搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于部分测量增强量子隐形传态过程的量子Fisher信息

武莹 李锦芳 刘金明

引用本文:
Citation:

基于部分测量增强量子隐形传态过程的量子Fisher信息

武莹, 李锦芳, 刘金明

Enhancement of quantum Fisher information of quantum teleportation by optimizing partial measurements

Wu Ying, Li Jin-Fang, Liu Jin-Ming
PDF
导出引用
  • 量子Fisher信息(QFI)是量子度量学中的一个重要物理量,可给出预估参数精度的最优值.本文研究如何引入弱测量和测量反转操作,来提高有限温环境下以Greenberger-Horne-Zeilinger态作为量子通道的隐形传态过程中的QFI.依据隐形传态过程中量子比特的传输情形,考虑了三种不同方案相应的QFI.首先,通过构造每种量子隐形传态方案的量子线路图,分析了QFI与推广振幅衰减噪声参数的变化关系.随后对各种方案中的受噪声粒子施加弱测量和测量反转操作,并对相应的部分测量参数进行优化,着重探讨了施加最优部分测量操作后QFI的改进量.结果表明,经过优化后的部分测量操作能有效提高有限温环境下量子隐形传态过程输出态的QFI;而且量子系统所处的环境温度越低,QFI的提高效果可越显著.
    The purpose of quantum teleportation is to achieve perfect transmission of quantum information from one site to another distant site. In the teleportation process, the quantum system is inevitably affected by its surrounding environment, causing the system to lose its coherence, which will result in distortion of the transmitted information. In recent years, weak measurement and measurement reversal have been proposed to suppress the decoherence of quantum entanglement and protect some quantum states. On the other hand, quantum Fisher information (QFI) is an important physical quantity in quantum metrology, which can give the optimal value estimating the accuracy of parameters. As is well known, QFI is highly susceptible to environmental noise and can lead its measurement accuracy to decrease. Therefore, it is of great importance to examine how to protect QFI from being influenced by the external circumstance during the teleportation procedure. In this paper, we study how to improve the QFI of teleporting a single-qubit state via a Greenberger-Horne-Zeilinger state in a finite temperature environment with the technique of weak measurement and weak measurement reversal. According to different qubit transmission cases of three quantum teleportation schemes, we consider their respective QFIs in detail. After constructing the quantum logic circuit of each teleportation scheme, we first analyze the variance trend of QFI against the generalized amplitude damping noise parameters. Then by introducing weak measurement and measurement reversal on each noise particle of the three schemes, we optimize the related partial measurement parameters and explore the corresponding improved QFI, namely, the difference between the QFI with optimal partial measurements and that without partial measurements. We find that optimizing partial measurements can efficiently enhance the QFI of the teleported state for the three kinds of teleportation schemes at finite temperature. Moreover, with the value of p fixed, the lower the environment temperature, the larger the value of the improved QFI is. Our results could be useful in further understanding the applications of weak measurement and measurement reversal to the quantum communication process and may shed light on estimating some relevant quantum parameters and implementing quantum information tasks.
      通信作者: 刘金明, jmliu@phy.ecnu.edu.cn
    • 基金项目: 国家重点研发专项(批准号:2016YFB0501601)和国家自然科学基金(批准号:11174081)资助的课题.
      Corresponding author: Liu Jin-Ming, jmliu@phy.ecnu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0501601) and the National Natural Science Foundation of China (Grant No. 11174081).
    [1]

    Yin J, Cao Y, Li Y H, et al. 2017 Science 356 1140

    [2]

    Liao S K, Cai W Q, Handsteiner J, et al. 2018 Phys. Rev. Lett. 120 030501

    [3]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [4]

    Gottesman D, Chuang I L 1999 Nature 402 390

    [5]

    Yang L, Ma H Y, Zheng C, Ding X L, Gao J C, Long G L 2017 Acta Phys. Sin. 66 230303 (in Chinese) [杨璐, 马鸿洋, 郑超, 丁晓兰, 高健存, 龙桂鲁 2017 66 230303]

    [6]

    Braunstein S L, Kimble H J 1998 Phys. Rev. Lett. 80 869

    [7]

    Yonezawa H, Aoki T, Furusawa A 2004 Nature 431 430

    [8]

    Zhang J, Peng K C 2000 Phys. Rev. A 62 064302

    [9]

    Dell'Anno F, de Siena S, Illuminati F 2010 Phys. Rev. A 81 012333

    [10]

    Hillery M, Buzek V, Berthiaume A 1999 Phys. Rev. A 59 1829

    [11]

    Bell B A, Markham D, Herrera-Marti D A, Marin A, Wadsworth W J, Rarity J G, Tame M S 2014 Nat. Commun. 5 5480

    [12]

    Kogias I, Xiang Y, He Q Y, Adesso G 2017 Phys. Rev. A 95 012315

    [13]

    Deng F G, Li C Y, Li Y S, Zhou H Y, Wang Y 2005 Phys. Rev. A 72 022338

    [14]

    Zhou P, Li X H, Deng F G, Zhou H Y 2007 J. Phys. A: Math. Theor. 40 13121

    [15]

    Man Z X, Xia Y J, An N B 2007 Phys. Rev. A 75 052306

    [16]

    Huelga S F, Plenio M B, Vaccaro J A 2002 Phys. Rev. A 65 042316

    [17]

    Han X P, Liu J M 2008 Phys. Scr. 78 015001

    [18]

    Li W L, Li C F, Guo G C 2000 Phys. Rev. A 61 034301

    [19]

    Pati A K, Agrawal P 2007 Phys. Lett. A 371 185

    [20]

    Chen X B, Du J Z, Wen Q Y, Zhu F C 2008 Chin. Phys. B 17 771

    [21]

    Yan F L, Yan T 2010 Chin. Sci. Bull. 55 902

    [22]

    Zha X W, Zou Z C, Qi J X, Song H Y 2013 Int. J. Theor. Phys. 52 1740

    [23]

    Li Y H, Nie L P 2013 Int. J. Theor. Phys. 52 1630

    [24]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [25]

    Ren J G, Xu P, Yong H L, et al. 2017 Nature 549 70

    [26]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439

    [27]

    Zhong W, Sun Z, Ma J, Wang X, Nori F 2013 Phys. Rev. A 87 022337

    [28]

    Giovaneti V, Lloyd S, Maccone L 2004 Science 306 1330

    [29]

    Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 60 1351

    [30]

    Paraoanu G S 2011 EPL 93 64002

    [31]

    Korotkov A N, Keane K 2010 Phys. Rev. A 81 040103

    [32]

    Branczyk A M, Mendonca P E M F, Gilchrist A, Doherty A C, Bartlett S D 2007 Phys. Rev. A 75 012329

    [33]

    Sun Q Q, Amri M A, Zubairy M S 2009 Phys. Rev. A 80 033838

    [34]

    Song W, Yang M, Cao Z L 2014 Phys. Rev. A 89 014303

    [35]

    Man Z X, Xia Y J, An N B 2012 Phys. Rev. A 86 012325

    [36]

    Liao X P, Fang M F, Fang J S, Zhu Q Q 2014 Chin. Phys. B 23 020304

    [37]

    Xiao X 2014 Phys. Scr. 89 065102

    [38]

    Wang S C, Yu Z W, Zou W J, Wang X B 2014 Phys. Rev. A 89 022318

    [39]

    Huang J 2017 Acta Phys. Sin. 66 010301 (in Chinese) [黄江 2017 66 010301]

    [40]

    Guo J L, Wei J L 2015 Ann. Phys. 354 522

    [41]

    Shi J D, Wang D, Ma W C, Ye L 2015 Quantum Inf. Process. 14 3569

    [42]

    Yang R Y, Liu J M 2017 Quantum. Inf. Process. 16 125

    [43]

    Kim Y S, Lee J C, Kwon O, Kim Y H 2012 Nat. Phys. 8 117

    [44]

    Xu X Y, Kedem Y, Sun K, Vaidman L, Li C F, Guo G C 2013 Phys. Rev. Lett. 111 033604

    [45]

    Katz N, Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Lucero E, O'Connell A, Wang H, Cleland A N, Martinis J M, Korotkov A N 2008 Phys. Rev. Lett. 101 200401

    [46]

    Groen J P, Riste D, Tornberg L, Cramer J, Degroot P C, Picot T, Johansson G, Dicarlo L 2013 Phys. Rev. Lett. 111 090506

    [47]

    Pramanik T, Majumdar A S 2013 Phys. Lett. A 377 3209

    [48]

    Qiu L, Tang G, Yang X Q, Wang A M 2014 Ann. Phys. 350 137

    [49]

    Xiao X, Yao Y, Zhong W J, Li Y L, Xie Y M 2016 Phys. Rev. A 93 012307

    [50]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p380

  • [1]

    Yin J, Cao Y, Li Y H, et al. 2017 Science 356 1140

    [2]

    Liao S K, Cai W Q, Handsteiner J, et al. 2018 Phys. Rev. Lett. 120 030501

    [3]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [4]

    Gottesman D, Chuang I L 1999 Nature 402 390

    [5]

    Yang L, Ma H Y, Zheng C, Ding X L, Gao J C, Long G L 2017 Acta Phys. Sin. 66 230303 (in Chinese) [杨璐, 马鸿洋, 郑超, 丁晓兰, 高健存, 龙桂鲁 2017 66 230303]

    [6]

    Braunstein S L, Kimble H J 1998 Phys. Rev. Lett. 80 869

    [7]

    Yonezawa H, Aoki T, Furusawa A 2004 Nature 431 430

    [8]

    Zhang J, Peng K C 2000 Phys. Rev. A 62 064302

    [9]

    Dell'Anno F, de Siena S, Illuminati F 2010 Phys. Rev. A 81 012333

    [10]

    Hillery M, Buzek V, Berthiaume A 1999 Phys. Rev. A 59 1829

    [11]

    Bell B A, Markham D, Herrera-Marti D A, Marin A, Wadsworth W J, Rarity J G, Tame M S 2014 Nat. Commun. 5 5480

    [12]

    Kogias I, Xiang Y, He Q Y, Adesso G 2017 Phys. Rev. A 95 012315

    [13]

    Deng F G, Li C Y, Li Y S, Zhou H Y, Wang Y 2005 Phys. Rev. A 72 022338

    [14]

    Zhou P, Li X H, Deng F G, Zhou H Y 2007 J. Phys. A: Math. Theor. 40 13121

    [15]

    Man Z X, Xia Y J, An N B 2007 Phys. Rev. A 75 052306

    [16]

    Huelga S F, Plenio M B, Vaccaro J A 2002 Phys. Rev. A 65 042316

    [17]

    Han X P, Liu J M 2008 Phys. Scr. 78 015001

    [18]

    Li W L, Li C F, Guo G C 2000 Phys. Rev. A 61 034301

    [19]

    Pati A K, Agrawal P 2007 Phys. Lett. A 371 185

    [20]

    Chen X B, Du J Z, Wen Q Y, Zhu F C 2008 Chin. Phys. B 17 771

    [21]

    Yan F L, Yan T 2010 Chin. Sci. Bull. 55 902

    [22]

    Zha X W, Zou Z C, Qi J X, Song H Y 2013 Int. J. Theor. Phys. 52 1740

    [23]

    Li Y H, Nie L P 2013 Int. J. Theor. Phys. 52 1630

    [24]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [25]

    Ren J G, Xu P, Yong H L, et al. 2017 Nature 549 70

    [26]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439

    [27]

    Zhong W, Sun Z, Ma J, Wang X, Nori F 2013 Phys. Rev. A 87 022337

    [28]

    Giovaneti V, Lloyd S, Maccone L 2004 Science 306 1330

    [29]

    Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 60 1351

    [30]

    Paraoanu G S 2011 EPL 93 64002

    [31]

    Korotkov A N, Keane K 2010 Phys. Rev. A 81 040103

    [32]

    Branczyk A M, Mendonca P E M F, Gilchrist A, Doherty A C, Bartlett S D 2007 Phys. Rev. A 75 012329

    [33]

    Sun Q Q, Amri M A, Zubairy M S 2009 Phys. Rev. A 80 033838

    [34]

    Song W, Yang M, Cao Z L 2014 Phys. Rev. A 89 014303

    [35]

    Man Z X, Xia Y J, An N B 2012 Phys. Rev. A 86 012325

    [36]

    Liao X P, Fang M F, Fang J S, Zhu Q Q 2014 Chin. Phys. B 23 020304

    [37]

    Xiao X 2014 Phys. Scr. 89 065102

    [38]

    Wang S C, Yu Z W, Zou W J, Wang X B 2014 Phys. Rev. A 89 022318

    [39]

    Huang J 2017 Acta Phys. Sin. 66 010301 (in Chinese) [黄江 2017 66 010301]

    [40]

    Guo J L, Wei J L 2015 Ann. Phys. 354 522

    [41]

    Shi J D, Wang D, Ma W C, Ye L 2015 Quantum Inf. Process. 14 3569

    [42]

    Yang R Y, Liu J M 2017 Quantum. Inf. Process. 16 125

    [43]

    Kim Y S, Lee J C, Kwon O, Kim Y H 2012 Nat. Phys. 8 117

    [44]

    Xu X Y, Kedem Y, Sun K, Vaidman L, Li C F, Guo G C 2013 Phys. Rev. Lett. 111 033604

    [45]

    Katz N, Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Lucero E, O'Connell A, Wang H, Cleland A N, Martinis J M, Korotkov A N 2008 Phys. Rev. Lett. 101 200401

    [46]

    Groen J P, Riste D, Tornberg L, Cramer J, Degroot P C, Picot T, Johansson G, Dicarlo L 2013 Phys. Rev. Lett. 111 090506

    [47]

    Pramanik T, Majumdar A S 2013 Phys. Lett. A 377 3209

    [48]

    Qiu L, Tang G, Yang X Q, Wang A M 2014 Ann. Phys. 350 137

    [49]

    Xiao X, Yao Y, Zhong W J, Li Y L, Xie Y M 2016 Phys. Rev. A 93 012307

    [50]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p380

  • [1] 任亚雷, 周涛. 运动参考系中量子Fisher信息.  , 2024, 73(5): 050601. doi: 10.7498/aps.73.20231394
    [2] 李竞, 丁海涛, 张丹伟. 非厄米哈密顿量中的量子Fisher信息与参数估计.  , 2023, 72(20): 200601. doi: 10.7498/aps.72.20230862
    [3] 李岩, 任志红. 多量子比特WV纠缠态在Lipkin-Meshkov-Glick模型下的量子Fisher信息.  , 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [4] 刘然, 吴泽, 李宇晨, 陈昱全, 彭新华. 基于量子Fisher信息测量的实验多体纠缠刻画.  , 2023, 72(11): 110305. doi: 10.7498/aps.72.20230356
    [5] 牛明丽, 王月明, 李志坚. 基于量子Fisher信息的耗散相互作用光-物质耦合常数的估计.  , 2022, 71(9): 090601. doi: 10.7498/aps.71.20212029
    [6] 文镇南, 易有根, 徐效文, 郭迎. 无噪线性放大的连续变量量子隐形传态.  , 2022, 71(13): 130307. doi: 10.7498/aps.71.20212341
    [7] 张骄阳, 丛爽, 王驰, SajedeHarraz. 借助弱测量和环境辅助测量的N量子比特状态退相干抑制.  , 2022, 71(22): 220303. doi: 10.7498/aps.71.20220760
    [8] 张晓东, 於亚飞, 张智明. 量子弱测量中纠缠对参数估计精度的影响.  , 2021, 70(24): 240302. doi: 10.7498/aps.70.20210796
    [9] 任志红, 李岩, 李艳娜, 李卫东. 基于量子Fisher信息的量子计量进展.  , 2019, 68(4): 040601. doi: 10.7498/aps.68.20181965
    [10] 黄江. 弱测量对四个量子比特量子态的保护.  , 2017, 66(1): 010301. doi: 10.7498/aps.66.010301
    [11] 贾芳, 刘寸金, 胡银泉, 范洪义. 量子隐形传态保真度的新公式及应用.  , 2016, 65(22): 220302. doi: 10.7498/aps.65.220302
    [12] 王美姣, 夏云杰. 在有限温度下运用弱测量保护量子纠缠.  , 2015, 64(24): 240303. doi: 10.7498/aps.64.240303
    [13] 刘世右, 郑凯敏, 贾芳, 胡利云, 谢芳森. 单-双模组合压缩热态的纠缠性质及在量子隐形传态中的应用.  , 2014, 63(14): 140302. doi: 10.7498/aps.63.140302
    [14] 常锋, 王晓茜, 盖永杰, 严冬, 宋立军. 光与物质相互作用系统中的量子Fisher信息和自旋压缩.  , 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [15] 张沛, 周小清, 李智伟. 基于量子隐形传态的无线通信网络身份认证方案.  , 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [16] 乔盼盼, 艾合买提·阿不力孜, 蔡江涛, 路俊哲, 麦麦提依明·吐孙, 日比古·买买提明. 利用热平衡态超导电荷量子比特实现量子隐形传态.  , 2012, 61(24): 240303. doi: 10.7498/aps.61.240303
    [17] 宋立军, 严冬, 刘烨. 玻色-爱因斯坦凝聚系统的量子Fisher信息与混沌.  , 2011, 60(12): 120302. doi: 10.7498/aps.60.120302
    [18] 何锐, Bing He. 量子隐形传态的新方案.  , 2011, 60(6): 060302. doi: 10.7498/aps.60.060302
    [19] 周小清, 邬云文. 利用三粒子纠缠态建立量子隐形传态网络的探讨.  , 2007, 56(4): 1881-1887. doi: 10.7498/aps.56.1881
    [20] 张 茜, 李福利, 李宏荣. 基于双模压缩信道的双模高斯态量子隐形传态.  , 2006, 55(5): 2275-2280. doi: 10.7498/aps.55.2275
计量
  • 文章访问数:  6814
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-13
  • 修回日期:  2018-04-03
  • 刊出日期:  2019-07-20

/

返回文章
返回
Baidu
map