-
光抽运亚稳态稀有气体激光器利用放电等离子体作为激光的增益介质.为掌握容性射频放电的放电参数对等离子体各项参数的影响的基本规律,利用等离子体发射光谱法研究了氦氩混合气体在不同装置、不同Ar组分、不同气压和不同射频注入功率下的等离子体参数.利用残留水蒸气产生的OH自由基A2∑+→X2Π的转动光谱分析获得气体温度;利用电子态光谱的玻尔兹曼做图法获得电子激发温度,利用Ar原子696.5 nm谱线的斯塔克展宽获得电子密度.结果表明:气体温度随气压增加略微上升,在一个大气压下改变组分和放电功率,气体温度变化不大;电子激发温度随总气压的下降而上升,且随着Ar组分的增加而略微下降;目前放电条件下的电子密度均在1015 cm-3量级;长时间放电监测表明,残留的水蒸气会导致电子温度的下降,从而降低Ar亚稳态的产率.
-
关键词:
- 光泵亚稳态氩气激光器 /
- 射频放电 /
- 发射光谱分析
Optically pumped metastable rare-gas laser (OPRGL) have been proposed to overcome the shortcomings of diode-pumped alkali-vapor laser in the recent years. The OPRGL promises to realize high-scale output. But how to achieve enough particle density of metastable atoms is still an open problem. Usually, plasma produced by discharge serves as a gain medium of the OPRGL. Here in this paper, we are to reveal the effects of different discharge parameters on the plasma properties, such as particle density of metastable argon atoms. Gas discharge at a radio frequency of 13.56 MHz is adopted to excite argon atoms. Emission spectrum is employed to study argon and helium radio frequency discharge of optically pumped argon laser at high pressure, different powers of discharge and various content of argon. Gas temperature is obtained by analyzing rotational spectrum (A2∑+ → X2Π) of OH radical generated by residual water vapor and comparing simulated spectrum with the measured spectrum. The electronic excitation temperature relating to electron temperature is obtained by the method of Boltzmann's plot. Stark broadening of the spectrum is used to determine the electron density. The results show that gas temperature rises slightly with the increase of pressure and varies little with content and discharge power changing. The electronic excitation temperature increases with the decrease of pressure evidently and decreases slightly with the increase of content. The electron density is on the order of 1015 cm-3 under various conditions controlled by us. Long time discharge test reveals that residual water vapor can lead to the decrease of electron temperature, and thus reducing the yield of argon metastable state. In conclusion, considering that the higher gas temperature can improve the collision relaxation rate of helium and argon, and the higher electron temperature can improve the rate of production of argon metastable state. Thus a proposal is put forward that appropriately heating gas and reducing gas pressure can obtain higher particle density of metastable argon. Furthermore, It can be found from these results that heating and cleaning the gas during discharge may be candidate methods to obtain and sustain the higher particle density in the plasma.-
Keywords:
- optically pumped metastable argon laser /
- radio frequency discharge /
- emission spectroscopy analysis
[1] Demyanov A V, Kochetov I V, Mikheyev P A 2013 J. Phys. D 46 375202
[2] Rawlins W T, Galbally-Kinney K L, Davis S J, Hoskinson A R, Hopwood J A, Heaven M C 2015 Opt. Express 23 4804
[3] Han J, Heaven M C 2015 Opt. Lett. 40 1310
[4] Yang Z N, Yu G Q, Wang H Y, Lu Q S, Xu X J 2015 Opt. Express 23 13823
[5] Gao J, He Y Y, Sun P F, Zhang Z F, Wang X B, Zuo D L 2017 J. Opt. Soc. Am. B 34 814
[6] Han J, Heaven M C, Moran P J, Pitz G A, Guild E M, Sanderson C R, Hokr B 2017 Opt. Lett. 42 4627
[7] Gao J, Zhang Z F, Lei P, Wang X B, Zuo D L 2018 High Power Laser and Particle Beams 30 010102 (in Chinese) [高俊, 张秩凡, 雷鹏, 王新兵, 左都罗 2018 强激光与粒子束 30 010102]
[8] Niermann B, Reuter R, Kuschel T, Benedikt J, Boke M, Winter J 2012 Plasma Sources Sci. Technol. 21 034002
[9] Balcon N, Hagelaar G, Boeuf J P 2008 IEEE Trans. Plasma Sci. 36 2782
[10] Eshel B, Perram G P 2018 J. Opt. Soc. Am. B 35 164
[11] Wu Q 2010 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese) [武启 2010 硕士学位论文 (大连: 大连理工大学)]
[12] Li S Z, Huang W T, Wang D Z 2009 Phys. Plasmas 16 093501
[13] Wu R, Li Y, Zhu S G, Feng H Y, Zhang L, Wang J D 2008 Spectrosc. Spect. Anal. 28 731 (in Chinese) [武蓉, 李燕, 朱顺官, 冯红艳, 张琳, 王俊德 2008 光谱学与光谱分析 28 731]
[14] Dong L F, Ran J X, Mao Z G 2005 Appl. Phys. Lett. 86 161501
[15] Dong L F, Qi Y Y, Liu W Y, Fan W L 2009 J. Appl. Phys. 106 013301
[16] Dong L F, Liu W Y, Yang Y J, Wang S, Ji Y F 2011 Acta Phys. Sin. 60 045202 (in Chinese) [董丽芳, 刘为远, 杨玉杰, 王帅, 嵇亚飞 2011 60 045202]
[17] Niermann B, Boke M, Sadeghi N, Winter J 2010 Eur. Phys. J. D 60 489
[18] Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2011 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp325-326 (in Chinese) [迈克 A 力伯曼, 阿伦 J 里登伯格 著 (蒲以康 译) 2011 等离子体放电原理与材料处理 (北京: 科学出版社)第 325–326页]
[19] Wust K 1992 Rev. Sci. Instrum. 63 2581
[20] Zhai X D, Ding Y J, Peng Z M, Luo R 2012 Acta Phys. Sin. 61 123301 (in Chinese) [翟晓东, 丁艳军, 彭志敏, 罗锐 2012 61 123301]
[21] Hibbert A, Biémont E, Godefroid M, Vaeck N 1991 J. Phys. B 24 3943
-
[1] Demyanov A V, Kochetov I V, Mikheyev P A 2013 J. Phys. D 46 375202
[2] Rawlins W T, Galbally-Kinney K L, Davis S J, Hoskinson A R, Hopwood J A, Heaven M C 2015 Opt. Express 23 4804
[3] Han J, Heaven M C 2015 Opt. Lett. 40 1310
[4] Yang Z N, Yu G Q, Wang H Y, Lu Q S, Xu X J 2015 Opt. Express 23 13823
[5] Gao J, He Y Y, Sun P F, Zhang Z F, Wang X B, Zuo D L 2017 J. Opt. Soc. Am. B 34 814
[6] Han J, Heaven M C, Moran P J, Pitz G A, Guild E M, Sanderson C R, Hokr B 2017 Opt. Lett. 42 4627
[7] Gao J, Zhang Z F, Lei P, Wang X B, Zuo D L 2018 High Power Laser and Particle Beams 30 010102 (in Chinese) [高俊, 张秩凡, 雷鹏, 王新兵, 左都罗 2018 强激光与粒子束 30 010102]
[8] Niermann B, Reuter R, Kuschel T, Benedikt J, Boke M, Winter J 2012 Plasma Sources Sci. Technol. 21 034002
[9] Balcon N, Hagelaar G, Boeuf J P 2008 IEEE Trans. Plasma Sci. 36 2782
[10] Eshel B, Perram G P 2018 J. Opt. Soc. Am. B 35 164
[11] Wu Q 2010 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese) [武启 2010 硕士学位论文 (大连: 大连理工大学)]
[12] Li S Z, Huang W T, Wang D Z 2009 Phys. Plasmas 16 093501
[13] Wu R, Li Y, Zhu S G, Feng H Y, Zhang L, Wang J D 2008 Spectrosc. Spect. Anal. 28 731 (in Chinese) [武蓉, 李燕, 朱顺官, 冯红艳, 张琳, 王俊德 2008 光谱学与光谱分析 28 731]
[14] Dong L F, Ran J X, Mao Z G 2005 Appl. Phys. Lett. 86 161501
[15] Dong L F, Qi Y Y, Liu W Y, Fan W L 2009 J. Appl. Phys. 106 013301
[16] Dong L F, Liu W Y, Yang Y J, Wang S, Ji Y F 2011 Acta Phys. Sin. 60 045202 (in Chinese) [董丽芳, 刘为远, 杨玉杰, 王帅, 嵇亚飞 2011 60 045202]
[17] Niermann B, Boke M, Sadeghi N, Winter J 2010 Eur. Phys. J. D 60 489
[18] Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2011 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp325-326 (in Chinese) [迈克 A 力伯曼, 阿伦 J 里登伯格 著 (蒲以康 译) 2011 等离子体放电原理与材料处理 (北京: 科学出版社)第 325–326页]
[19] Wust K 1992 Rev. Sci. Instrum. 63 2581
[20] Zhai X D, Ding Y J, Peng Z M, Luo R 2012 Acta Phys. Sin. 61 123301 (in Chinese) [翟晓东, 丁艳军, 彭志敏, 罗锐 2012 61 123301]
[21] Hibbert A, Biémont E, Godefroid M, Vaeck N 1991 J. Phys. B 24 3943
计量
- 文章访问数: 6581
- PDF下载量: 116
- 被引次数: 0