘辉, 宁中喜, 于达仁. 应用于电推进的碘工质电子回旋共振等离子体源.  , 2023, 72(22): 225202. doi: 10.7498/aps.72.20230785
    [4] 王亚楠, 任林渊, 丁卫东, 孙安邦, 耿金越. 腔体结构参数对毛细管放电型脉冲等离子体推力器放电特性的影响.  , 2021, 70(23): 235204. doi: 10.7498/aps.70.20211198
    [5] 夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展. 2 cm电子回旋共振离子推力器离子源中磁场对等离子体特性与壁面电流影响的数值模拟.  , 2021, 70(7): 075204. doi: 10.7498/aps.70.20201667
    [6] 成玉国, 夏广庆. 感应式脉冲推力器中等离子体加速数值研究.  , 2017, 66(7): 075204. doi: 10.7498/aps.66.075204
    [7] 薄勇, 赵青, 罗先刚, 范佳, 刘颖, 刘建卫. 电磁波在时变磁化等离子体信道中通信性能的实验研究.  , 2016, 65(5): 055201. doi: 10.7498/aps.65.055201
    [8] 陈文波, 龚学余, 邓贤君, 冯军, 黄国玉. THz电磁波在时变非磁化等离子体中的传播特性研究.  , 2014, 63(19): 194101. doi: 10.7498/aps.63.194101
    [9] 杨敏, 李小平, 刘彦明, 石磊, 谢楷. 信号在时变等离子体中的传播特性.  , 2014, 63(8): 085201. doi: 10.7498/aps.63.085201
    [10] 邹丹旦, 杨维紘. 双流体等离子体模型的动力学可容变分.  , 2014, 63(3): 030401. doi: 10.7498/aps.63.030401
    [11] 杨利霞, 沈丹华, 施卫东. 三维时变等离子体目标的电磁散射特性研究.  , 2013, 62(10): 104101. doi: 10.7498/aps.62.104101
    [12] 张华, 吴建军, 张代贤, 张锐, 何振. 用于脉冲等离子体推力器烧蚀过程仿真的新型机电模型.  , 2013, 62(21): 210202. doi: 10.7498/aps.62.210202
    [13] 张锐, 张代贤, 张帆, 何振, 吴建军. 脉冲等离子体推力器羽流沉积薄膜的结构与光学性质研究.  , 2013, 62(2): 025207. doi: 10.7498/aps.62.025207
    [14] 杨涓, 王与权, 李鹏飞, 王阳, 王云民, 马艳杰. 无工质微波推力器推力测量实验.  , 2012, 61(11): 110301. doi: 10.7498/aps.61.110301
    [15] 杨涓, 李鹏飞, 杨乐. 不同功率下无工质微波推力器的推力预估.  , 2011, 60(12): 124101. doi: 10.7498/aps.60.124101
    [16] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟.  , 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [17] 张 颖, 陈其峰, 顾云军, 蔡灵仓, 卢铁城. 部分电离稠密氦等离子体物态方程的自洽变分计算.  , 2007, 56(3): 1318-1324. doi: 10.7498/aps.56.1318
    [18] 江志明, 徐至展, 张伟清, 林礼煌, 陈时胜. 激光产生等离子体中密度轮廓的变陡和凹陷现象的研究.  , 1988, 37(12): 2048-2052. doi: 10.7498/aps.37.2048
    [19] 徐至展, 余坚, 唐永红. 强激光在磁化不均匀等离子体中引起的密度轮廓变陡.  , 1986, 35(3): 311-318. doi: 10.7498/aps.35.311
    [20] 王德焴. 自由界面等离子体平衡的变分原理.  , 1980, 29(2): 233-240. doi: 10.7498/aps.29.233
计量
  • 文章访问数:  6597
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-28
  • 修回日期:  2018-04-11
  • 刊出日期:  2019-07-20

/

返回文章
返回
Baidu
map