搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ruddlesden-Popper结构杂化非本征铁电体及其多铁性

刘小强 吴淑雅 朱晓莉 陈湘明

引用本文:
Citation:

Ruddlesden-Popper结构杂化非本征铁电体及其多铁性

刘小强, 吴淑雅, 朱晓莉, 陈湘明

Hybrid improper ferroelectricity and multiferroic in Ruddlesden-Popper structures

Liu Xiao-Qiang, Wu Shu-Ya, Zhu Xiao-Li, Chen Xiang-Ming
PDF
导出引用
  • 杂化非本征铁电性是指在具有钙钛矿结构单元的金属氧化物中由氧八面体面内旋转和面外倾侧耦合诱导出的二阶铁电序,其有望在室温强磁电耦合多铁性材料中获得重要应用,并将极大地拓展铁电体物理学的内涵和外延.本文在阐述杂化非本征铁电性物理起源及其内禀电控磁性的基础上,总结了有关Ruddlesden-Popper结构杂化非本征铁电体及多铁性的主要研究进展与面临的挑战,并展望了发展方向.
    Hybrid improper ferroelectricity (HIF) is a secondary ferroelectric ordering induced by the coupling between oxygen octahedral in-plane rotation and out-of-plane tilt in a metal-oxide containing the perovskite structure units. Investigation of HIF will greatly extend the connotation and denotation of ferroelectric physics and material science, and it is expected to develop the room temperature single phase multiferroic material with large polarization and strong magnetoelectric coupling, owing to its intrinsic characteristic of the electric-field control of magnetism through HIF in magnet. In the present paper, the recent primary progress of HIFs and the multiferroics with Ruddlesden-Popper structures is reviewed, and the perspective of the future development is also presented.
      通信作者: 陈湘明, xmchen59@zju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51332006,51772266)资助的课题.
      Corresponding author: Chen Xiang-Ming, xmchen59@zju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51332006, 51772266).
    [1]

    Scott J F 2007 Science 315 954

    [2]

    Yang S Y, Seidel J, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager Ⅲ J W, Martin L W, Ramesh R 2010 Nat. Nanotech. 5 143

    [3]

    Ma J, Hu J, Li Z, Nan C W 2011 Adv. Mater. 9 1062

    [4]

    Dong S, Liu J M, Cheong S W, Ren Z 2015 Adv. Phys. 64 519

    [5]

    Liu J M, Nan C W 2014 Physics 43 88 (in Chinese) [刘俊明, 南策文 2014 物理 43 88]

    [6]

    Hill N A 2000 J. Phys. Chem. B 104 6694

    [7]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719

    [8]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55

    [9]

    Shi X X, Liu X Q, Chen X M 2017 Adv. Funct. Mater. 27 1604037

    [10]

    Liu J, Sun T L, Liu X Q, Tian H, Gao T T, Chen X M 2018 Adv. Funct. Mater. 28 1706062

    [11]

    Liu J, Liu X Q, Chen X M 2017 J. Am. Ceram. Soc. 100 4045

    [12]

    Shi X X, Liu X Q, Chen X M 2016 J. Appl. Phys. 119 064104

    [13]

    Liu J, Liu X Q, Chen X M 2016 J. Appl. Phys. 119 204102

    [14]

    Shi X X, Qin Y, Chen X M 2014 Appl. Phys. Lett. 105 192902

    [15]

    Liu J, Liu X Q, Chen X M 2015 J. Appl. Phys. 117 174101

    [16]

    Young Y, Stroppa A, Picozzi S, Rodinelli J M 2015 J. Phys.: Condens. Matter. 27 283202

    [17]

    Benedek N A, Fennie C J 2011 Phys. Rev. Lett. 106 107204

    [18]

    Mulder A T, Benedek N A, Rondinelli J M, Fennie C J 2013 Adv. Funct. Mater. 23 4810

    [19]

    Zhao H J, Iniguez J, Ren W, Chen X M, Bellaiche L 2014 Phys. Rev. B 89 174101

    [20]

    Zhao H J, Ren W, Yang Y R, Iniguez J, Chen X M, Bellaiche L 2014 Nat. Commun. 5 4021

    [21]

    Fukushima T, Stroppa A, Picozzi S, Perez-Mato J M 2011 Phys. Chem. Chem. Phys. 13 12186

    [22]

    Schaak R E, Mallouk T E 2002 Chem. Mater. 14 1455

    [23]

    Chen C, Ning H, Lepadatu S, Cain M, Yan H, Reece M J 2015 J. Mater. Chem. C 3 19

    [24]

    Oh Y S, Luo X, Huang F T, Wang Y, Cheong S W 2015 Nat. Mater. 14 407

    [25]

    Liu X Q, Wu J W, Shi X X, Zhao H J, Zhou H Y, Qiu R H, Zhang W Q, Chen X M 2015 Appl. Phys. Lett. 106 202903

    [26]

    Li X, Yang L, Li C F, Liu M F, Fan Z, Xie Y L, Lu C L, Lin L, Yan Z B, Zhang Z, Dai J Y, Liu J M, Cheong S W 2017 Appl. Phys. Lett. 110 042901

    [27]

    Gao B, Huang F T, Wang Y, Kim J W, Wang L, Lim S J, Cheong S W 2017 Appl. Phys. Lett. 110 222906

    [28]

    Huang F T, Gao B, Kim J W, Luo X, Wang Y, Chu M W, Chang C K, Sheu H S, Cheong S W 2016 NPJ Quantum Mater. 1 16017

    [29]

    Li G J, Liu X Q, Zhu H Y, Chen X M 2018 J. Appl. Phys. 123 014101

    [30]

    Wang Y, Huang F T, Luo X, Gao B, Cheong S W 2017 Adv. Mater. 29 1601288

    [31]

    Pitcher M J, Mandal P, Dyer M S, Alaria J, Borisov P, Niu H, Claridge J B, Rosseinsky M J 2015 Science 347 420

    [32]

    Xu B, Wang D, Zhao H J, Iniguez J, Chen X M, Bellaiche L 2015 Adv. Funct. Mater. 25 3626

    [33]

    Bousquet E, Dawber M, Stucki N, Lichtensteiger C, Hermet P, Gariglio S, Triscone J, Ghosez P 2008 Nature 452 732

    [34]

    Kamba S, Adamo C, Goian V, Zhang H, Beamland R, Gupta A S, Gopalan V, Drahokoupil J, Vanek P, Svatuska M, Seiner H, Palatnius L, Klementova M, Benedek N A, Reaney I, Maca K, Fennie C J, Schlom D G 2014 Abstract Book of Electroceramics XIV Bucharest, Romania, June 16-20, 2014 p269

  • [1]

    Scott J F 2007 Science 315 954

    [2]

    Yang S Y, Seidel J, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager Ⅲ J W, Martin L W, Ramesh R 2010 Nat. Nanotech. 5 143

    [3]

    Ma J, Hu J, Li Z, Nan C W 2011 Adv. Mater. 9 1062

    [4]

    Dong S, Liu J M, Cheong S W, Ren Z 2015 Adv. Phys. 64 519

    [5]

    Liu J M, Nan C W 2014 Physics 43 88 (in Chinese) [刘俊明, 南策文 2014 物理 43 88]

    [6]

    Hill N A 2000 J. Phys. Chem. B 104 6694

    [7]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719

    [8]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55

    [9]

    Shi X X, Liu X Q, Chen X M 2017 Adv. Funct. Mater. 27 1604037

    [10]

    Liu J, Sun T L, Liu X Q, Tian H, Gao T T, Chen X M 2018 Adv. Funct. Mater. 28 1706062

    [11]

    Liu J, Liu X Q, Chen X M 2017 J. Am. Ceram. Soc. 100 4045

    [12]

    Shi X X, Liu X Q, Chen X M 2016 J. Appl. Phys. 119 064104

    [13]

    Liu J, Liu X Q, Chen X M 2016 J. Appl. Phys. 119 204102

    [14]

    Shi X X, Qin Y, Chen X M 2014 Appl. Phys. Lett. 105 192902

    [15]

    Liu J, Liu X Q, Chen X M 2015 J. Appl. Phys. 117 174101

    [16]

    Young Y, Stroppa A, Picozzi S, Rodinelli J M 2015 J. Phys.: Condens. Matter. 27 283202

    [17]

    Benedek N A, Fennie C J 2011 Phys. Rev. Lett. 106 107204

    [18]

    Mulder A T, Benedek N A, Rondinelli J M, Fennie C J 2013 Adv. Funct. Mater. 23 4810

    [19]

    Zhao H J, Iniguez J, Ren W, Chen X M, Bellaiche L 2014 Phys. Rev. B 89 174101

    [20]

    Zhao H J, Ren W, Yang Y R, Iniguez J, Chen X M, Bellaiche L 2014 Nat. Commun. 5 4021

    [21]

    Fukushima T, Stroppa A, Picozzi S, Perez-Mato J M 2011 Phys. Chem. Chem. Phys. 13 12186

    [22]

    Schaak R E, Mallouk T E 2002 Chem. Mater. 14 1455

    [23]

    Chen C, Ning H, Lepadatu S, Cain M, Yan H, Reece M J 2015 J. Mater. Chem. C 3 19

    [24]

    Oh Y S, Luo X, Huang F T, Wang Y, Cheong S W 2015 Nat. Mater. 14 407

    [25]

    Liu X Q, Wu J W, Shi X X, Zhao H J, Zhou H Y, Qiu R H, Zhang W Q, Chen X M 2015 Appl. Phys. Lett. 106 202903

    [26]

    Li X, Yang L, Li C F, Liu M F, Fan Z, Xie Y L, Lu C L, Lin L, Yan Z B, Zhang Z, Dai J Y, Liu J M, Cheong S W 2017 Appl. Phys. Lett. 110 042901

    [27]

    Gao B, Huang F T, Wang Y, Kim J W, Wang L, Lim S J, Cheong S W 2017 Appl. Phys. Lett. 110 222906

    [28]

    Huang F T, Gao B, Kim J W, Luo X, Wang Y, Chu M W, Chang C K, Sheu H S, Cheong S W 2016 NPJ Quantum Mater. 1 16017

    [29]

    Li G J, Liu X Q, Zhu H Y, Chen X M 2018 J. Appl. Phys. 123 014101

    [30]

    Wang Y, Huang F T, Luo X, Gao B, Cheong S W 2017 Adv. Mater. 29 1601288

    [31]

    Pitcher M J, Mandal P, Dyer M S, Alaria J, Borisov P, Niu H, Claridge J B, Rosseinsky M J 2015 Science 347 420

    [32]

    Xu B, Wang D, Zhao H J, Iniguez J, Chen X M, Bellaiche L 2015 Adv. Funct. Mater. 25 3626

    [33]

    Bousquet E, Dawber M, Stucki N, Lichtensteiger C, Hermet P, Gariglio S, Triscone J, Ghosez P 2008 Nature 452 732

    [34]

    Kamba S, Adamo C, Goian V, Zhang H, Beamland R, Gupta A S, Gopalan V, Drahokoupil J, Vanek P, Svatuska M, Seiner H, Palatnius L, Klementova M, Benedek N A, Reaney I, Maca K, Fennie C J, Schlom D G 2014 Abstract Book of Electroceramics XIV Bucharest, Romania, June 16-20, 2014 p269

  • [1] 肖志峰, 王守宇, 戴雅婷, 康新淼, 张振华, 刘卫芳. Ge掺杂增强Ruddlesden-Popper结构准二维Sr3Sn2O7陶瓷杂化非本征铁电性的物理机制.  , 2024, 73(14): 147702. doi: 10.7498/aps.73.20240583
    [2] 王朝, 张铭, 张持, 王如志, 严辉. n = 2 Ruddlesden-Popper Sr3B2Se7 (B = Zr, Hf) 非常规铁电性的第一性原理研究.  , 2021, 70(11): 116302. doi: 10.7498/aps.70.20202142
    [3] 叶倩, 沈阳, 袁野, 赵祎峰, 段纯刚. 二维本征铁电体及其多铁耦合的研究进展.  , 2020, 69(21): 217710. doi: 10.7498/aps.69.20201433
    [4] 安明, 董帅. 电荷媒介的磁电耦合: 从铁电场效应到电荷序铁电体.  , 2020, 69(21): 217502. doi: 10.7498/aps.69.20201193
    [5] 陈诚, 卢建安, 杜微, 王伟, 毛翔宇, 陈小兵. Nd含量对Bi6−xNdxFe1.4Ni0.6Ti3O18多晶材料多铁性的影响.  , 2019, 68(3): 037701. doi: 10.7498/aps.68.20181287
    [6] 吴枚霞, 李满荣. 异常双钙钛矿A2BB'O6氧化物的多铁性.  , 2018, 67(15): 157510. doi: 10.7498/aps.67.20180817
    [7] 周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文. 多阶有序钙钛矿多铁性材料的高压制备与物性.  , 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
    [8] 赵润, 杨浩. 多铁性钙钛矿薄膜的氧空位调控研究进展.  , 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [9] 殷云宇, 王潇, 邓宏芟, 周龙, 戴建洪, 龙有文. 多种有序钙钛矿结构的高压制备与特殊物性.  , 2017, 66(3): 030201. doi: 10.7498/aps.66.030201
    [10] 刘恩华, 陈钊, 温晓莉, 陈长乐. 顺磁性La2/3Sr1/3MnO3层对Bi0.8Ba0.2FeO3薄膜多铁性能的影响.  , 2016, 65(11): 117701. doi: 10.7498/aps.65.117701
    [11] 毛翔宇, 邹保文, 孙慧, 陈春燕, 陈小兵. Co含量对Bi6Fe2-xCoxTi3O18样品多铁性的影响.  , 2015, 64(21): 217701. doi: 10.7498/aps.64.217701
    [12] 周广宏, 潘旋, 朱雨富. BiFeO3/Ni81Fe19磁性双层膜中的交换偏置及其热稳定性研究.  , 2013, 62(9): 097501. doi: 10.7498/aps.62.097501
    [13] 王美娜, 李英, 王天兴, 刘国栋. 正交多铁性材料DyMnO3的磁性质研究.  , 2013, 62(22): 227101. doi: 10.7498/aps.62.227101
    [14] 管俊伟, 贺端威, 王海阔, 彭放, 许超, 王文丹, 王凯雪, 贺凯. 力学结构及末级压砧硬度对八面体压腔高压发生效率的影响.  , 2012, 61(10): 100701. doi: 10.7498/aps.61.100701
    [15] 姚长达, 巩江峰, 耿芳芳, 高虹, 徐云玲, 张爱梅, 唐春梅, 朱卫华. 常温常压下BiMnO3纳米粉末的制备与物性分析.  , 2010, 59(8): 5332-5337. doi: 10.7498/aps.59.5332
    [16] 孙源, 明星, 孟醒, 孙正昊, 向鹏, 兰民, 陈岗. 多铁材料BaCoF4电子结构的第一性原理研究.  , 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
    [17] 马静, 施展, 林元华, 南策文. 准2-2型磁电多层复合材料的磁电性能.  , 2009, 58(8): 5852-5856. doi: 10.7498/aps.58.5852
    [18] 张飞舟, 王 矫, 顾 雁. 量子混沌系统本征态的统计非遍历性及其半经典极限.  , 1999, 48(12): 2169-2179. doi: 10.7498/aps.48.2169
    [19] 文振翼. 八面体晶场强场理论的U群方法.  , 1979, 28(1): 88-103. doi: 10.7498/aps.28.88
    [20] 陈创天. 晶体电光和非线性光学效应的离子基团理论(Ⅰ)——利用氧八面体畸变模型计算BaTiO3晶体电光及倍频系数.  , 1976, 25(2): 146-161. doi: 10.7498/aps.25.146
计量
  • 文章访问数:  11150
  • PDF下载量:  501
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-09
  • 修回日期:  2018-03-13
  • 刊出日期:  2018-08-05

/

返回文章
返回
Baidu
map