搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单晶LaB6阴极材料典型晶面的电子结构和发射性能研究

刘洪亮 张忻 王杨 肖怡新 张久兴

引用本文:
Citation:

单晶LaB6阴极材料典型晶面的电子结构和发射性能研究

刘洪亮, 张忻, 王杨, 肖怡新, 张久兴

Surface electronic structures and emission property of single crystal LaB6 typical surfaces

Liu Hong-Liang, Zhang Xin, Wang Yang, Xiao Yi-Xin, Zhang Jiu-Xing
PDF
导出引用
  • 单晶LaB6是一种理想的热发射和场发射阴极材料,其不同晶面表现出不同的发射性能.采用基于密度泛函理论的第一性原理计算分析了LaB6单晶的(100),(110),(111),(210),(211)和(310)典型晶面的差分电子密度、能带结构和态密度,并对光学区熔法制备的高质量单晶LaB6的上述典型晶面的热发射性能进行了测试.理论计算结果表明LaB6各晶面结构的不同和电子结构的差异导致LaB6发射性能具有各向异性,晶面内La原子的密度越大、费米能级进入导带越深、费米能级附近态密度越大及其在导带区域的分布宽度越宽、导带在费米能级附近分布越多,晶面的逸出功越低,发射性能越好.热发射测试结果表明,当阴极测试温度为1773 K,测试电压为1 kV时,(100),(110),(111),(210),(211)和(310)晶面的最大发射电流密度分别为42.4,36.4,18.4,32.5,30.5和32.2 A/cm2,其中(100)晶面具有最佳的发射性能.
    The electron emission properties of lanthanum hexaboride (LaB6) have received much attention because its low work function, low volatility, high brightness, thermal stability and high mechanical strength. However, single crystal LaB6 is an ideal thermionic emission and field emission cathode material, its different crystal surfaces exhibit different emission properties. So far the physical factors of the emission properties of different crystal surfaces of LaB6 single crystal have been rarely reported. In this paper, the density function theory based first-principles calculations are used to analyze the electron density differences, band structures and densities of states of the typical LaB6 (100), (110), (111), (210), (211) and (310) surfaces, and the thermionic emission properties of the high-quality single crystal LaB6 typical surfaces are tested. The theoretical calculation results show that single crystal LaB6 has metal properties, electron emission characteristics and anisotropy of emission performance which are mainly caused by different crystal structures and electronic structures of LaB6 typical surfaces. The densities of La atoms in different surfaces of LaB6 single crystal are different, and a high density of La atoms in a surface is beneficial to its emission performance. The difference between relative positions for the Fermi level of different surfaces has different effect on their emission performance, and a surface with high position of Fermi level against the bottom of conduction band could have small work function and good emission performance. In addition, a surface structure of single crystal LaB6 has a large density of states and a high number of distributions of conduction band near the Fermi level, which are in favor of its electron emission. The (100) surface of single crystal LaB6 with the highest density of La atoms and electronic structure in favor of electron emission could have optimal electron emission performance compared with the remaining crystal surfaces. Thermionic emission test results show that maximum emission current densities of the (100), (110), (111), (210), (211) and (310) surfaces are 42.4, 36.4, 18.4, 32.5, 30.5 and 32.2 A/cm2 at the cathode temperature 1773 K and the voltage 1 kV. The (100) surface of LaB6 single crystal has a maximum emission current density under the same test condition, meaning that this surface has a smallest work function and best emission property compared with the other crystal surface. The thermionic emission test results show that the actual performances are basically accordant with the calculated results, demonstrating that the first principle calculation could provide a good theoretical guidance for studying the electron emission properties of rare earth hexaborides (REB6) and other cathode materials.
      通信作者: 张忻, zhxin@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51371010,51572066,50801002)和北京市自然科学基金(批准号:2112007)资助的课题.
      Corresponding author: Zhang Xin, zhxin@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51371010, 51572066, 50801002) and the Natural Science Foundation of Beijing, China (Grant No. 2112007).
    [1]

    Duan J, Zhou T, Zhang L, Du J G, Jiang G, Wang H B 2015 Chin. Phys. B 24 096201

    [2]

    Zhang H, Tang J, Yuan J, Yamauchi Y, Suzuki T T, Shinya N, Nakajima K, Qin L C 2016 Nat. Nanotechnol. 11 273

    [3]

    Bao L H, Zhang J X, Zhou S L, Zhang N 2011 Acta Phys. Sin. 60 106501 (in Chinese)[包黎红, 张久兴, 周身林, 张宁 2011 60 106501]

    [4]

    Bao L H, Zhang J X, Zhou S L, Zhang N, Xu H 2011 Chin. Phys. Lett. 28 088101

    [5]

    Zhang H, Tang J, Yuan J S, Ma J, Shinya N, Nakajima K, Murakami H, Ohkubo T, Qin L C 2010 Nano Lett. 10 3539

    [6]

    Bao L H, Narengerile, Tegus O, Zhang X, Zhang J X 2013 Acta Phys. Sin. 62 196105 (in Chinese)[包黎红, 那仁格日乐, 特古斯, 张忻, 张久兴 2013 62 196105]

    [7]

    Zhou S, Zhang J, Liu D, Lin Z, Huang Q, Bao L, Ma R, Wei Y 2010 Acta Mater. 58 4978

    [8]

    Nishitani R, Aono M, Tanaka T, Oshima C, Kawai S, Iwasaki H, Nakamura S 1980 Surf. Sci. 93 535

    [9]

    Oshima C, Bannai E, Tanaka T, Kawai S 1977 J. Appl. Phys. 48 3925

    [10]

    Uijttewaal M A, de Wijs G A, de Groot R A 2006 J. Phys. Chem. B 110 18459

    [11]

    Oshima C, Aono M, Tanaka T, Nishitani R, Kawai S 1980 J. Appl. Phys. 51 997

    [12]

    Gesley M, Swanson L W 1984 Surf. Sci. 146 583

    [13]

    Swanson L W, Gesley M A, Davis P R 1981 Surf. Sci. 107 263

    [14]

    Liu H, Zhang X, Ning S, Xiao Y, Zhang J 2017 Vacuum 143 245

    [15]

    Payne M C, Teter M P 1992 Rev. Mod. Phys. 64 1045

    [16]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.-Condens. Mater. 14 2717

    [17]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [18]

    Yamamoto S 2006 Rep. Prog. Phys. 69 181

    [19]

    Yamauchi H, Takagi K, Yuito I, Kawabe U 1976 Appl. Phys. Lett. 29 638

    [20]

    Mogren S, Reifenberger R 1991 Surf. Sci. 254 169

    [21]

    Waldhauser W, Mitterer C, Laimer J, Stori H 1998 Surf. Coat. Technol. 98 1315

  • [1]

    Duan J, Zhou T, Zhang L, Du J G, Jiang G, Wang H B 2015 Chin. Phys. B 24 096201

    [2]

    Zhang H, Tang J, Yuan J, Yamauchi Y, Suzuki T T, Shinya N, Nakajima K, Qin L C 2016 Nat. Nanotechnol. 11 273

    [3]

    Bao L H, Zhang J X, Zhou S L, Zhang N 2011 Acta Phys. Sin. 60 106501 (in Chinese)[包黎红, 张久兴, 周身林, 张宁 2011 60 106501]

    [4]

    Bao L H, Zhang J X, Zhou S L, Zhang N, Xu H 2011 Chin. Phys. Lett. 28 088101

    [5]

    Zhang H, Tang J, Yuan J S, Ma J, Shinya N, Nakajima K, Murakami H, Ohkubo T, Qin L C 2010 Nano Lett. 10 3539

    [6]

    Bao L H, Narengerile, Tegus O, Zhang X, Zhang J X 2013 Acta Phys. Sin. 62 196105 (in Chinese)[包黎红, 那仁格日乐, 特古斯, 张忻, 张久兴 2013 62 196105]

    [7]

    Zhou S, Zhang J, Liu D, Lin Z, Huang Q, Bao L, Ma R, Wei Y 2010 Acta Mater. 58 4978

    [8]

    Nishitani R, Aono M, Tanaka T, Oshima C, Kawai S, Iwasaki H, Nakamura S 1980 Surf. Sci. 93 535

    [9]

    Oshima C, Bannai E, Tanaka T, Kawai S 1977 J. Appl. Phys. 48 3925

    [10]

    Uijttewaal M A, de Wijs G A, de Groot R A 2006 J. Phys. Chem. B 110 18459

    [11]

    Oshima C, Aono M, Tanaka T, Nishitani R, Kawai S 1980 J. Appl. Phys. 51 997

    [12]

    Gesley M, Swanson L W 1984 Surf. Sci. 146 583

    [13]

    Swanson L W, Gesley M A, Davis P R 1981 Surf. Sci. 107 263

    [14]

    Liu H, Zhang X, Ning S, Xiao Y, Zhang J 2017 Vacuum 143 245

    [15]

    Payne M C, Teter M P 1992 Rev. Mod. Phys. 64 1045

    [16]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.-Condens. Mater. 14 2717

    [17]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [18]

    Yamamoto S 2006 Rep. Prog. Phys. 69 181

    [19]

    Yamauchi H, Takagi K, Yuito I, Kawabe U 1976 Appl. Phys. Lett. 29 638

    [20]

    Mogren S, Reifenberger R 1991 Surf. Sci. 254 169

    [21]

    Waldhauser W, Mitterer C, Laimer J, Stori H 1998 Surf. Coat. Technol. 98 1315

  • [1] 黄盛星, 陈健, 王文菲, 王旭东, 姚曼. 新型双过渡金属MXene热电输运性能第一性原理计算.  , 2024, 73(14): 146301. doi: 10.7498/aps.73.20240432
    [2] 王秀宇, 王涛, 崔雨昂, 吴溪广润, 王洋. 基于第一性原理研究杂质补偿对硅光电性能的影响.  , 2024, 73(11): 116301. doi: 10.7498/aps.73.20231814
    [3] 刘洪亮, 郭志迎, 袁晓峰, 高倩倩, 段欣雨, 张忻, 张久兴. 典型二元单晶REB6的电子结构和发射性能.  , 2022, 71(9): 098101. doi: 10.7498/aps.71.20211870
    [4] 孙士阳, 迟中波, 徐平平, 安泽宇, 张俊皓, 谭心, 任元. 金刚石(111)/Al界面形成及性能的第一性原理研究.  , 2021, 70(18): 188101. doi: 10.7498/aps.70.20210572
    [5] 龚凌云, 张萍, 陈倩, 楼志豪, 许杰, 高峰. Nb5+掺杂钛酸锶结构与性能的第一性原理研究.  , 2021, 70(22): 227101. doi: 10.7498/aps.70.20211241
    [6] 付正鸿, 李婷, 单美乐, 郭糠, 苟国庆. H对Mg2Si力学性能影响的第一性原理研究.  , 2019, 68(17): 177102. doi: 10.7498/aps.68.20190368
    [7] 盛喆, 戴显英, 苗东铭, 吴淑静, 赵天龙, 郝跃. 各Li吸附组分下硅烯氢存储性能的第一性原理研究.  , 2018, 67(10): 107103. doi: 10.7498/aps.67.20172720
    [8] 曲灵丰, 侯清玉, 许镇潮, 赵春旺. Ti掺杂ZnO光电性能的第一性原理研究.  , 2016, 65(15): 157201. doi: 10.7498/aps.65.157201
    [9] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究.  , 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [10] 马蕾, 王旭, 尚家香. Pd掺杂对NiTi合金马氏体相变和热滞影响的第一性原理研究.  , 2014, 63(23): 233103. doi: 10.7498/aps.63.233103
    [11] 王海燕, 历长云, 高洁, 胡前库, 米国发. 高压下TiAl3结构及热动力学性质的第一性原理研究.  , 2013, 62(6): 068105. doi: 10.7498/aps.62.068105
    [12] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算.  , 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [13] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究.  , 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [14] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算.  , 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [15] 汝强, 李燕玲, 胡社军, 彭薇, 张志文. Sn3InSb4合金嵌Li性能的第一性原理研究.  , 2012, 61(3): 038210. doi: 10.7498/aps.61.038210
    [16] 程志达, 朱静, 孙铁昱. 面心立方单晶镍纳米线稳定性及磁性的第一性原理计算.  , 2011, 60(3): 037504. doi: 10.7498/aps.60.037504
    [17] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究.  , 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [18] 包黎红, 张久兴, 周身林, 张宁. 悬浮区域熔炼法制备LaB6单晶体与发射性能研究.  , 2011, 60(10): 106501. doi: 10.7498/aps.60.106501
    [19] 杨敏, 王六定, 陈国栋, 安博, 王益军, 刘光清. 碳掺杂闭口硼氮纳米管场发射第一性原理研究.  , 2009, 58(10): 7151-7155. doi: 10.7498/aps.58.7151
    [20] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究.  , 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
计量
  • 文章访问数:  6879
  • PDF下载量:  241
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-09
  • 修回日期:  2017-11-16
  • 刊出日期:  2019-02-20

/

返回文章
返回
Baidu
map