搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非共振圆偏振光作用下单层二硫化钼电子结构及其自旋/谷输运性质

张新成 廖文虎 左敏

引用本文:
Citation:

非共振圆偏振光作用下单层二硫化钼电子结构及其自旋/谷输运性质

张新成, 廖文虎, 左敏

Electronic structure and spin/valley transport properties of monolayer MoS2 under the irradiation of the off-resonant circularly polarized light

Zhang Xin-Cheng, Liao Wen-Hu, Zuo Min
PDF
导出引用
  • 基于紧束缚近似下的低能有效哈密顿模型和久保线性响应理论,研究了外部非共振圆偏振光作用下单层二硫化钼(MoS2)电子结构及其自旋/谷输运性质.研究结果表明:单层MoS2布里渊区K谷和K'谷附近自旋依赖子带间的能隙随着非共振右旋圆偏振光引起的有效耦合能分别线性增大和先减小后增大,随着非共振左旋圆偏振光引起的有效耦合能分别先减小后增大和线性增大,实现了系统能带结构有趣的半导体-半金属-半导体转变.此外,单层MoS2在外部非共振圆偏振光作用下,呈现有趣的量子化横向霍尔电导和自旋/谷霍尔电导,自旋极化率在非共振右/左旋圆偏振光有效耦合能±0.79 eV附近达到最大并发生由正到负或由负到正的急剧转变,谷极化率随着非共振圆偏振光有效耦合能先增大后减小并在其绝对值0.79–0.87 eV范围内达到100%.因而,可以利用外部非共振圆偏振光将单层MoS2调制成自旋/谷以及光电特性优异的新带隙材料.
    The new-type monolayer semiconductor material molybdenum disulfide (MoS2) is direct band gap semiconductor with a similar geometrical structure to graphene, and as it owns superior physical features such as spin/valley Hall effect, it should be more excellent than graphene from the viewpoint of device design and applications. The manipulation of the spin and valley transport in MoS2-based device has been an interesting subject in both experimental and theoretical researches. Experimentally, the photoninduced quantum spin and valley Hall effects may result in high on-off speed spin and/or valley switching based on MoS2. Theoretically, the off-resonant electromagnetic field induced Floquet effective energy should modulate effectively the electronic structure, spin/valley Hall conductance as well as the spin/valley polarization of the MoS2, through the virtual photon absorption and/or emission processes. Utilizing the low energy effective Hamilton model from the tight-binding approximation and Kubo linear response theorem, we theoretically investigate the electronic structure and spin/valley transport properties of the monolayer MoS2 under the irradiation of the off-resonant circularly polarized light in the present work. The band gaps around the K and K' point of the Brillouin region for monolayer MoS2 proves to increase linearly and decrease firstly and then increase, respectively with the increase of external off-resonant right-circularly polarized light induced effective coupling energy, and decrease firstly and then increase and increase linearly with the increase of left-circularly polarized light induced effective coupling energy, therefore, the interesting transition of semiconducting-semimetallic-semiconducting may be observable in monolayer MoS2. Furthermore, the spin and valley Hall conductance of the monolayer MoS2 for the case without off-resonant circularly polarized light are 0 and 2e2/h, respectively, and they will convert into -2e2/h and 0 when the absolute value of the off-resonant circularly polarized light induced effective coupling energy is in a range of 0.79-0.87 eV. Finally, the spin polarization for monolayer MoS2 increases up to a largest value and changes from positive to negative and/or negative to positive at the vicinity of the effective coupling energy ±0.79 eV of the off-resonant right/left circularly polarized light, while the valley polarization should increase firstly and then decrease with the off-resonant circularly polarized light, and goes up to 100% in the range of 0.79-0.87 eV of the absolute value for effective coupling energy. Therefore, the external off-resonant circularly polarized electromagnetic field should be an effective means in manipulating the electronic structure, spin/valley Hall conductance and spin/valley polarization of the monolayer MoS2, the two-dimensional MoS2 may be tuned into a brand bandgap material with excellent spin/valley and optoelectrical properties.
      通信作者: 廖文虎, whliao2007@aliyun.com
    • 基金项目: 国家自然科学基金(批准号:11664010,11264013)、湖南省自然科学基金(批准号:2017JJ2217,12JJ4003)、湖南省教育厅优秀青年基金(批准号:14B148)和吉首大学科研项目(批准号:JGY201763,Jdy16021)资助的课题.
      Corresponding author: Liao Wen-Hu, whliao2007@aliyun.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11664010, 11264013), the Hunan Provincial Natural Science Foundation of China (Grant Nos. 2017JJ2217, 12JJ4003), the Scientific Research Fund of Hunan Provincial Education Department of China (Grant No. 14B148), and the Research Program of Jishou University, China (Grant Nos. JGY201763, Jdy16021).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I 2005 Nature 438 197

    [3]

    Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekaer L 2010 Nature Mater. 9 315

    [4]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [5]

    Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A 2007 Nature Mater. 6 770

    [6]

    Xia F, Farmer D B, Lin Y, Avouris P 2010 Nano Lett. 10 715

    [7]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30

    [8]

    Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206

    [9]

    Li Z, Carbotte J P 2012 Phys. Rev. B 86 205425

    [10]

    Majidi L, Rostami H, Asgari R 2014 Phys. Rev. B 89 045413

    [11]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [12]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [13]

    Mak K F, Lee C, Hone J, Shan J, Tony F H 2010 Phys. Rev. Lett. 105 136805

    [14]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [15]

    Liu H, Peide D Y 2012 IEEE Electron Dev. Lett. 33 546

    [16]

    Zhang Y, Ye J, Matsuhashi Y, Iwasa Y 2012 Nano Lett. 12 1136

    [17]

    Xiao D, Liu G B, Feng W X, Xu X D, Yao W 2012 Phys. Rev. Lett. 108 196802

    [18]

    Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E G, Liu B L, Feng J 2012 Nat. Commun. 3 887

    [19]

    Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotechnol. 7 494

    [20]

    Zeng H, Dai J, Yao W, Xiao D, Cui X 2012 Nat. Nanotechnol. 7 490

    [21]

    Sengupta P, Bellotti E 2016 Appl. Phys. Lett. 108 211104

    [22]

    Zheng H L, Yang B S, Wang D D, Han R L, Du X B, Yan Y 2014 Appl. Phys. Lett. 104 132403

    [23]

    Yarmohammadi M 2017 J. Magnet. Magnet. Mater. 426 621

    [24]

    Wang S, Wang J 2015 Physica B 458 22

    [25]

    Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74

    [26]

    Rostami H, Moghaddam A G, Asgari R 2013 Phys. Rev. B 88 085440

    [27]

    Tahir M, Schwingenschlogl U 2014 New J. Phys. 16 115003

    [28]

    Zhou L, Carbotte J P 2012 Phys. Rev. B 86 205425

    [29]

    Kitagawa T, Oka T, Brataas A, Fu L, Demler E 2011 Phys. Rev. B 84 235108

    [30]

    Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Guzik A A, Demler E, White A G 2012 Nat. Commun. 3 882

    [31]

    Tahir M, Manchon A, Sabeeh K, Schwingenschlogl U 2013 Appl. Phys. Lett. 102 162412

    [32]

    Sinitsyn N A, Hill J E, Min H, Sinova J, MacDonald A H 2006 Phys. Rev. Lett. 97 106804

    [33]

    Dutta P, Maiti S K, Karmakar S N 2012 J. Appl. Phys. 112 044306

    [34]

    Cazalilla M A, Ochoa H, Guinea F 2014 Phys. Rev. Lett. 113 077201

    [35]

    Tahir M, Manchon A, Schwingenschlogl U 2014 Phys. Rev. B 90 125438

    [36]

    Feng W X, Yao Y G, Zhu W G, Zhou J J, Yao W, Xiao D 2012 Phys. Rev. B 86 165108

    [37]

    Missault N, Vasilopoulos P, Vargiamidis V, Peeters F M, van Duppen B 2015 Phys. Rev. B 92 195423

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I 2005 Nature 438 197

    [3]

    Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekaer L 2010 Nature Mater. 9 315

    [4]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [5]

    Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A 2007 Nature Mater. 6 770

    [6]

    Xia F, Farmer D B, Lin Y, Avouris P 2010 Nano Lett. 10 715

    [7]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30

    [8]

    Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206

    [9]

    Li Z, Carbotte J P 2012 Phys. Rev. B 86 205425

    [10]

    Majidi L, Rostami H, Asgari R 2014 Phys. Rev. B 89 045413

    [11]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [12]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [13]

    Mak K F, Lee C, Hone J, Shan J, Tony F H 2010 Phys. Rev. Lett. 105 136805

    [14]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [15]

    Liu H, Peide D Y 2012 IEEE Electron Dev. Lett. 33 546

    [16]

    Zhang Y, Ye J, Matsuhashi Y, Iwasa Y 2012 Nano Lett. 12 1136

    [17]

    Xiao D, Liu G B, Feng W X, Xu X D, Yao W 2012 Phys. Rev. Lett. 108 196802

    [18]

    Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E G, Liu B L, Feng J 2012 Nat. Commun. 3 887

    [19]

    Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotechnol. 7 494

    [20]

    Zeng H, Dai J, Yao W, Xiao D, Cui X 2012 Nat. Nanotechnol. 7 490

    [21]

    Sengupta P, Bellotti E 2016 Appl. Phys. Lett. 108 211104

    [22]

    Zheng H L, Yang B S, Wang D D, Han R L, Du X B, Yan Y 2014 Appl. Phys. Lett. 104 132403

    [23]

    Yarmohammadi M 2017 J. Magnet. Magnet. Mater. 426 621

    [24]

    Wang S, Wang J 2015 Physica B 458 22

    [25]

    Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74

    [26]

    Rostami H, Moghaddam A G, Asgari R 2013 Phys. Rev. B 88 085440

    [27]

    Tahir M, Schwingenschlogl U 2014 New J. Phys. 16 115003

    [28]

    Zhou L, Carbotte J P 2012 Phys. Rev. B 86 205425

    [29]

    Kitagawa T, Oka T, Brataas A, Fu L, Demler E 2011 Phys. Rev. B 84 235108

    [30]

    Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Guzik A A, Demler E, White A G 2012 Nat. Commun. 3 882

    [31]

    Tahir M, Manchon A, Sabeeh K, Schwingenschlogl U 2013 Appl. Phys. Lett. 102 162412

    [32]

    Sinitsyn N A, Hill J E, Min H, Sinova J, MacDonald A H 2006 Phys. Rev. Lett. 97 106804

    [33]

    Dutta P, Maiti S K, Karmakar S N 2012 J. Appl. Phys. 112 044306

    [34]

    Cazalilla M A, Ochoa H, Guinea F 2014 Phys. Rev. Lett. 113 077201

    [35]

    Tahir M, Manchon A, Schwingenschlogl U 2014 Phys. Rev. B 90 125438

    [36]

    Feng W X, Yao Y G, Zhu W G, Zhou J J, Yao W, Xiao D 2012 Phys. Rev. B 86 165108

    [37]

    Missault N, Vasilopoulos P, Vargiamidis V, Peeters F M, van Duppen B 2015 Phys. Rev. B 92 195423

  • [1] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管.  , 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [2] 郑军, 马力, 李春雷, 袁瑞旸, 郭亚涛, 付旭日. 自旋偏压驱动的硅烯和锗烯光控晶体管.  , 2022, 71(19): 198502. doi: 10.7498/aps.71.20221047
    [3] 吴帆帆, 季怡汝, 杨威, 张广宇. 二硫化钼的电子能带结构和低温输运实验进展.  , 2022, 71(12): 127306. doi: 10.7498/aps.71.20220015
    [4] 蒋黎英, 易颖婷, 易早, 杨华, 李治友, 苏炬, 周自刚, 陈喜芳, 易有根. 基于单层二硫化钼的高品质因子、高品质因数的四波段完美吸收器.  , 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [5] 刘凯龙, 彭冬生. 拉伸应变对单层二硫化钼光电特性的影响.  , 2021, 70(21): 217101. doi: 10.7498/aps.70.20210816
    [6] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱.  , 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [7] 孟凡, 胡劲华, 王辉, 邹戈胤, 崔建功, 赵乐. 等离子体谐振腔对二硫化钼的荧光增强效应.  , 2019, 68(23): 237801. doi: 10.7498/aps.68.20191121
    [8] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究.  , 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [9] 危阳, 马新国, 祝林, 贺华, 黄楚云. 二硫化钼/石墨烯异质结的界面结合作用及其对带边电位影响的理论研究.  , 2017, 66(8): 087101. doi: 10.7498/aps.66.087101
    [10] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟.  , 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [11] 张理勇, 方粮, 彭向阳. 单层二硫化钼多相性质及相变的第一性原理研究.  , 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [12] 傅重源, 邢淞, 沈涛, 邰博, 董前民, 舒海波, 梁培. 水热法合成纳米花状二硫化钼及其微观结构表征.  , 2015, 64(1): 016102. doi: 10.7498/aps.64.016102
    [13] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究.  , 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [14] 吴琼, 刘俊, 董前民, 刘阳, 梁培, 舒海波. 硫化锡电子结构和光学性质的量子尺寸效应.  , 2014, 63(6): 067101. doi: 10.7498/aps.63.067101
    [15] 王沅倩, 何军, 肖思, 杨能安, 陈火章. MoS2溶液的波长选择性光限幅效应研究.  , 2014, 63(14): 144204. doi: 10.7498/aps.63.144204
    [16] 魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅. Au的金属颗粒对二硫化钼发光增强.  , 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [17] 雷天民, 吴胜宝, 张玉明, 郭辉, 陈德林, 张志勇. La, Ce, Nd掺杂对单层MoS2电子结构的影响.  , 2014, 63(6): 067301. doi: 10.7498/aps.63.067301
    [18] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究.  , 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [19] 董海明. 低温下二硫化钼电子迁移率研究.  , 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [20] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究.  , 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
计量
  • 文章访问数:  6653
  • PDF下载量:  319
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-28
  • 修回日期:  2018-03-05
  • 刊出日期:  2019-05-20

/

返回文章
返回
Baidu
map