搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

月表尘埃颗粒带电的机理及应用研究

薛丹 刘金远 李书翰

引用本文:
Citation:

月表尘埃颗粒带电的机理及应用研究

薛丹, 刘金远, 李书翰

Charging mechanism and application of lunar dust grains

Xue Dan, Liu Jin-Yuan, Li Shu-Han
PDF
导出引用
  • 研究月尘颗粒在电子束环境下以及紫外源辐照下的带电机理,利用数值方法模拟月尘颗粒在不同背景环境下的充电过程,以探索月表尘埃颗粒的带电机理,进而便于地面月尘环境模拟装置选择合适的月尘带电方式进行空间模拟实验.给出了尘埃在电子束环境下的充电方程,并将紫外辐射带电与具体应用相结合.通过模拟结果可知,在电子束环境下,月尘表面的电荷数随粒径尺寸增大,随电子枪辐照束斑半径减少,随电子枪流强的增加而增多;在紫外源的辐照下,月尘表面电荷数随颗粒尺寸的增大以及紫外线辐照度的增加而增多.由月尘颗粒受太阳紫外辐照带电的数值模拟结果可知,月尘需要在太阳长时间的辐照下才可以带上可观的电荷数,地面模拟该过程需增加辐照源来加速实验.通过模拟结果的分析比较并结合空间环境模拟装置中对月尘舱的设计要求,最终优选紫外源辐照带电方式作为月尘颗粒的带电方案.
    Since the moon has an extremely rarefied atmosphere, the full spectrum of the electromagnetic radiation of the sun reaches the surface, charging the surface dust and affecting its current charge state. Lunar surface dust thus remains electrostatically charged at all times. Charged lunar dust will adversely affect the operations of most mechanical systems required by manned and unmanned exploration missions. Charged dust will also stubbornly adhere to solar panels and thermal radiators, thus reducing their efficiencies. Researches on the charged lunar dust can help to investigate lunar dusty environment as well as to solve those particle-induced problems by both simulation and experiment in laboratory. In this work, two different charging processes of charged lunar dust in the environment of electron beam and the radiation of ultraviolet source are considered. The computer numerical simulation method is used to analyze these two different charging processes of lunar dust, to explore the charging mechanisms of lunar dusts, and to choose an appropriate way of charging for the lunar environment simulation device in laboratory. On the basis of the classic dust charging equation, the charging equation of a dust in pure electron environment is given for the first time in this work. Meanwhile, the charging process under ultraviolet radiation is discussed and combined with the specific application of charging dusts. A solver of fourth-order Runge-Kutta algorithm is made to solve differential equations under two different irradiation sources. The main simulation results show that:1) in electron environment, the surface dust charge number increases as the particle size and the current intensity of electron guns increase, while the charge number increases as the beam spot radius of electron guns decreases; 2) under ultraviolet radiation, the dust charge number increases with the particle size and irradiance increasing, but charging efficiency is slow. A great dust charge number needs a long time radiation from sun (equivalent to 74 deuterium lamps), which means that more ultraviolet radiation sources are essential to speeding up the experiment in laboratory. Although the calculated efficiency of ultraviolet radiation is lower than electron irradiation, the secondary-electron emission, the scattering and the transmission process of electron irradiation are ignored, which can greatly reduce the efficiency of charging by energetic electron guns in the actual experiment. Therefore, comparing these two charging mechanisms and considering the actual design requirements for the space environment simulation device, charging by lots of ultraviolet radiation is an appropriate scheme for electrification of lunar dusts.
      通信作者: 李书翰, lishuhan@mail.dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11375039,11275034)资助的课题.
      Corresponding author: Li Shu-Han, lishuhan@mail.dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11375039, 11275034).
    [1]

    Ma J X 2006 Physics 35 224 (in Chinese) [马锦绣 2006 物理 35 224]

    [2]

    Whipple E C 1981 Rep. Prog. Phys. 44 1197

    [3]

    Ma J X, Liu J Y, Yu M Y 1997 Phys. Rev. E 55 4627

    [4]

    Liu J Y 1998 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [刘金远 1998 博士学位论文 (合肥:中国科学技术大学)]

    [5]

    Low G M 1969 Apollo 11 Mission Report (Houston: NASA Manned Spacecraft Center) MSC-00171

    [6]

    McDivitt J A 1969 Apollo 12 Mission Report (Houston: NASA Manned Spacecraft Center) MSC-01855

    [7]

    Shepard Jr A B 1971 Apollo 14 Mission Report (Houston: NASA Manned Spacecraft Center) MSC-04112

    [8]

    Scott D R 1971 Apollo 15 Mission Report (Houston: NASA Manned Spacecraft Center) MSC-05161

    [9]

    Morris O G 1972 Apollo 16 Mission Report (Houston: NASA Manned Spacecraft Center) MSC-7230

    [10]

    Morris O G 1972 Apollo 17 Mission Report (Houston: NASA Manned Spacecraft Center) JSC-07904

    [11]

    Gaier J R 2005 The Effects of Lunar Dust on EVA Systems During the Apollo Missions (Cleveland: NASA Glenn Research Center) NASA/TM-2005-213610/REV1

    [12]

    Zhang S S, Wang S J, Li X Y, Li S J, Tang H, Li Y, Yu W 2013 Earth Sci.: J. China Univ. Geosci. 38 339 (in Chinese) [张森森, 王世杰, 李雄耀, 李世杰, 唐红, 李阳, 于雯 2013 地球科学: 中国地质大学学报 38 339]

    [13]

    Shi X B, Li Y Z, Huang Y, Wang J 2007 Chin. J. Space Sci. 27 66 (in Chinese) [石晓波, 李运泽, 黄勇, 王浚 2007 空间科学学报 27 66]

    [14]

    Sun H, Shen Z G, Zhang X J, Ma S L 2015 Manned Spaceflight 21 642 (in Chinese) [孙浩, 沈志刚, 张晓静, 麻树林 2015 载人航天 21 642]

    [15]

    Tong J Y, Li M, Bai Y, Tian D B 2013 Chin. Space Sci. Technol. 4 78 (in Chinese) [童靖宇, 李蔓, 白羽, 田东波 2013 中国空间科学技术 4 78]

    [16]

    Freeman J W, Ibrahim M 1975 Earth, Moon, and Planets 14 103

    [17]

    Wallis M K, Hassan M H A 1983 Astron. and Astrophys. 121 10

    [18]

    Havnes O, Goertz C K, Morfill G E, Grun E, Ip W 1987 J. Geophys. Res. 92 2281

    [19]

    Sternovsky Z, Horanyi M, Robertson S 2001 J. Vacuum Sci. Technol. A: Vacuum, Surfaces, and Films 19 2533

    [20]

    Colwell J E, Gulbis A A S, Horanyi M, Robertson S 2005 Icarus 175 159

    [21]

    Abbas M M, Tankosic D, Craven P D, LeClair A C, Spann J F 2010 Astrophys. J. 718 795

    [22]

    Liu J Y, Chen L, Wang F, Wang N, Duan P 2010 Acta Phys.Sin. 59 8692 (in Chinese) [刘金远, 陈龙, 王丰, 王楠, 段萍 2010 59 8692]

    [23]

    Delzanno G L, Tang X Z 2015 Phys.Plasmas 22 113703

    [24]

    Shukla P K, Mamun A A 2002 Introduction to Dusty Plasma Physics (Bristol: Institute of Physics Publishing) pp36-69

  • [1]

    Ma J X 2006 Physics 35 224 (in Chinese) [马锦绣 2006 物理 35 224]

    [2]

    Whipple E C 1981 Rep. Prog. Phys. 44 1197

    [3]

    Ma J X, Liu J Y, Yu M Y 1997 Phys. Rev. E 55 4627

    [4]

    Liu J Y 1998 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [刘金远 1998 博士学位论文 (合肥:中国科学技术大学)]

    [5]

    Low G M 1969 Apollo 11 Mission Report (Houston: NASA Manned Spacecraft Center) MSC-00171

    [6]

    McDivitt J A 1969 Apollo 12 Mission Report (Houston: NASA Manned Spacecraft Center) MSC-01855

    [7]

    Shepard Jr A B 1971 Apollo 14 Mission Report (Houston: NASA Manned Spacecraft Center) MSC-04112

    [8]

    Scott D R 1971 Apollo 15 Mission Report (Houston: NASA Manned Spacecraft Center) MSC-05161

    [9]

    Morris O G 1972 Apollo 16 Mission Report (Houston: NASA Manned Spacecraft Center) MSC-7230

    [10]

    Morris O G 1972 Apollo 17 Mission Report (Houston: NASA Manned Spacecraft Center) JSC-07904

    [11]

    Gaier J R 2005 The Effects of Lunar Dust on EVA Systems During the Apollo Missions (Cleveland: NASA Glenn Research Center) NASA/TM-2005-213610/REV1

    [12]

    Zhang S S, Wang S J, Li X Y, Li S J, Tang H, Li Y, Yu W 2013 Earth Sci.: J. China Univ. Geosci. 38 339 (in Chinese) [张森森, 王世杰, 李雄耀, 李世杰, 唐红, 李阳, 于雯 2013 地球科学: 中国地质大学学报 38 339]

    [13]

    Shi X B, Li Y Z, Huang Y, Wang J 2007 Chin. J. Space Sci. 27 66 (in Chinese) [石晓波, 李运泽, 黄勇, 王浚 2007 空间科学学报 27 66]

    [14]

    Sun H, Shen Z G, Zhang X J, Ma S L 2015 Manned Spaceflight 21 642 (in Chinese) [孙浩, 沈志刚, 张晓静, 麻树林 2015 载人航天 21 642]

    [15]

    Tong J Y, Li M, Bai Y, Tian D B 2013 Chin. Space Sci. Technol. 4 78 (in Chinese) [童靖宇, 李蔓, 白羽, 田东波 2013 中国空间科学技术 4 78]

    [16]

    Freeman J W, Ibrahim M 1975 Earth, Moon, and Planets 14 103

    [17]

    Wallis M K, Hassan M H A 1983 Astron. and Astrophys. 121 10

    [18]

    Havnes O, Goertz C K, Morfill G E, Grun E, Ip W 1987 J. Geophys. Res. 92 2281

    [19]

    Sternovsky Z, Horanyi M, Robertson S 2001 J. Vacuum Sci. Technol. A: Vacuum, Surfaces, and Films 19 2533

    [20]

    Colwell J E, Gulbis A A S, Horanyi M, Robertson S 2005 Icarus 175 159

    [21]

    Abbas M M, Tankosic D, Craven P D, LeClair A C, Spann J F 2010 Astrophys. J. 718 795

    [22]

    Liu J Y, Chen L, Wang F, Wang N, Duan P 2010 Acta Phys.Sin. 59 8692 (in Chinese) [刘金远, 陈龙, 王丰, 王楠, 段萍 2010 59 8692]

    [23]

    Delzanno G L, Tang X Z 2015 Phys.Plasmas 22 113703

    [24]

    Shukla P K, Mamun A A 2002 Introduction to Dusty Plasma Physics (Bristol: Institute of Physics Publishing) pp36-69

  • [1] 邹丹旦, 涂忱胜, 胡平子, 李春华, 钱沐杨. 脉冲电磁驱动低温螺旋流注放电机理.  , 2023, 72(11): 115204. doi: 10.7498/aps.72.20230034
    [2] 文麒麟, 钟振. 应用模拟退火算法估算月核大小及其密度组成.  , 2023, 72(8): 089601. doi: 10.7498/aps.72.20222282
    [3] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 张浩文, 万城亮, 崔莹, 马越, 杨治虎, 路迪, ReinholdSchuch, 黎明, 张红强, 陈熙萌. 低能电子穿越玻璃直管时倾角依赖的输运动力学.  , 2022, 71(8): 084104. doi: 10.7498/aps.71.20212335
    [4] 韩瑞龙, 蔡明辉, 杨涛, 许亮亮, 夏清, 韩建伟. 宇宙线高能粒子对测试质量充电机制.  , 2021, 70(22): 229501. doi: 10.7498/aps.70.20210747
    [5] 穆萌, 张海燕, 王晓, 李存惠, 张小平, 王明智, 朱应敏, 高立波, 赵呈选, 陆洋, 王卫东. 月尘被动防护技术的最新研究进展.  , 2021, 70(6): 060501. doi: 10.7498/aps.70.20201517
    [6] 刘婧, 张海波. 空间电子辐照聚合物的充电特性和微观机理.  , 2019, 68(5): 059401. doi: 10.7498/aps.68.20181925
    [7] 危卫, 张力元, 顾兆林. 工业中粉体颗粒的荷电机理及数值模拟方法.  , 2015, 64(16): 168301. doi: 10.7498/aps.64.168301
    [8] 刘婧, 张海波. 空间多能电子辐照聚合物充电过程的稳态特性.  , 2014, 63(14): 149401. doi: 10.7498/aps.63.149401
    [9] 曹鹤飞, 刘尚合, 孙永卫, 原青云. 等离子体环境下孤立导体表面充电时域特性研究.  , 2013, 62(14): 149401. doi: 10.7498/aps.62.149401
    [10] 黄建国, 易忠, 孟立飞, 赵华, 刘业楠. 空间站快速充电事件的机理研究.  , 2013, 62(9): 099401. doi: 10.7498/aps.62.099401
    [11] 黄建国, 易忠, 孟立飞, 赵华, 刘业楠. 空间站快速充电效应的物理过程及特征.  , 2013, 62(22): 229401. doi: 10.7498/aps.62.229401
    [12] 毕学松, 朱亮, 杨富龙. 丝电爆过程的电流导入机理.  , 2012, 61(7): 078105. doi: 10.7498/aps.61.078105
    [13] 高著秀, 李宏伟, 蔡明辉, 刘丹秋, 黄建国, 韩建伟. 超高速空间微小碎片撞击充电材料诱发的放电.  , 2012, 61(3): 039601. doi: 10.7498/aps.61.039601
    [14] 梁永超, 刘让苏, 朱轩民, 周丽丽, 田泽安, 刘全慧. 液态Mg7Zn3合金快速凝固过程中微观结构演变机理的模拟研究.  , 2010, 59(11): 7930-7940. doi: 10.7498/aps.59.7930
    [15] 王学昭, 沈容, 路阳, 纪爱玲, 孙刚, 陆坤权, 崔平. 极性分子型电流变液导电机理研究.  , 2010, 59(10): 7144-7148. doi: 10.7498/aps.59.7144
    [16] 侯兆阳, 刘丽霞, 刘让苏, 田泽安. Al-Mg合金熔体快速凝固过程中微观结构演化机理的模拟研究.  , 2009, 58(7): 4817-4825. doi: 10.7498/aps.58.4817
    [17] 杨雁南, 杨 波, 朱金荣, 沈中华, 陆 建, 倪晓武. 真空环境下激光与固体靶冲量耦合的机理分析和数值模拟.  , 2007, 56(10): 5945-5951. doi: 10.7498/aps.56.5945
    [18] 刘 蕾, 徐升华, 刘 捷, 段 俐, 孙祉伟, 刘忍肖, 董 鹏. 带电胶体粒子结晶过程的实验研究.  , 2006, 55(11): 6168-6174. doi: 10.7498/aps.55.6168
    [19] 李雪春, 王友年. 介质靶表面的充电效应对等离子体浸没离子注入过程中鞘层特性的影响.  , 2004, 53(8): 2666-2669. doi: 10.7498/aps.53.2666
    [20] 胡希伟. 带电粒子在空间关联的湍动静电场中扩散行为的粒子模拟.  , 1991, 40(12): 1942-1947. doi: 10.7498/aps.40.1942
计量
  • 文章访问数:  6442
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-07
  • 修回日期:  2018-04-20
  • 刊出日期:  2018-07-05

/

返回文章
返回
Baidu
map